高瑞民,趙曉蘭,陳光瑩,梁志武,那艷清
(湖南大學(xué) 化學(xué)化工學(xué)院 化石能源低碳化高效利用湖南省重點(diǎn)實(shí)驗(yàn)室,湖南 長(zhǎng)沙 410082)
二氧化碳管道輸送過程管徑設(shè)計(jì)分析*
高瑞民,趙曉蘭,陳光瑩,梁志武?,那艷清
(湖南大學(xué) 化學(xué)化工學(xué)院 化石能源低碳化高效利用湖南省重點(diǎn)實(shí)驗(yàn)室,湖南 長(zhǎng)沙 410082)
根據(jù)影響管徑設(shè)計(jì)的因素,從質(zhì)量流量、管長(zhǎng)和壓降3個(gè)方面對(duì)Rubin管道設(shè)計(jì)模型進(jìn)行分析,根據(jù)分析結(jié)果建立相應(yīng)的數(shù)值模型;使用MIT管道設(shè)計(jì)模型驗(yàn)證所建數(shù)值模型的可靠性;在此基礎(chǔ)上從管道總資本成本和中間加壓站成本兩方面分析管道經(jīng)濟(jì)成本.研究結(jié)果表明,模型各變量的變化規(guī)律及相應(yīng)數(shù)值模型類型均與驗(yàn)證模型相同,且有很好的相關(guān)性(其決定系數(shù)R2均大于0.970).
數(shù)值模型;管道設(shè)計(jì);二氧化碳;成本分析
CO2管道運(yùn)輸自20世紀(jì)70年代出現(xiàn)以來,一直被廣泛用于提高原油采收率(EOR)項(xiàng)目中CO2的運(yùn)輸[1].據(jù)不完全統(tǒng)計(jì),世界上在運(yùn)行的和規(guī)劃中的EOR項(xiàng)目CO2輸送管道約有2 600 km[1].管道運(yùn)輸過程中CO2多以密相流或超臨界流狀態(tài)被輸送,但輸送方式(一般流體、密相和超臨界輸送)、輸送管道和設(shè)備要根據(jù)CO2氣源的實(shí)際情況以及不同輸送方式的特點(diǎn)等因素來選擇.管道運(yùn)輸費(fèi)用受多方面因素的影響,如人文、社會(huì)、地質(zhì)條件、管道材料費(fèi)用等,管道材料費(fèi)用又受到管道長(zhǎng)度、直徑、材質(zhì)以及中間加壓站的影響[2].準(zhǔn)確分析這幾個(gè)因素對(duì)管道的影響,對(duì)于CO2管道運(yùn)輸成本的估算具有重要的意義.
管道直徑計(jì)算是CO2管道運(yùn)輸成本估算中最重要的參數(shù)之一,許多研究者對(duì)管徑這一關(guān)鍵參數(shù)進(jìn)行了研究[3-5].2003年Zhang等人[6]從系統(tǒng)優(yōu)化、能耗、綜合經(jīng)濟(jì)成本這三個(gè)方面分析管道運(yùn)輸并比較超臨界流體輸送、過冷液體輸送這兩種輸送方式,發(fā)現(xiàn)在絕熱和等溫條件下過冷液體輸送可以實(shí)現(xiàn)能量的有效利用,減少二氧化碳運(yùn)輸?shù)某杀?2006年麻省理工學(xué)院的實(shí)驗(yàn)室針對(duì)能源和環(huán)境問題,發(fā)表了一項(xiàng)關(guān)于二氧化碳存儲(chǔ)的經(jīng)濟(jì)學(xué)研究,提出了迭代法計(jì)算管徑的MIT模型[7];2008年Mccoy等人[4]用Rubin模型作為管道性能模型,評(píng)估了運(yùn)輸?shù)目偝杀疽约岸趸嫉膯挝怀杀荆⑶曳治隽嗣绹?guó)不同地區(qū)管道運(yùn)輸?shù)某杀?,所建的?jīng)濟(jì)成本模型可以估計(jì)潛在的二氧化碳捕獲與封存(CCS)的成本;2008年Mccoy等人[8]研究了鹽堿含水層和油藏中的CO2管道運(yùn)輸和存儲(chǔ)成本,從封存和驅(qū)油兩方面分析了管道運(yùn)輸?shù)某杀?
現(xiàn)有的管徑計(jì)算模型很難直觀反映影響管徑的主要因素(質(zhì)量流量、管長(zhǎng)和壓降)與管徑間的內(nèi)在聯(lián)系.因此,本文以Rubin模型為例,利用計(jì)算機(jī)編程研究模型各因素對(duì)管徑的影響,并用統(tǒng)計(jì)學(xué)軟件SPSS分析管徑隨各因素的變化規(guī)律,建立相應(yīng)的數(shù)值模型;在同等條件下與MIT模型對(duì)比,驗(yàn)證所建立數(shù)值模型的準(zhǔn)確性;在此基礎(chǔ)上進(jìn)行管道經(jīng)濟(jì)成本估算,從管道設(shè)計(jì)和成本分析兩個(gè)層面上對(duì)CO2管道運(yùn)輸進(jìn)行綜合分析.
Rubin模型的計(jì)算依據(jù)是管道運(yùn)輸過程中CO2的能量守衡,該模型的建立基于3個(gè)假設(shè):1)管道進(jìn)出口的壓力為常數(shù);2)雜質(zhì)在整個(gè)管道中均勻分布;3)忽略管道內(nèi)CO2的壓縮性.模型描述如下[4]:
(1)
(2)
(3)
(4)
(5)
式中:h1,h2分別為管道起始、終點(diǎn)的海拔,m;P1,P2為管道進(jìn)出口壓力,MPa;Pave為管道的平均壓力,MPa;Zave為管道平均壓縮因數(shù);f為管道摩擦系數(shù);ε為管道粗糙度 ,一般取0.045 7 mm;D為管道內(nèi)徑,m;T為溫度,K;L為管道長(zhǎng)度,km.
Rubin模型對(duì)最優(yōu)管徑的求解是一個(gè)復(fù)雜的迭代過程,求解時(shí),首先需要假定一個(gè)管道直徑的初始值,計(jì)算出流體的雷諾數(shù)、摩擦阻力等參數(shù),據(jù)此求出一個(gè)新的管徑值,用該值與初值進(jìn)行比較,如果差值在可接受的范圍內(nèi),則認(rèn)為該值為管道直徑[4].如果差值不滿足條件,則重復(fù)上述過程,直到滿足要求為止.具體流程如圖1所示.
本文使用Peters MS等人的最優(yōu)管徑模型[9]估計(jì)管道直徑的初始值,利用軟件編程,迭代計(jì)算管道直徑.在給定的參數(shù)條件下(表1),得到了質(zhì)量流量和管長(zhǎng)對(duì)管徑的影響以及質(zhì)量流量對(duì)壓降的影響.
表1 管道設(shè)計(jì)參數(shù)
Tab.1 Pipeline design parameters
設(shè)計(jì)參數(shù)參數(shù)值單位管道進(jìn)口壓力15.2MPa管道出口壓力10.3MPaCO2溫度31.2℃CO2密度835.2kg/m3CO2粘度8.07×105Pa·s
圖1 管徑計(jì)算過程
2.1 質(zhì)量流量對(duì)管徑的影響
圖2為質(zhì)量流量與管徑的關(guān)系圖,由圖可知:管徑隨質(zhì)量流量的增加而增加.由于流體在管道內(nèi)輸送時(shí)存在流動(dòng)阻力,隨著質(zhì)量流量的增加湍流阻力增大,而管徑的增加有助于減小流體輸送的阻力.因而隨著質(zhì)量流量的增加,最優(yōu)管徑也隨之變大.
CO2質(zhì)量流量/(kt·d-1)
2.2 管長(zhǎng)對(duì)管徑的影響
圖3是管長(zhǎng)與管徑的關(guān)系圖,由圖可知:管徑隨管長(zhǎng)的增加而增加.這是因?yàn)殡S著管長(zhǎng)的增加,輸送過程的壓降增加;為了平衡過程的壓降,需增大管徑,使得管道內(nèi)流動(dòng)的CO2的流速減小,從而減小輸送過程的壓降.
管長(zhǎng)/km
2.3 壓降與質(zhì)量流量的關(guān)系
根據(jù)達(dá)西-韋史巴赫方程[1],壓降取決于管道的直徑、內(nèi)部粗糙度以及被運(yùn)輸流體的密度、流速和粘滯度.運(yùn)用軟件Aspen plus 模擬CO2液化運(yùn)輸過程,得到壓降與質(zhì)量流量之間的關(guān)系(圖4).由圖4可知:隨著質(zhì)量流量的增加,管道壓降逐漸增加.這是因?yàn)殡S著質(zhì)量流量的增加,過程的摩擦阻力增大.
CO2質(zhì)量流量/(kt·d-1)
用統(tǒng)計(jì)學(xué)軟件SPSS對(duì)Rubin模型各影響因素與最優(yōu)管徑之間的圖像作多元線性回歸,得到數(shù)據(jù)模型(表2).從表中可以看出,所建數(shù)據(jù)模型具有顯著的統(tǒng)計(jì)學(xué)意義,可以很好地說明各變量之間的關(guān)系.
表2 各變量間的數(shù)據(jù)模型
Tab.2 The numerical models for each variable
Rubin模型數(shù)據(jù)模型決定系數(shù)R2質(zhì)量流量(M)與管徑(D)關(guān)系D=75.536+0.009M0.933管長(zhǎng)(L)與管徑(D)關(guān)系D=109.182+0.067L0.943質(zhì)量流量(M)與壓降(ΔPΔS)ΔPΔS=-2E-8M2+0.007M+10.8670.999
為進(jìn)一步驗(yàn)證所建數(shù)值模型的準(zhǔn)確性,本文使用MIT管道模型[7]作為參照,通過計(jì)算得到各影響因素與管徑間的關(guān)系,檢驗(yàn)所建立模型的精度和適用性.MIT 模型的設(shè)計(jì)原理和Rubin模型類似,都基于能量守恒定律.MIT 模型成本分析的數(shù)據(jù)來源為天然氣管道施工歷史成本,選用MIT 模型作為對(duì)比分析,有利于建立新的成本分析數(shù)據(jù).通過模型驗(yàn)證(如圖2~圖4所示),MIT模型與Rubin模型的結(jié)果非常接近,很好地驗(yàn)證了Rubin模型所建立的數(shù)據(jù)模型的準(zhǔn)確性和可信度.
管徑計(jì)算模型為管道建造施工及成本估算提供了重要的參數(shù),管道運(yùn)輸?shù)纳虡I(yè)化使得人們更多地關(guān)注其經(jīng)濟(jì)效益.因此,本文從質(zhì)量流量、管長(zhǎng)對(duì)管道總資本成本的影響以及中間加壓站(彌補(bǔ)壓降)對(duì)能耗的影響這幾個(gè)方面對(duì)管道總資本成本做相應(yīng)的經(jīng)濟(jì)分析.
3.1 質(zhì)量流量對(duì)管道總資本成本的影響
圖5是質(zhì)量流量與管道總資本成本的關(guān)系圖,由圖可知:在管長(zhǎng)一定的情況下,模型的管道總資本成本隨著質(zhì)量流量的增加而增加;由于管道內(nèi)徑的對(duì)稱化,所以在某一段質(zhì)量區(qū)間范圍內(nèi),管道總資本成本相同;用統(tǒng)計(jì)學(xué)軟件SPSS對(duì)圖像數(shù)據(jù)做曲線擬合估計(jì),得到回歸方程y=86 558(X0.665),決定系數(shù)R2為0.971,可見管道的總資本成本和質(zhì)量流量呈冪指數(shù)關(guān)系.
3.2 管長(zhǎng)對(duì)管道總資本成本的影響
圖6是管長(zhǎng)與管道總資本成本的關(guān)系圖,由圖可知:在質(zhì)量流量一定的情況下,隨著管長(zhǎng)的增加,管長(zhǎng)對(duì)管道總資本成本的影響逐漸增大;用統(tǒng)計(jì)學(xué)軟件SPSS對(duì)圖像數(shù)據(jù)做曲線擬合估計(jì),建立的回歸方程為y=33 216(X1.287),決定系數(shù)R2為0.974,可見管道的總資本成本和管長(zhǎng)呈冪指數(shù)大于1的冪指數(shù)關(guān)系.
質(zhì)量流量/(kt·d-1)
管長(zhǎng)/km
3.3 中間加壓站對(duì)能耗的影響
長(zhǎng)距離管道運(yùn)輸過程中管道的運(yùn)輸壓力小于10.3 MPa時(shí)需要通過壓縮機(jī)在過程中增壓(中間加壓站).流體在管道中的壓力會(huì)隨著運(yùn)輸管道流體流量和管徑的變化而變化[2].
用Aspen plus模擬得到的CO2運(yùn)輸過程中壓縮機(jī)加壓時(shí)的能耗情況.隨著CO2流體質(zhì)量流量的增加其能耗相應(yīng)增加,壓縮機(jī)的能耗和CO2的質(zhì)量流量呈線性關(guān)系 (y= 0.099 7X),決定系數(shù)R2=1.000,可見模型具有很好的擬合能力,可以用于加壓站的成本估計(jì).
管徑設(shè)計(jì)是管道輸送系統(tǒng)設(shè)計(jì)過程中的關(guān)鍵步驟,通過對(duì)影響管道設(shè)計(jì)的因素分析以及管道的成本分析得到以下幾點(diǎn)結(jié)論:
1)管徑隨質(zhì)量流量和管長(zhǎng)的增加而增加,管道壓降隨著質(zhì)量流量的增加逐漸增加;
2)用統(tǒng)計(jì)學(xué)軟件SPSS對(duì)圖像數(shù)據(jù)進(jìn)行分析處理,分別建立了管長(zhǎng)和質(zhì)量流量與管徑、質(zhì)量流量與壓降的數(shù)值模型;
3)將管徑-管道材料成本之間的關(guān)系,轉(zhuǎn)換為CO2質(zhì)量流量-管道總資本成本,減少了計(jì)算管徑這一過程.
[1] 拉克利. 碳捕獲與封存[M]. 北京:機(jī)械工業(yè)出版社, 2011: 283-284.
RACKLEY S A. Carbon capture and storage[M]. Beijing: China Machine Press, 2011:283-284. (In Chinese)
[2] 高藍(lán)宇. 二氧化碳吸附和輸送技術(shù)研究[D]. 杭州: 浙江大學(xué)能源工程學(xué)院, 2011.
GAO Lan-yu. Research on CO2adsorption and transportation technology [D]. Hangzhou:College of Energy Engineering, Zhejiang University, 2011. (In Chinese)
[3] BOCK B, RHUDY R, HERZOG H,etal. Economic evaluation of CO2storage and sink enhancement options[EB/OL]. Other information: PBD: 1 Feb 2003. http://brbock. com/RefFiles/40937R04. pdf.
[4] MCCOY S T, RUBIN E S. An engineering-economic model of pipeline transport of CO2with application to carbon capture and storage [J]. International Journal of Greenhouse Gas Control, 2008, 2(2): 219-229.
[5] VANDEGINSTE V, PIESSENS K. Pipeline design for a least-cost router application for CO2transport in the CO2sequestration cycle [J]. International Journal of Greenhouse Gas Control, 2008, 2(4): 571-581.
[6] ZHANG Z X, WANG G X, MASSAROTTO P,etal. Optimization of pipeline transport for CO2sequestration [J]. Energy Conversion and Management, 2006, 47(6): 702-715.
[7] MCCOLLUM D L, OGDEN J M. Techno-economic models for carbon dioxide compression, transport, and storage & correlations for estimating carbon dioxide density and viscosity[D]. Davis, CA:Institute of Transportation Studies Working Paper, SectionⅢ, 2006.
[8] MCCOY S T. The economics of CO2transport by pipeline and storage in saline aquifers and oil reservoirs. engineering & public policy [D]. Pittsburgh, PA: Department of Engineering and Public Policy, Carnegie Mellon University, 2008.
[9] COKER A K. Determine process-pipe sizes [J]. Chemical Engineering Progress, 1991, 87(3): 33-39.
Pipe Diameter Design and Analysis of Carbon Dioxide Pipeline Transportation Process
GAO Rui-min, ZHAO Xiao-lan, CHEN Guang-ying, LIANG Zhi-wu?, NA Yan-qing
(Hunan Provincial Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions,College of Chemistry & Chemical Engineering, Hunan Univ, Changsha,Hunan 410082,China)
According to the factors affecting the diameter size (i.e. mass flow rate, pipeline length and pressure drop), this article analyzed the pipeline design model of Rubin from the three aspects and established their corresponding numerical models. Furthermore, the reliabilities of the proposed numerical models were validated by another pipeline design model (i.e. the MIT model). Besides, the economic cost of CO2pipeline transportation was also estimated through the cost analysis of the total pipeline capital investment and the additional pressure station cost. The research result shows that: (i) the proposed models share the same variable change rules and numerical model types with the validation model, and (ii) all of them have high correlation with numerical models (their correlation coefficientsR2are larger than 0.970). The pipeline design and cost analysis proposed in this work have some reference value for the process design of CO2pipeline transportation.
numerical model; pipeline design; CO2; cost analysis
2014-12-21
國(guó)家科技支撐計(jì)劃項(xiàng)目(2012BAC26B01)
高瑞民(1965-),男,河南濮陽人,高級(jí)工程師,湖南大學(xué)兼職教授
?通訊聯(lián)系人,E-mail:zwliang@hnu.edu.cn
1674-2974(2015)12-0095-05
TQ022.1
A