• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      退化線性橢圓方程非常弱解的存在唯一性

      2014-11-28 17:56:57晏華輝顧廣澤

      晏華輝+顧廣澤

      摘要:定義了在所謂的具有一片平的邊界的有界光滑區(qū)域內(nèi)退化線性橢圓的非常弱解的概念,然后利用變法方法與退化橢圓方程的極值原理等證明了該問(wèn)題非常弱解的存在唯一性結(jié)果.

      關(guān)鍵詞:存在性; 唯一性; 非常弱解; 退化橢圓方程

      中圖分類號(hào):O175.25 文獻(xiàn)標(biāo)識(shí)碼:A

      他們需要得到上面問(wèn)題非常弱解的存在唯一性結(jié)果.

      [1]QUITTNER P, REICHEL W. Very weak solutions to elliptic equations with nonlinear Neumann boundary conditions [J]. Calc Var Partial Diff Equ,2008,32(4): 429-452.

      [2]BIDAUTVERON M F, PONCE A, VERON L. Boundary singularities of positive solutions of some nonlinear elliptic equations [J]. C R Acad Sci Paris Ser I Math, 2007,344(2): 83-88.

      [3]HU B. Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition [J]. Differential Integral Equations. 1994,7(2): 301-313.

      [4]MCKENNA P J, REICHEL W. A priori bounds for semilinear equations and a new class of critical exponents for Lipschitz domains [J]. J Funct Anal, 2007,244(1) : 220-246.

      [5]PACARD F. Existence de solutions faibles positive de dans des ouverts bornes de [J]. C R Acad Sci Paris Ser. I Math, 1992,315(7) : 793-798.

      [6]PACARD F. Existence and convergence of positive weak solutions of in a bounded domains of [J]. Calc Var Partial Diff Equ, 1993, 1(3) : 243-265.

      [7]QUITTNER P, SOUPLET PH. A priori estimates and existence for elliptic systems via bootstrap in a weighted Lebesgue spaces [J]. Arch Ration Mech Anal, 2004, 174(1): 49-81.

      [8]CABRE X, SIRE Y. Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates [J]. Ann Inst H Poincar\'{e} Anal NonLin\'{e}aire, 2014,31(1) : 23-53.

      摘要:定義了在所謂的具有一片平的邊界的有界光滑區(qū)域內(nèi)退化線性橢圓的非常弱解的概念,然后利用變法方法與退化橢圓方程的極值原理等證明了該問(wèn)題非常弱解的存在唯一性結(jié)果.

      關(guān)鍵詞:存在性; 唯一性; 非常弱解; 退化橢圓方程

      中圖分類號(hào):O175.25 文獻(xiàn)標(biāo)識(shí)碼:A

      他們需要得到上面問(wèn)題非常弱解的存在唯一性結(jié)果.

      [1]QUITTNER P, REICHEL W. Very weak solutions to elliptic equations with nonlinear Neumann boundary conditions [J]. Calc Var Partial Diff Equ,2008,32(4): 429-452.

      [2]BIDAUTVERON M F, PONCE A, VERON L. Boundary singularities of positive solutions of some nonlinear elliptic equations [J]. C R Acad Sci Paris Ser I Math, 2007,344(2): 83-88.

      [3]HU B. Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition [J]. Differential Integral Equations. 1994,7(2): 301-313.

      [4]MCKENNA P J, REICHEL W. A priori bounds for semilinear equations and a new class of critical exponents for Lipschitz domains [J]. J Funct Anal, 2007,244(1) : 220-246.

      [5]PACARD F. Existence de solutions faibles positive de dans des ouverts bornes de [J]. C R Acad Sci Paris Ser. I Math, 1992,315(7) : 793-798.

      [6]PACARD F. Existence and convergence of positive weak solutions of in a bounded domains of [J]. Calc Var Partial Diff Equ, 1993, 1(3) : 243-265.

      [7]QUITTNER P, SOUPLET PH. A priori estimates and existence for elliptic systems via bootstrap in a weighted Lebesgue spaces [J]. Arch Ration Mech Anal, 2004, 174(1): 49-81.

      [8]CABRE X, SIRE Y. Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates [J]. Ann Inst H Poincar\'{e} Anal NonLin\'{e}aire, 2014,31(1) : 23-53.

      摘要:定義了在所謂的具有一片平的邊界的有界光滑區(qū)域內(nèi)退化線性橢圓的非常弱解的概念,然后利用變法方法與退化橢圓方程的極值原理等證明了該問(wèn)題非常弱解的存在唯一性結(jié)果.

      關(guān)鍵詞:存在性; 唯一性; 非常弱解; 退化橢圓方程

      中圖分類號(hào):O175.25 文獻(xiàn)標(biāo)識(shí)碼:A

      他們需要得到上面問(wèn)題非常弱解的存在唯一性結(jié)果.

      [1]QUITTNER P, REICHEL W. Very weak solutions to elliptic equations with nonlinear Neumann boundary conditions [J]. Calc Var Partial Diff Equ,2008,32(4): 429-452.

      [2]BIDAUTVERON M F, PONCE A, VERON L. Boundary singularities of positive solutions of some nonlinear elliptic equations [J]. C R Acad Sci Paris Ser I Math, 2007,344(2): 83-88.

      [3]HU B. Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition [J]. Differential Integral Equations. 1994,7(2): 301-313.

      [4]MCKENNA P J, REICHEL W. A priori bounds for semilinear equations and a new class of critical exponents for Lipschitz domains [J]. J Funct Anal, 2007,244(1) : 220-246.

      [5]PACARD F. Existence de solutions faibles positive de dans des ouverts bornes de [J]. C R Acad Sci Paris Ser. I Math, 1992,315(7) : 793-798.

      [6]PACARD F. Existence and convergence of positive weak solutions of in a bounded domains of [J]. Calc Var Partial Diff Equ, 1993, 1(3) : 243-265.

      [7]QUITTNER P, SOUPLET PH. A priori estimates and existence for elliptic systems via bootstrap in a weighted Lebesgue spaces [J]. Arch Ration Mech Anal, 2004, 174(1): 49-81.

      [8]CABRE X, SIRE Y. Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates [J]. Ann Inst H Poincar\'{e} Anal NonLin\'{e}aire, 2014,31(1) : 23-53.

      海阳市| 平昌县| 裕民县| 攀枝花市| 台北县| 霍州市| 安塞县| 永顺县| 福海县| 方山县| 达尔| 漳浦县| 荥经县| 邯郸市| 北川| 开阳县| 佛学| 察雅县| 苍山县| 佛学| 昔阳县| 罗定市| 太原市| 正宁县| 四平市| 天等县| 丰都县| SHOW| 怀仁县| 大新县| 延边| 衡水市| 柘城县| 梓潼县| 河东区| 积石山| 搜索| 任丘市| 桐柏县| 娄烦县| 海淀区|