張麗麗,蔣 穎,趙 巖,鄭文潔
(中國醫(yī)學(xué)科學(xué)院 北京協(xié)和醫(yī)學(xué)院 北京協(xié)和醫(yī)院風(fēng)濕免疫科,風(fēng)濕免疫病學(xué)教育部重點實驗室,北京 100730)
在受到抗原刺激時,抗原特異性淋巴細胞迅速克隆增殖到一定規(guī)模是維持適應(yīng)性免疫的必要條件,因此,越來越多的研究開始關(guān)注免疫細胞的增殖、凋亡及其影響因素[1]。端粒是真核生物染色體兩臂末端的一小段DNA-蛋白復(fù)合體,與端粒結(jié)合蛋白構(gòu)成特殊的“帽子”結(jié)構(gòu)以保護染色體,維持染色體結(jié)構(gòu)和功能的完整性[2]。端粒的全長主要由端粒酶來維持,端??s短可激活DNA損傷修復(fù)機制,最終導(dǎo)致細胞衰老或凋亡[3-4]。染色體末端還包括6個端粒相關(guān)蛋白-TRF1、TRF2、POT1、TIN2、RAP1和TPP1,即shelterin蛋白復(fù)合體,發(fā)揮維持端粒結(jié)構(gòu)的功能。過去十年,大量研究表明端粒/端粒酶系統(tǒng)異常與系統(tǒng)性紅斑狼瘡(systemic lupus erythematosus,SLE)、類風(fēng)濕關(guān)節(jié)炎(rheumatoid arthritis,RA)及系統(tǒng)性硬化(systemic sclerosis,SSc)等自身免疫性疾病有關(guān)。本文旨在于系統(tǒng)闡述端粒結(jié)構(gòu)的維持以及端粒/端粒酶系統(tǒng)異常與自身免疫性疾病發(fā)病機制的相關(guān)性。
遺傳因素與端粒/端粒酶系統(tǒng)異常
端粒全長可能是由遺傳決定的[5],端粒的耗損也可能源于遺傳因素。研究發(fā)現(xiàn),年齡相關(guān)的端粒耗損在一定程度上由端粒的基線全長決定,黑人端粒丟失的速率要高于白人[6]。日本人的端粒酶逆轉(zhuǎn)錄酶(human telomerase reverse transcriptase,hTERT)啟動子的單核苷酸多態(tài)性可避免年齡相關(guān)的端粒喪失[7],但在瑞典人群中并沒有觀察到此種現(xiàn)象[8]。這些截然相反的研究結(jié)果體現(xiàn)了端粒動力學(xué)的復(fù)雜性。
導(dǎo)致端粒/端粒酶系統(tǒng)異常的外在因素
吸煙、糖尿病、冠心病、應(yīng)激性激素分泌過多以及自由基損傷等諸多因素都會導(dǎo)致外周血淋巴細胞(peripheral blood lymphocyte,PBL)的端粒缺失[9]。研究發(fā)現(xiàn),應(yīng)激性激素可降低CD4和CD8 T細胞hTERT的轉(zhuǎn)錄水平和端粒酶的活性[10]。端粒DNA之所以對氧化損傷極其敏感,原因在于氧化損傷導(dǎo)致的單鏈斷裂在端粒中較其它部位更加不易修復(fù),而年齡相關(guān)的DNA損傷修復(fù)機制缺陷和端粒酶活性下降可導(dǎo)致端粒的氧化損傷進一步加重[11]。在使用雌激素替代療法的絕經(jīng)期婦女中,端粒重復(fù)序列明顯增加,這可能是由于雌激素可通過上調(diào)線粒體錳超氧化物歧化酶和谷胱甘肽過氧化物酶等清除自由基的物質(zhì)發(fā)揮抗氧化活性[12]。
淋巴細胞克隆擴增與端粒/端粒酶系統(tǒng)異常
淋巴細胞發(fā)生抗原反應(yīng)時大量增殖,因此對于端粒缺失尤其敏感。效應(yīng)性T細胞的端粒較初始T細胞明顯縮短,這表明細胞分裂增殖是造成端粒耗損的重要原因。年輕人患淋巴組織增生綜合征時,他們的端??s短程度類似于正常老年人,也表明端粒重復(fù)序列的缺失主要源于細胞克隆擴增而非老齡[13]。不同淋巴細胞亞群端粒耗損速率不同,在B細胞中,與年齡相關(guān)的端粒缺失明顯慢于T細胞,此外,初始B細胞和記憶性B細胞的端粒全長并沒有明顯差異[14]。相反,從初始T細胞到效應(yīng)性T細胞的分化則與端粒全長的耗損密切相關(guān),這種不一致性可能源于T、B細胞在誘導(dǎo)端粒酶活性的能力上存在差異。
為了避免細胞增殖導(dǎo)致的端粒缺失和細胞周期阻滯,免疫細胞通過誘導(dǎo)端粒酶高表達維持染色體末端結(jié)構(gòu)。研究表明,端粒酶活性下降可以使人體PBL的生長停滯,即使是在T細胞受體或B細胞受體交聯(lián)刺激的情況下[15]。此外,細胞因子可以調(diào)節(jié)端粒酶的活性。例如,皮膚中干擾素α的產(chǎn)物可以通過阻止記憶性CD4+T細胞中端粒酶的誘導(dǎo)抑制局部免疫反應(yīng)[16]。T細胞衰老的主要標記是共刺激分子CD28的缺失。當T細胞被不斷刺激,它們就會對端粒酶誘導(dǎo)產(chǎn)生抵抗,喪失部分端粒序列并最終進入復(fù)制衰老狀態(tài)。因此,端粒酶活性下降反映了慢性T細胞刺激下CD28的缺失。
研究表明,自身免疫性疾病中普遍存在端粒/端粒酶系統(tǒng)結(jié)構(gòu)和功能異常,并且和遺傳因素密切相關(guān)[17]。例如,硬皮病患者及其直系親屬的PBL中均存在不同程度的端??s短[18]。HLA-DR4是導(dǎo)致RA發(fā)生的重要危險因素之一,即使是攜帶這種基因的健康人早年造血祖細胞中也存在明顯的端粒序列丟失[19]。T細胞的活化和增殖并非由單一抗原刺激引起,研究發(fā)現(xiàn),RA初始CD4+T細胞的多樣性明顯減少,且端粒重復(fù)序列缺失,這提示一種非抗原依賴的T細胞穩(wěn)態(tài)失調(diào)。此外,RA初始CD4+T中存在T細胞受體交聯(lián)的端粒酶活性異常。RA初始CD4+T細胞在受到刺激時極易發(fā)生凋亡,端粒酶高表達則可逆轉(zhuǎn)這種狀況。RA患者胸腺功能較正常人明顯降低,為了維持T細胞的穩(wěn)態(tài),初始T細胞必須大量擴增[19-20]。端粒維持能力降低會導(dǎo)致T細胞受體庫的多樣性減少和外周耐受的喪失,而克隆多樣性是避免T細胞異常擴增的重要機制之一。
研究表明,SLE患者PBL端粒明顯縮短,端粒酶活性顯著增高,并且與疾病活動指數(shù)相關(guān),尤其是在B細胞中[21-22]。干燥綜合征(Sj?gren’s syndrome,SS)[23]、成人斯蒂爾病(adult-onset still disease,AOSD)[24]及銀屑病關(guān)節(jié)炎(psoriatic arthritis,PsA)[25]患者PBL中端粒也是明顯縮短的。肉芽腫性多血管炎(granulomatosis with polyangiitis,GPA)患者CD28-T細胞存在明顯的端粒耗損,尤其是長病程、腎臟受累患者[26-27]。原發(fā)性膽汁性肝硬化(primary biliary cirrhosis,PBC)患者膽管上皮細胞的端粒明顯縮短,同時,55.6%的患者存在明顯的DNA損傷反應(yīng),據(jù)推測和漸進性膽管喪失有關(guān)[28]。晚期PBC患者的PBMC中端粒的活性較早期患者降低[29]。
總之,端粒/端粒酶系統(tǒng)在保護基因組的完整性和調(diào)節(jié)細胞衰老和細胞壽命方面起重要作用,越來越多的研究對端粒在自身免疫性疾病中的生物學(xué)作用感興趣。筆者希望通過進一步闡明端粒/端粒酶系統(tǒng)參與全身性免疫介導(dǎo)的疾病的病理生理過程為治療多種自身免疫病找到更有效的方法及途徑。
[1]Barthlott T,Kassiotis G,Stockinger B.T cell regulation as a side effect of homeostasis and competition[J].J Exp Med,2003,197:451-460.
[2]Hayflick L,Moorhead PS.The serial cultivation of human diploid cell strains[J].Exp Cell Res,1961,25:585-621.
[3]Kim NW,Piatyszek MA,Prowse KR,et al.Specific association of human telomerase activity with immortal cells and cancer[J].Science 1994,266:2011-2015.
[4]Hemann MT,Strong MA,Hao LY,et al.The shortest telomere,not average telomere length,is critical for cell viability and chromosome stability[J].Cell,2001,107:67-77.
[5]Slagboom PE,Droog S,Boomsma DI.Genetic determination of telomere size in humans:a twin study of three age groups[J].Am J Hum Genet,1994,55:876-882.
[6]Aviv A,Chen W,Gardner JP,et al.Leukocyte telomere dynamics:longitudinal findings among young adults in the Bogalusa heart study[J].Am J Epidemiol,2009,169:323-329.
[7]Matsubara Y,Murata M,Yoshida T,et al.Telomere length of normal leukocytes is affected by a functional polymorphism of hTERT[J].Biochem Biophys Res Commun,2006,341:128-131.
[8]Nordfjall K,Osterman P,Melander O,et al.hTERT (-1327)T/C polymorphism is not associated with age-related telomere attrition in peripheral blood[J].Biochem Biophys Res Commun,2007,358:215-218.
[9]Choi J,F(xiàn)auce SR,Effros RB.Reduced telomerase activity in human T lymphocytes exposed to cortisol[J].Brain Behav Immun,2008,22:600-605.
[10] Andriollo-Sanchez M,Hininger-Favier I,Meunier N,et al.Age-related oxidative stress and antioxidant pa- rameters in middle-aged and older European subjects:the Zenith study[J].Eur J Clin Nutr,2005,59:58-62.
[11] Starr JM,McGurn B,Harris SE,et al.Association between telomere length and heart disease in a narrow age cohort of older people[J].Exp Gerontol,2007,42:571-573.
[12] Lee DC,Im JA,Kim JH,et al.Effect of long-term hormone therapy on telomere length in postmenopausal women[J].Yonsei Med J,2005,46:471-479.
[13] Plunkett FJ,F(xiàn)ranzese O,Belaramani LL,et al.The impact of telomere erosion on memory CD8T cells in patients with X-linked lymphoproliferative syndrome[J].Mech Ageing Dev,2005,126:855-865.
[14] Son NH,Joyce B,Hieatt A,et al.Stable telomere length and telomerase expression from na?ve to memory B-lymphocyte differentiation[J].Mech Ageing Dev,2003,124:427-432.
[15] Hiyama K,Hirai Y,Kyoizumi S,et al.Activation of telomerase in human lymphocytes and hematopoietic progenitor cells[J].J Immunol,1995,155:3711-3715.
[16] Reed JR,Vukmanovic-Stejic M,F(xiàn)letcher JM,et al.Telomere erosion in memory T cells induced by telomerase inhibition at the site of antigenic challenge in vivo[J].J Exp Med,2004,199:1433-1443.
[17] 楊其彬,青玉鳳,周京國.端粒與自身免疫病[J].中華臨床免疫與變態(tài)反應(yīng)雜志,2009,3:290-294.
[18] Katayama Y,Kohriyama K.Telomerase activity in peripheral blood mononuclear cells of systemic connective tissue diseases[J].J Rheumatol,2001,28:288-291
[19] Koetz K,Bryl E,Spickschen K,et al.T cell homeostasis in patients with rheumatoid arthritis[J].Proc Natl Acad Sci USA,2000,97:9203-9208.
[20] Fujii H,Shao L,Colmegna I,et al.Telomerase insufficiency in rheumatoid arthritis[J].Proc Natl Acad Sci USA,2009,106:4360-4365.
[21] Kurosaka D,Yasuda J,Yoshida K,et al.Abnormal telomerase activity and telomere length in T and B cells from patients with systemic lupus erythematosus[J].J Rheumatol,2006,33:1102-1107.
[22] Skamra C,Romero-Diaz J,Sandhu A,et al.Telomere length in patients with systemic lupus erythematosus and its associations with carotid plaque[J].J Rheumatol,2013,52:1101-1108.
[23] Tarhan F,Vural F,Kosova B,et al.Telomerase activity in connective tissue diseases:elevated in rheumatoid arthritis,but markedly decreased in systemic sclerosis[J].Rheumatol Int,2008,28:579-583.
[24] Kurosaka D,Yasuda J,Kingetsu I,et al.Two cases of adult Still’s disease with abnormally high level of telomerase activity in peripheral blood mononuclear cells[J].Mod Rheumatol,2004,14:394-398.
[25] Tamayo M,Pértega S,Mosquera A,et al.Individual telomere length decay in patients with spondyloarthritis[J].Mutat Res,2014,765:1-5.
[26] Vogt S,Iking-Konert C,Hug F,et al.Shortening of telomeres:Evidence for replicative senescence of T cells derived from patients with Wegener’s granulomatosis[J].Kidney Int,2003,63:2144-2151.
[27] Lamprecht P.Off balance:T-cells in antineutrophil cytoplasmic antibody (ANCA)- associated vasculitides[J].Clin Exp Immunol,2005,141:201-210.
[28] Sasaki M,Ikeda H,Yamaguchi J,et al.Telomere shortening in the damaged small bile ducts in primary biliary cirrhosis reflects ongoing cellular senescence[J].Hepatology,2008,48:186-195.
[29] Invernizzi P,Bernuzzi F,Lleo A,et al.Telomere dysfunction in peripheral blood mononuclear cells from patients with primary biliary cirrhosis[J].Dig Liver Dis,2014,46:363-368.