• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      鈍化外形對旋成體氣動性能的影響

      2014-10-30 08:35屈志朋等
      計算機輔助工程 2014年5期
      關(guān)鍵詞:前緣飛行器

      屈志朋等

      摘要: 為考察鈍化外形對高超聲速飛行器氣動性能的影響,基于CFD分析,針對典型旋成體比較2種不同鈍化外形(鈍化半徑均勻/非均勻)的氣動性能.結(jié)果表明:在較小的鈍化半徑/高度下,由于前緣流向投影面積占整個旋成體流向投影面積比例較小,前緣氣動性能對整個旋成體氣動性能影響不大;但是,隨著鈍化半徑/高度的增加,前緣氣動性能對整個旋成體氣動性能影響會逐漸增大.

      關(guān)鍵詞: 旋成體; 高超聲速; 飛行器; 前緣; 氣動力; CFD

      中圖分類號: V423.8;TB115.1文獻(xiàn)標(biāo)志碼: B

      Abstract: To study the effect of blunt shapes on the aerodynamic performance of hypersonic aircraft, based on CFD analysis, the aerodynamic performance of two different blunt shapes(the blunt radius are uniform or nonuniform) are compared for typical bodies of revolution. The results show that, under the smaller blunt radius/height, because the projection area in flow direction of leadingedge accounts for a small proportion of the projection area in flow direction of whole bodies of revolution, the leadingedge aerodynamic performance has a little effect on the aerodynamic performance of the whole bodies of revolution; however, with the increase of blunt radius/height, the effect of leadingedge aerodynamic performance on the aerodynamic performance of whole bodies of revolution increases gradually.

      Key words: body of revolution; hypersonic speed; aircraft; leadingedge; aerodynamic force; CFD

      引言

      飛行器在高超聲速飛行時,來流會對前緣產(chǎn)生較嚴(yán)重的氣動熱,而前緣駐點熱流更嚴(yán)重.為改善這一情況,科學(xué)家針對駐點熱流進(jìn)行很多研究[19],結(jié)果均表明駐點熱流與其駐點曲率半徑的平方根成反比.采用較大的鈍化半徑可有效減小熱流,但也會增強頭部弓形激波,導(dǎo)致激波阻力急劇增加.文獻(xiàn)[10]提出一種鈍化半徑非均勻的外形,基于數(shù)值模擬方法求解高超聲速凍結(jié)流流場獲得前緣熱流分布,并應(yīng)用遺傳算法求解獲得一個新外形(優(yōu)化外形).結(jié)果表明,在相同的鈍化半徑/高度下,優(yōu)化外形最大熱流峰值比相應(yīng)的圓弧鈍化熱流密度峰值減小大約20%.采用2種鈍化外形時熱流Q和壓力P分布比較見圖1和2,可以看出,優(yōu)化前緣駐點附近熱流較圓弧前緣有較明顯下降,但同時壓力分布也有較大差別,優(yōu)化外形在駐點附近的壓力明顯高于圓弧鈍化.優(yōu)化外形較圓弧在防熱方面有較大的優(yōu)勢,同時又會對氣動力產(chǎn)生較大影響.為考察2種不同鈍化外形對飛行器氣動力性能的影響,針對高超聲速旋成體,基于CFD數(shù)值模擬分析,開展2種不同鈍化外形氣動力性能的比較,分析不同鈍化半徑/高度在一定攻角變化范圍內(nèi)變化時對旋成體氣動力性能的影響.

      由圖9可知:攻角在小范圍內(nèi)變化時,在相同的鈍化外形下,升阻比隨攻角的增大逐漸增大;在較小的鈍化半徑/高度下,優(yōu)化外形的升阻比在相同的攻角下比圓弧外形的升阻比略低,但兩者升阻比相差較??;隨著鈍化半徑/高度的增加,由于阻力增加明顯高于升力增加,兩者升阻比差隨攻角增大逐漸增大.

      4結(jié)束語

      通過對模型流場進(jìn)行數(shù)值計算,得到優(yōu)化外形鈍化和圓弧鈍化的流場,通過對2種不同鈍化外形在不同鈍化半徑/高度下氣動性能的分析,發(fā)現(xiàn)在較小的鈍化半徑/高度下,2種不同鈍化外形對氣動力性能影響不大,并且在小攻角范圍內(nèi)2種不同鈍化外形對氣動力性能影響也不大.隨著鈍化半徑/高度的增大,2種不同鈍化外形對氣動力性能差別逐漸增大.

      參考文獻(xiàn):

      [1]REGINALD von DRIEST E. The problem of aerodynamic heating[J]. Aeronautical Eng Review, 1956, 15(10): 2641.

      [2]LEES L. Laminar heat transfer over bluntnosed bodies at hypersonic flight speeds[J]. J Jet Propulsion, 1956, 26(4): 259269.

      [3]FAY J A, RIDDELL F R. Theory of stagnation point heat transfer in dissociated air[J]. J Aeronautical Sci, 25, 1958, 25(1): 7385.

      [4]KEMP N H, ROSE P H, DETRA R W. Laminar heat transfer around blunt bodies in dissociated air[J]. J Aeronautical Sci, 1959, 26(7): 421430.

      [5]ROSE P H, STARK W. Stagnation point heat transfer measurements in dissociated air[J]. J Aeronautical Sci, 1958, 25(2): 8697.

      [6]ROSE P H, STANKEVICS J O. Stagnation point heat transfer measurements in partially ionized air[J]. AIAA J, 1963, 1(12): 27522763.

      [7]MARVIN J G, DEIWERT G S. Convective heat transfer in planetary gases[R]. Washington D C: NASA, 1965.

      [8]SUTTON K, GRAVES R A. A general stagnationpoint convectiveheating equation for arbitrary gas mixtures[R]. Washington D C: NASA, 1971.

      [9]ANDERSON J D. Hypersonic and high temperature gas dynamics[M]. Reston: AIAA, 2006.

      [10]CUI K, HU S C. Shape design to minimize the peak heatflux of blunt leadingedge[C]//Proc 51st AIAA Aerospace Sci Meeting AIAA 20130233. Texas, 2013: 233259.(編輯武曉英)

      摘要: 為考察鈍化外形對高超聲速飛行器氣動性能的影響,基于CFD分析,針對典型旋成體比較2種不同鈍化外形(鈍化半徑均勻/非均勻)的氣動性能.結(jié)果表明:在較小的鈍化半徑/高度下,由于前緣流向投影面積占整個旋成體流向投影面積比例較小,前緣氣動性能對整個旋成體氣動性能影響不大;但是,隨著鈍化半徑/高度的增加,前緣氣動性能對整個旋成體氣動性能影響會逐漸增大.

      關(guān)鍵詞: 旋成體; 高超聲速; 飛行器; 前緣; 氣動力; CFD

      中圖分類號: V423.8;TB115.1文獻(xiàn)標(biāo)志碼: B

      Abstract: To study the effect of blunt shapes on the aerodynamic performance of hypersonic aircraft, based on CFD analysis, the aerodynamic performance of two different blunt shapes(the blunt radius are uniform or nonuniform) are compared for typical bodies of revolution. The results show that, under the smaller blunt radius/height, because the projection area in flow direction of leadingedge accounts for a small proportion of the projection area in flow direction of whole bodies of revolution, the leadingedge aerodynamic performance has a little effect on the aerodynamic performance of the whole bodies of revolution; however, with the increase of blunt radius/height, the effect of leadingedge aerodynamic performance on the aerodynamic performance of whole bodies of revolution increases gradually.

      Key words: body of revolution; hypersonic speed; aircraft; leadingedge; aerodynamic force; CFD

      引言

      飛行器在高超聲速飛行時,來流會對前緣產(chǎn)生較嚴(yán)重的氣動熱,而前緣駐點熱流更嚴(yán)重.為改善這一情況,科學(xué)家針對駐點熱流進(jìn)行很多研究[19],結(jié)果均表明駐點熱流與其駐點曲率半徑的平方根成反比.采用較大的鈍化半徑可有效減小熱流,但也會增強頭部弓形激波,導(dǎo)致激波阻力急劇增加.文獻(xiàn)[10]提出一種鈍化半徑非均勻的外形,基于數(shù)值模擬方法求解高超聲速凍結(jié)流流場獲得前緣熱流分布,并應(yīng)用遺傳算法求解獲得一個新外形(優(yōu)化外形).結(jié)果表明,在相同的鈍化半徑/高度下,優(yōu)化外形最大熱流峰值比相應(yīng)的圓弧鈍化熱流密度峰值減小大約20%.采用2種鈍化外形時熱流Q和壓力P分布比較見圖1和2,可以看出,優(yōu)化前緣駐點附近熱流較圓弧前緣有較明顯下降,但同時壓力分布也有較大差別,優(yōu)化外形在駐點附近的壓力明顯高于圓弧鈍化.優(yōu)化外形較圓弧在防熱方面有較大的優(yōu)勢,同時又會對氣動力產(chǎn)生較大影響.為考察2種不同鈍化外形對飛行器氣動力性能的影響,針對高超聲速旋成體,基于CFD數(shù)值模擬分析,開展2種不同鈍化外形氣動力性能的比較,分析不同鈍化半徑/高度在一定攻角變化范圍內(nèi)變化時對旋成體氣動力性能的影響.

      由圖9可知:攻角在小范圍內(nèi)變化時,在相同的鈍化外形下,升阻比隨攻角的增大逐漸增大;在較小的鈍化半徑/高度下,優(yōu)化外形的升阻比在相同的攻角下比圓弧外形的升阻比略低,但兩者升阻比相差較??;隨著鈍化半徑/高度的增加,由于阻力增加明顯高于升力增加,兩者升阻比差隨攻角增大逐漸增大.

      4結(jié)束語

      通過對模型流場進(jìn)行數(shù)值計算,得到優(yōu)化外形鈍化和圓弧鈍化的流場,通過對2種不同鈍化外形在不同鈍化半徑/高度下氣動性能的分析,發(fā)現(xiàn)在較小的鈍化半徑/高度下,2種不同鈍化外形對氣動力性能影響不大,并且在小攻角范圍內(nèi)2種不同鈍化外形對氣動力性能影響也不大.隨著鈍化半徑/高度的增大,2種不同鈍化外形對氣動力性能差別逐漸增大.

      參考文獻(xiàn):

      [1]REGINALD von DRIEST E. The problem of aerodynamic heating[J]. Aeronautical Eng Review, 1956, 15(10): 2641.

      [2]LEES L. Laminar heat transfer over bluntnosed bodies at hypersonic flight speeds[J]. J Jet Propulsion, 1956, 26(4): 259269.

      [3]FAY J A, RIDDELL F R. Theory of stagnation point heat transfer in dissociated air[J]. J Aeronautical Sci, 25, 1958, 25(1): 7385.

      [4]KEMP N H, ROSE P H, DETRA R W. Laminar heat transfer around blunt bodies in dissociated air[J]. J Aeronautical Sci, 1959, 26(7): 421430.

      [5]ROSE P H, STARK W. Stagnation point heat transfer measurements in dissociated air[J]. J Aeronautical Sci, 1958, 25(2): 8697.

      [6]ROSE P H, STANKEVICS J O. Stagnation point heat transfer measurements in partially ionized air[J]. AIAA J, 1963, 1(12): 27522763.

      [7]MARVIN J G, DEIWERT G S. Convective heat transfer in planetary gases[R]. Washington D C: NASA, 1965.

      [8]SUTTON K, GRAVES R A. A general stagnationpoint convectiveheating equation for arbitrary gas mixtures[R]. Washington D C: NASA, 1971.

      [9]ANDERSON J D. Hypersonic and high temperature gas dynamics[M]. Reston: AIAA, 2006.

      [10]CUI K, HU S C. Shape design to minimize the peak heatflux of blunt leadingedge[C]//Proc 51st AIAA Aerospace Sci Meeting AIAA 20130233. Texas, 2013: 233259.(編輯武曉英)

      摘要: 為考察鈍化外形對高超聲速飛行器氣動性能的影響,基于CFD分析,針對典型旋成體比較2種不同鈍化外形(鈍化半徑均勻/非均勻)的氣動性能.結(jié)果表明:在較小的鈍化半徑/高度下,由于前緣流向投影面積占整個旋成體流向投影面積比例較小,前緣氣動性能對整個旋成體氣動性能影響不大;但是,隨著鈍化半徑/高度的增加,前緣氣動性能對整個旋成體氣動性能影響會逐漸增大.

      關(guān)鍵詞: 旋成體; 高超聲速; 飛行器; 前緣; 氣動力; CFD

      中圖分類號: V423.8;TB115.1文獻(xiàn)標(biāo)志碼: B

      Abstract: To study the effect of blunt shapes on the aerodynamic performance of hypersonic aircraft, based on CFD analysis, the aerodynamic performance of two different blunt shapes(the blunt radius are uniform or nonuniform) are compared for typical bodies of revolution. The results show that, under the smaller blunt radius/height, because the projection area in flow direction of leadingedge accounts for a small proportion of the projection area in flow direction of whole bodies of revolution, the leadingedge aerodynamic performance has a little effect on the aerodynamic performance of the whole bodies of revolution; however, with the increase of blunt radius/height, the effect of leadingedge aerodynamic performance on the aerodynamic performance of whole bodies of revolution increases gradually.

      Key words: body of revolution; hypersonic speed; aircraft; leadingedge; aerodynamic force; CFD

      引言

      飛行器在高超聲速飛行時,來流會對前緣產(chǎn)生較嚴(yán)重的氣動熱,而前緣駐點熱流更嚴(yán)重.為改善這一情況,科學(xué)家針對駐點熱流進(jìn)行很多研究[19],結(jié)果均表明駐點熱流與其駐點曲率半徑的平方根成反比.采用較大的鈍化半徑可有效減小熱流,但也會增強頭部弓形激波,導(dǎo)致激波阻力急劇增加.文獻(xiàn)[10]提出一種鈍化半徑非均勻的外形,基于數(shù)值模擬方法求解高超聲速凍結(jié)流流場獲得前緣熱流分布,并應(yīng)用遺傳算法求解獲得一個新外形(優(yōu)化外形).結(jié)果表明,在相同的鈍化半徑/高度下,優(yōu)化外形最大熱流峰值比相應(yīng)的圓弧鈍化熱流密度峰值減小大約20%.采用2種鈍化外形時熱流Q和壓力P分布比較見圖1和2,可以看出,優(yōu)化前緣駐點附近熱流較圓弧前緣有較明顯下降,但同時壓力分布也有較大差別,優(yōu)化外形在駐點附近的壓力明顯高于圓弧鈍化.優(yōu)化外形較圓弧在防熱方面有較大的優(yōu)勢,同時又會對氣動力產(chǎn)生較大影響.為考察2種不同鈍化外形對飛行器氣動力性能的影響,針對高超聲速旋成體,基于CFD數(shù)值模擬分析,開展2種不同鈍化外形氣動力性能的比較,分析不同鈍化半徑/高度在一定攻角變化范圍內(nèi)變化時對旋成體氣動力性能的影響.

      由圖9可知:攻角在小范圍內(nèi)變化時,在相同的鈍化外形下,升阻比隨攻角的增大逐漸增大;在較小的鈍化半徑/高度下,優(yōu)化外形的升阻比在相同的攻角下比圓弧外形的升阻比略低,但兩者升阻比相差較??;隨著鈍化半徑/高度的增加,由于阻力增加明顯高于升力增加,兩者升阻比差隨攻角增大逐漸增大.

      4結(jié)束語

      通過對模型流場進(jìn)行數(shù)值計算,得到優(yōu)化外形鈍化和圓弧鈍化的流場,通過對2種不同鈍化外形在不同鈍化半徑/高度下氣動性能的分析,發(fā)現(xiàn)在較小的鈍化半徑/高度下,2種不同鈍化外形對氣動力性能影響不大,并且在小攻角范圍內(nèi)2種不同鈍化外形對氣動力性能影響也不大.隨著鈍化半徑/高度的增大,2種不同鈍化外形對氣動力性能差別逐漸增大.

      參考文獻(xiàn):

      [1]REGINALD von DRIEST E. The problem of aerodynamic heating[J]. Aeronautical Eng Review, 1956, 15(10): 2641.

      [2]LEES L. Laminar heat transfer over bluntnosed bodies at hypersonic flight speeds[J]. J Jet Propulsion, 1956, 26(4): 259269.

      [3]FAY J A, RIDDELL F R. Theory of stagnation point heat transfer in dissociated air[J]. J Aeronautical Sci, 25, 1958, 25(1): 7385.

      [4]KEMP N H, ROSE P H, DETRA R W. Laminar heat transfer around blunt bodies in dissociated air[J]. J Aeronautical Sci, 1959, 26(7): 421430.

      [5]ROSE P H, STARK W. Stagnation point heat transfer measurements in dissociated air[J]. J Aeronautical Sci, 1958, 25(2): 8697.

      [6]ROSE P H, STANKEVICS J O. Stagnation point heat transfer measurements in partially ionized air[J]. AIAA J, 1963, 1(12): 27522763.

      [7]MARVIN J G, DEIWERT G S. Convective heat transfer in planetary gases[R]. Washington D C: NASA, 1965.

      [8]SUTTON K, GRAVES R A. A general stagnationpoint convectiveheating equation for arbitrary gas mixtures[R]. Washington D C: NASA, 1971.

      [9]ANDERSON J D. Hypersonic and high temperature gas dynamics[M]. Reston: AIAA, 2006.

      [10]CUI K, HU S C. Shape design to minimize the peak heatflux of blunt leadingedge[C]//Proc 51st AIAA Aerospace Sci Meeting AIAA 20130233. Texas, 2013: 233259.(編輯武曉英)

      猜你喜歡
      前緣飛行器
      飛機外翼前緣總裝階段裝配階差的探究與分析
      飛去上班
      基于STM32的四軸飛行器控制系統(tǒng)設(shè)計
      基于STM32的四軸飛行器控制系統(tǒng)設(shè)計
      某型機前緣類蒙皮成型分析
      民用飛機翼面前緣的抗鳥撞結(jié)構(gòu)設(shè)計思路探討
      神秘的飛行器
      延庆县| 海口市| 孙吴县| 洞头县| 乌鲁木齐市| 都匀市| 萨迦县| 西昌市| 双桥区| 如东县| 榆社县| 滦南县| 甘泉县| 桃园县| 南安市| 门头沟区| 枣强县| 泾川县| 宜兴市| 白河县| 扎兰屯市| 顺昌县| 大方县| 乌什县| 冀州市| 西华县| 大荔县| 乌拉特前旗| 进贤县| 上高县| 东乌珠穆沁旗| 马山县| 库车县| 河池市| 大足县| 固安县| 湖南省| 闵行区| 安岳县| 上犹县| 镇远县|