鄭 鐸,高 柏(綜述),佡劍非(審校)
(中國醫(yī)科大學(xué)附屬盛京醫(yī)院神經(jīng)內(nèi)科,沈陽 110004)
MitoQ對神經(jīng)系統(tǒng)保護(hù)作用的研究進(jìn)展
鄭鐸△,高柏(綜述),佡劍非※(審校)
(中國醫(yī)科大學(xué)附屬盛京醫(yī)院神經(jīng)內(nèi)科,沈陽 110004)
摘要:線粒體靶向抗氧化劑MitoQ是泛癸利酮的一種合成類似物,能靶向聚集于線粒體中清除過度生成的氧自由基,也能抑制脂質(zhì)過氧化反應(yīng),保護(hù)線粒體膜免受氧化應(yīng)激損傷,從而改善線粒體功能。MitoQ在以線粒體功能障礙和氧化應(yīng)激損傷為主要病理表現(xiàn)的神經(jīng)系統(tǒng)疾病(如腦缺血、阿爾茨海默病、帕金森病、弗里德賴希共濟(jì)失調(diào)、多發(fā)性硬化)中均具有一定的作用。
關(guān)鍵詞:MitoQ;泛癸利酮;線粒體靶向抗氧化劑;神經(jīng)系統(tǒng)疾病
眾多證據(jù)表明,氧化應(yīng)激引起的線粒體功能障礙在多種神經(jīng)系統(tǒng)疾病的發(fā)生、發(fā)展中起重要作用[1]。線粒體通過呼吸鏈電子漏路徑和鏈?zhǔn)椒磻?yīng)生成大量活性氧類(reactive oxygen species,ROS),造成線粒體膜脂質(zhì)過氧化、蛋白質(zhì)結(jié)構(gòu)異常,損傷線粒體DNA,導(dǎo)致線粒體功能紊亂,引起細(xì)胞凋亡[2-3]。新型線粒體靶向抗氧化劑——MitoQ(mitoquinone)是在泛癸利酮的基礎(chǔ)上結(jié)合親脂陽離子三苯基磷離子,使其能靶向聚集于線粒體中。近年來,許多動物實(shí)驗(yàn)已經(jīng)證實(shí)MitoQ對抗氧化應(yīng)激損傷的有效性,例如糖尿病腎病[4]、腎細(xì)胞和腎臟的冷藏[5]、心肌缺血[6]、內(nèi)毒素引起的心功能不全[7]等,另外,也被證實(shí)可對抗β淀粉樣蛋白對海馬突觸可塑性的損傷[8]?,F(xiàn)就MitoQ的作用機(jī)制及其對神經(jīng)系統(tǒng)的保護(hù)作用進(jìn)行綜述。
1MitoQ分子學(xué)結(jié)構(gòu)
泛癸利酮是電子傳遞鏈(electron transfer chain,ETC)中的關(guān)鍵輔因子,也是一種重要的細(xì)胞膜抗氧化劑[9]。MitoQ是泛癸利酮的衍生物,分子式為C37H46O4PBr,分子質(zhì)量為665.65[10]。在腺苷三磷酸合成過程中,會在線粒體內(nèi)膜產(chǎn)生一個-150~-180 mV的電位,這個負(fù)電位梯度可促進(jìn)親脂的陽離子進(jìn)入線粒體,并在線粒體中聚集[11]。MitoQ的合成就是基于這個原理,它將三苯基磷離子與泛癸利酮相結(jié)合,使MitoQ順電壓梯度進(jìn)入線粒體[12]。研究表明,MitoQ在線粒體內(nèi)膜兩側(cè)分布的濃度是不均勻的,在180 mV的電勢下,MitoQ在線粒體內(nèi)濃度是其在線粒體外濃度的1000倍[13]。MitoQ的這一特殊結(jié)構(gòu)可提高其生物利用度,更好地發(fā)揮其生物活性。
2MitoQ的作用機(jī)制
泛癸利酮是人體內(nèi)唯一的內(nèi)源性脂溶性抗氧化劑,存在于血液及細(xì)胞膜中,在細(xì)胞代謝中起重要作用[14]。泛癸利酮作為重要的生物輔因子,接受來自復(fù)合體Ⅰ和復(fù)合體Ⅱ的電子,并將其傳遞給復(fù)合體Ⅲ;在此過程中,泛醌被還原為泛醇,泛醇可減少線粒體脂質(zhì)內(nèi)膜的氧化應(yīng)激,也可作為一個重要的親脂抗氧化劑,通過激活解偶聯(lián)蛋白,減少自由基的生成,阻止自由基對蛋白質(zhì)、脂質(zhì)、DNA的氧化修飾[15]。作為泛癸利酮的結(jié)構(gòu)類似物,MitoQ同樣具有清除ROS和保護(hù)生物膜的作用。Wani等[16]證實(shí),MitoQ可通過減少ROS產(chǎn)物,增加錳-超氧化物歧化酶活性及谷胱甘肽水平來抑制氧化應(yīng)激反應(yīng),MitoQ還可抑制脂質(zhì)過氧化反應(yīng),減少蛋白和DNA的氧化;另外,MitoQ還可抑制DNA斷裂、細(xì)胞色素C釋放和胱天蛋白酶(caspase)3的活性;電鏡下觀察發(fā)現(xiàn),MitoQ可有效改善線粒體膨脹和染色質(zhì)凝聚狀態(tài)。以上試驗(yàn)證明,MitoQ可靶向聚集于線粒體中,清除過度生成的氧自由基,抑制氧化應(yīng)激反應(yīng),減少線粒體膜蛋白氧化損傷,維持線粒體功能,從而抑制細(xì)胞凋亡。
3MitoQ的臨床應(yīng)用
3.1阿爾茨海默病(Alzheimer′s disease,AD)AD是以記憶和認(rèn)知功能進(jìn)行性減退、行為和性格改變?yōu)橹饕攸c(diǎn)的遲發(fā)性進(jìn)展性神經(jīng)系統(tǒng)退行性疾病,其主要病理改變?yōu)棣碌矸蹣拥鞍椎纳杉俺练e形成老年斑、神經(jīng)元纖維纏結(jié)、突觸損傷及神經(jīng)元缺失等。β淀粉樣蛋白是AD患者腦內(nèi)老年斑的主要成分,具有神經(jīng)細(xì)胞毒性,可能通過以下機(jī)制增加神經(jīng)細(xì)胞氧化應(yīng)激反應(yīng):①直接導(dǎo)致ROS過度生成及清除障礙;②通過提高還原型輔酶Ⅱ氧化酶活性,促進(jìn)ROS生成;③抑制ETC復(fù)合體Ⅳ(細(xì)胞色素C氧化酶),降低跨線粒體膜電化學(xué)勢能差,間接導(dǎo)致ROS過度聚集;④引起線粒體ETC電子滲漏,導(dǎo)致超氧陰離子自由基生成增加[17-20]。在AD患者的尸檢腦組織標(biāo)本及血細(xì)胞(血小板及淋巴細(xì)胞)中發(fā)現(xiàn),線粒體ETC復(fù)合體Ⅰ、Ⅲ和Ⅳ的活性降低[21]。另外,在AD患者的尸檢腦組織標(biāo)本及成纖維細(xì)胞中發(fā)現(xiàn)3種三羧酸循環(huán)關(guān)鍵酶(丙酮酸脫氫酶、異檸檬酸脫氫酶和α-酮戊二酸脫氫酶)復(fù)合體活性障礙[22]。ETC鏈及三羧酸循環(huán)功能障礙均可導(dǎo)致超氧陰離子過度生成及清除障礙,致使線粒體氧化應(yīng)激和細(xì)胞凋亡。由此可見,線粒體介導(dǎo)的氧化應(yīng)激可能參與了AD的發(fā)病機(jī)制[23]。McManus等[24]研究表明,小劑量(1~100 nmol/L)MitoQ可減少β淀粉樣蛋白在腦內(nèi)聚集,抑制氧化應(yīng)激反應(yīng),減少突觸損傷,從而阻止caspase-3/7激活的細(xì)胞凋亡,改善認(rèn)知功能。另有學(xué)者通過研究MitoQ對β淀粉樣蛋白轉(zhuǎn)基因秀麗隱桿線蟲的作用,發(fā)現(xiàn)MitoQ可保護(hù)ETC復(fù)合體Ⅰ和Ⅳ,減少線粒體脂質(zhì)雙磷脂酰甘油的消耗,減少β淀粉樣蛋白所致的麻痹;該研究同時發(fā)現(xiàn),MitoQ并不減少線粒體DNA的氧化損傷,進(jìn)而猜測MitoQ的保護(hù)作用可能僅針對線粒體膜[25]。
3.2帕金森病(Parkinson disease,PD)病理學(xué)及遺傳學(xué)認(rèn)為,氧化應(yīng)激和線粒體功能障礙在PD患者黑質(zhì)多巴胺能神經(jīng)元變性死亡中起著重要作用[26]。尸檢結(jié)果顯示,散發(fā)型PD患者的黑質(zhì)致密部存在較高水平的脂質(zhì)、蛋白和核酸的氧化[27]。除了線粒體,ROS在多巴胺能神經(jīng)元細(xì)胞質(zhì)基質(zhì)中聚集可導(dǎo)致多巴胺自體氧化,生成超氧化物、過氧化氫和活性多巴胺醌,PD患者多巴胺能神經(jīng)元選擇性損傷可能正是通過這個多巴胺依賴的氧化應(yīng)激反應(yīng)實(shí)現(xiàn)的[28]。自從1-甲基-4苯基1,2,3,6-四氫吡啶被發(fā)現(xiàn)可誘發(fā)典型的PD后,其他選擇性抑制ETC復(fù)合體Ⅰ的化學(xué)物質(zhì)(魚藤酮、三氯乙烯等)也被證實(shí)可導(dǎo)致黑質(zhì)多巴胺能神經(jīng)元丟失及PD的臨床表現(xiàn)[29-30]。研究發(fā)現(xiàn),部分PD患者黑質(zhì)、血小板、骨骼肌的線粒體中存在ETC復(fù)合體Ⅰ的損傷[31-32]。ETC復(fù)合體Ⅰ活性被抑制,直接導(dǎo)致腺苷三磷酸生成減少,并促進(jìn)自由基產(chǎn)生和氧化應(yīng)激反應(yīng),導(dǎo)致多巴胺能神經(jīng)元變性丟失。Ghosh等[33]發(fā)現(xiàn),MitoQ可逆轉(zhuǎn)1-甲基-4-苯基吡啶或1-甲基-4苯基1,2,3,6-四氫吡啶導(dǎo)致的caspase-3凋亡的增加和多巴胺神經(jīng)元的丟失,同時增強(qiáng)MitoQ治療組鼠的行為活動能力;電子順磁共振波譜分析顯示,MitoQ還可抑制1-甲基-4苯基1,2,3,6-四氫吡啶導(dǎo)致的線粒體順烏頭酸酶失活,維持正常的三羧酸循環(huán),減少線粒體氧化應(yīng)激發(fā)生。以上離體實(shí)驗(yàn)和動物模型實(shí)驗(yàn)均證實(shí),MitoQ可抑制氧化應(yīng)激的發(fā)生,緩解甚至逆轉(zhuǎn)PD的病理生理學(xué)改變。但MitoQ治療在現(xiàn)有的臨床試驗(yàn)并未表現(xiàn)出其優(yōu)勢。在一項(xiàng)多中心雙盲安慰劑對照試驗(yàn)中,將128例未經(jīng)診治的PD患者分為安慰劑組、40 mg MitoQ組和80 mg MitoQ組,對所有PD患者治療1、2、3、6、9、12個月和治療結(jié)束后28 d的各項(xiàng)指標(biāo)進(jìn)行PD綜合評分量表評估,結(jié)果顯示,MitoQ治療并沒有延緩PD的進(jìn)展;分析認(rèn)為,陰性結(jié)果的出現(xiàn)是因?yàn)楫?dāng)PD診斷時,已經(jīng)有大約50%的多巴胺能神經(jīng)元和80%的紋狀體多巴胺丟失,此時應(yīng)用藥物MitoQ可能已經(jīng)無法緩解其臨床癥狀[34]。MitoQ對PD的臨床價值尚需更多的多中心隨機(jī)對照試驗(yàn)考證。
3.3弗里德賴希共濟(jì)失調(diào)(friedreich ataxia,F(xiàn)A)FA是一種常見的常染色體隱性遺傳性共濟(jì)失調(diào)。研究表明,F(xiàn)A致病突變?yōu)楣矟?jì)蛋白基因首個內(nèi)含子中GAA三核苷酸重復(fù)序列擴(kuò)增,造成基因產(chǎn)物線粒體蛋白質(zhì)共濟(jì)蛋白濃度降低[35]。共濟(jì)蛋白缺乏會降低ETC復(fù)合體和鐵硫簇包含酶活性降低,從而導(dǎo)致鐵離子在線粒體中聚集以及自由基產(chǎn)生增加,引起氧化應(yīng)激[36]。因此,組織細(xì)胞氧化應(yīng)激損傷和線粒體功能障礙可能是FA的發(fā)病機(jī)制之一。泛癸利酮的非線粒體靶向類似物艾地苯醌已被證實(shí)可部分延緩FA發(fā)生,減慢FA進(jìn)展[37]。然而,口服艾地苯醌僅有一小部分聚集在線粒體中,限制其作用效果??紤]到艾地苯醌這一缺陷,研究人員猜測MitoQ可能會彌補(bǔ)這一不足。為了證實(shí)這一假設(shè),Jauslin等[38]利用谷胱甘肽合成酶抑制劑丁硫氨酸-亞砜亞胺處理的FA患者的纖維母細(xì)胞,對比MitoQ和艾地苯醌抑制細(xì)胞凋亡的能力,結(jié)果表明,艾地苯醌和MitoQ均可保護(hù)FA細(xì)胞,但MitoQ的作用效果是艾地苯醌的800倍[MitoQ EC50:(0.51±0.50) nmol/L;艾地苯醌 EC50:(426±102) nmol/L];該研究者還用解偶聯(lián)劑碳酰氰-4-三氟甲氧基苯腙破壞線粒體膜電位,發(fā)現(xiàn)MitoQ的作用效果與癸基苯醌(一種非靶向抗氧化劑)相似,證實(shí)線粒體膜電位促進(jìn)MitoQ成百倍的聚集在線粒體中,這一特性使低濃度的MitoQ也能發(fā)揮抗氧化應(yīng)激作用。MitoQ對FA患者細(xì)胞氧化應(yīng)激的抑制作用尚需要更多動物實(shí)驗(yàn)及臨床試驗(yàn)證實(shí)。
3.4多發(fā)性硬化(multiple sclerosis,MS)MS是常見的以中樞神經(jīng)系統(tǒng)慢性炎癥性白質(zhì)脫髓鞘為主要特點(diǎn)的自身免疫性疾病,以髓鞘脫失、軸索損傷、神經(jīng)膠質(zhì)細(xì)胞增生和進(jìn)行性神經(jīng)功能缺損為主要病變特征[39]。MS發(fā)病的確切機(jī)制尚不明確。研究表明,MS存在著細(xì)胞質(zhì)基質(zhì)和線粒體鈣離子超載、病理性ROS堆積、脂質(zhì)和DNA過氧化反應(yīng)以及線粒體功能障礙,這些均可導(dǎo)致髓鞘脫失、軸索變性[40]??紤]到線粒體功能障礙和氧化應(yīng)激可能參與MS的發(fā)病過程,Mao等[41]利用實(shí)驗(yàn)性自身免疫性腦脊髓炎鼠研究MitoQ在MS的發(fā)生、發(fā)展中的作用以及潛在機(jī)制,研究表明,MitoQ可減弱自身免疫性腦脊髓炎鼠中樞神經(jīng)系統(tǒng)炎癥反應(yīng);對抗腦白質(zhì)神經(jīng)變性;減弱脂多糖活化的小膠質(zhì)細(xì)胞損傷;改善其神經(jīng)功能缺損癥狀。這些保護(hù)作用可能涉及到多種機(jī)制。在不久的將來,MitoQ也許作為一種新型藥物應(yīng)用于MS的治療中。
3.5肌萎縮側(cè)索硬化研究者發(fā)現(xiàn),線粒體功能障礙和氧化應(yīng)激導(dǎo)致運(yùn)動神經(jīng)元退化是肌萎縮側(cè)索硬化的主要致病過程[42]。Miquel等[43]將MitoQ經(jīng)口給予SOD1G93A轉(zhuǎn)基因小鼠,發(fā)現(xiàn)其能減慢小鼠脊髓和肌肉細(xì)胞中線粒體功能下降的速度;減少小鼠脊髓運(yùn)動神經(jīng)元丟失和星形膠質(zhì)細(xì)胞聚集;減少小鼠神經(jīng)肌接頭軸索變性;改善小鼠的臨床癥狀,延長壽命。
4小結(jié)
除對神經(jīng)系統(tǒng)變性疾病發(fā)揮神經(jīng)保護(hù)作用外,MitoQ對缺血/再灌注損傷[44]、出血后炎癥反應(yīng)[45]、代謝綜合征[46]等疾病的治療也具有一定的效果。MitoQ作為一種新型線粒體靶向抗氧化劑,其具體作用機(jī)制還需更廣泛而深入的研究。此外,目前對MitoQ治療AD、PD、肌萎縮側(cè)索硬化等神經(jīng)系統(tǒng)變性疾病的有效藥物濃度、不良反應(yīng)等尚無明確的定論,有必要對其進(jìn)行一系列動物實(shí)驗(yàn)及大規(guī)模臨床試驗(yàn)研究。
參考文獻(xiàn)
[1]Thanan R,Oikawa S,Hiraku Y,etal.Oxidative stress and its significant roles in neurodegenerative diseases and cancer[J].Int J Mol Sci,2014,16(1):193-217.
[2]Gibson SB.Investigating the role of reactive oxygen species in regulating autophagy[J].Methods Enzymol,2013,528:217-235.
[3]Levonen AL,Hill BG,Kansanen E,etal.Redox regulation of antioxidants,autophagy,and the response to stress:implications for electrophile therapeutics[J].Free Radic Biol Med, 2014,71:196-207.
[4]Chacko BK,Reily C,Srivastava A,etal.Prevention of diabetic nephropathy in Ins2(+/)(-)(AkitaJ) mice by the mitochondria-targeted therapy MitoQ[J].Biochem J,2010,432(1):9-19.
[5]Parajuli N,Campbell LH,Marine A,etal.MitoQ blunts mitochondrial and renal damage during cold preservation of porcine kidneys[J].PLoS One,2012,7(11):e48590.
[6]Adlam VJ,Harrison JC,Porteous CM,etal.Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury[J].FASEB J,2005,19(9):1088-1095.
[7]Supinski GS,Murphy MP,Callahan LA.MitoQ administration prevents endotoxin-induced cardiac dysfunction[J].Am J Physiol Regul Integr Comp Physiol,2009,297(4):R1095-1102.
[8]Ma T,Hoeffer CA,Wong H,etal.Amyloid β-induced impairments in hippocampal synaptic plasticity are rescued by decreasing mitochondrial superoxide[J].J Neurosci,2011,31(15):5589-5595.
[9]Brandmeyer EA,Shen Q,Thimmesch AR,etal.Using coenzyme Q10 in clinical practice[J].Nursing,2014,44(3):63-66.
[10]Reddy PH.Mitochondrial oxidative damage in aging and Alzheimer′s disease:implications for mitochondrially targeted antioxidant therapeutics[J].J Biomed Biotechnol,2006,2006(3):31372.
[11]Sheu SS,Nauduri D,Anders MW.Targeting antioxidants to mitochondria:a new therapeutic direction[J].Biochim Biophys Acta,2006,1762(2):256-265.
[12]Tauskela JS.MitoQ--a mitochondria-targeted antioxidant[J].IDrugs,2007,10(6):399-412.
[13]Skulachev VP.How to clean the dirtiest place in the cell:cationic antioxidants as intramitochondrial ROS scavengers[J].IUBMB Life,2005,57(4/5):305-310.
[14]Lee WC,Tsai TH.Preparation and characterization of liposomal coenzyme Q10 for in vivo topical application[J].Int J Pharm,2010,395(1/2):78-83.
[15]Mancuso M,Orsucci D,Volpi L,etal.Coenzyme Q10 in neuromuscular and neurodegenerative disorders[J].Curr Drug Targets,2010,11(1):111-121.
[16]Wani WY,Gudup S,Sunkaria A,etal.Protective efficacy of mitochondrial targeted antioxidant MitoQ against dichlorvos induced oxidative stress and cell death in rat brain[J].Neuropharmacology,2011,61(8):1193-1201.
[17]Rhein V,Baysang G,Rao S,etal.Amyloid-beta leads to impaired cellular respiration,energy production and mitochondrial electron chain complex activities in human neuroblastoma cells[J].Cell Mol Neurobiol,2009,29(6/7):1063-1071.
[18]Saraiva LM,Seixas da Silva GS,Galina A,etal.Amyloid-β triggers the release of neuronal hexokinase 1 from mitochondria[J].PLoS One,2010,5(12):e15230.
[19]Shelat PB,Chalimoniuk M,Wang JH,etal.Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons[J].J Neurochem,2008,106(1):45-55.
[20]Takuma K,F(xiàn)ang F,Zhang W,etal.RAGE-mediated signaling contributes to intraneuronal transport of amyloid-beta and neuronal dysfunction[J].Proc Natl Acad Sci U S A,2009,106(47):20021-20026.
[21]Valla J,Schneider L,Niedzielko T,etal.Impaired platelet mitochondrial activity in Alzheimer′s disease and mild cognitive impairment[J].Mitochondrion,2006,6(6):323-330.
[22]Bubber P,Haroutunian V,F(xiàn)isch G,etal.Mitochondrial abnormalities in Alzheimer brain:mechanistic implications[J].Ann Neurol,2005,57(5):695-703.
[23]Murray IV,Proza JF,Sohrabji F,etal.Vascular and metabolic dysfunction in Alzheimer′s disease:a review[J].Exp Biol Med (Maywood),2011,236(7):772-782.
[24]McManus MJ,Murphy MP,F(xiàn)ranklin JL.The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer′s disease[J].J Neurosci,2011,31(44):15703-15715.
[25]Ng LF,Gruber J,Cheah IK,etal.The mitochondria-targeted antioxidant MitoQ extends lifespan and improves healthspan of a transgenic Caenorhabditis elegans model of Alzheimer disease[J].Free Radic Biol Med,2014,71:390-401.
[26]Abou-Sleiman PM,Muqit MM,Wood NW.Expanding insights of mitochondrial dysfunction in Parkinson′s disease[J].Nat Rev Neurosc,2006,7(3):207-219.
[27]Tsang AH,Chung KK.Oxidative and nitrosative stress in Parkinson′s disease[J].Biochim Biophys Acta,2009,1792(7):643-650.
[28]Pedersen PB,Lilleeng S.Resource distribution in mental health services:changes in geographic location and use of personnel in Norwegian mental health services 1979-1994[J].J Ment Health Policy Econ,2000,3(1):45-53.
[29]Goldstein DS,Sullivan P,Cooney A,etal.Rotenone decreases intracellular aldehyde dehydrogenase activity:implications for the pathogenesis of Parkinson disease[J].J Neurochem,2015,133(1):14-25.
[30]Liu M,Choi DY,Hunter RL,etal.Trichloroethylene induces dopaminergic neurodegeneration in Fisher 344 rats[J].J Neurochem,2010,112(3):773-783.
[31]Esteves AR,Lu J,Rodova M,etal.Mitochondrial respiration and respiration-associated proteins in cell lines created through Parkinson′s subject mitochondrial transfer[J].J Neurochem,2010,113(3):674-682.
[32]Schapira AH.Mitochondrial dysfunction in Parkinson′s disease[J].Cell Death Differ,2007,14(7):1261-1266.
[33]Ghosh A,Chandran K,Kalivendi SV,etal.Neuroprotection by a mitochondria-targeted drug in a Parkinson′s disease model[J].Free Radic Biol Med,2010,49(11):1674-1684.
[34]Snow BJ,Rolfe FL,Lockhart MM,etal.A double-blind,placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson′s disease[J].Mov Disord,2010,25(11):1670-1674.
[35]Pandolfo M.Friedreich ataxia:Detection of GAA repeat expansions and frataxin point mutations[J].Methods Mol Med,2006,126:197-216.
[36]Gomes CM,Santos R.Neurodegeneration in Friedreich′s ataxia:from defective frataxin to oxidative stress[J].Oxid Med Cell Longev,2013,2013:487534.
[37]Tonon C,Lodi R.Idebenone in Friedreich′s ataxia[J].Expert Opin Pharmacother,2008,9(13):2327-2337.
[38]Jauslin ML,Meier T,Smith RA,etal.Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants[J].FASEB J,2003,17(13):1972-1974.
[39]Trapp BD,Nave KA.Multiple sclerosis:an immune or neurodegenerative disorder?[J].Annu Rev Neurosci,2008,31:247-269.
[40]Haider L,F(xiàn)ischer MT,F(xiàn)rischer JM,etal.Oxidative damage in multiple sclerosis lesions[J].Brain,2011,134(Pt 7):1914-1924.
[41]Mao P,Manczak M,Shirendeb UP,etal.MitoQ,a mitochondria-targeted antioxidant,delays disease progression and alleviates pathogenesis in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis[J].Biochim Biophys Acta,2013,1832(12):2322-2331.
[42]Cassina P,Cassina A,Pehar M,etal.Mitochondrial dysfunction in SOD1G93A-bearing astrocytes promotes motor neuron degeneration:prevention by mitochondrial-targeted antioxidants[J].J Neurosci,2008,28(16):4115-4122.
[43]Miquel E,Cassina A,Martínez-Palma L,etal.Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis[J].Free Radic Biol Med,2014,70:204-213.
[44]Hansson MJ,Llwyd O,Morin D,etal.Differences in the profile of protection afforded by TRO40303 and mild hypothermia in models of cardiac ischemia/reperfusion injury[J].Eur J Pharmacol,2015,760:7-19.
[45]Powell RD,Swet JH,Kennedy KL,etal.MitoQ modulates oxidative stress and decreases inflammation following hemorrhage[J].J Trauma Acute Care Surg,2015,78(3):573-579.
[46]Feillet-Coudray C,F(xiàn)ouret G,Ebabe Elle R,etal.The mitochondrial-targeted antioxidant MitoQ ameliorates metabolic syndrome features in obesogenic diet-fed rats better than Apocynin or Allopurinol[J].Free Radic Res,2014,48(10):1232-1246.
Research Progress in Neuroprotection of MitoQZHENGDuo,GAOBai,NAOJian-fei.(DepartmentofNeurology,ShengjingHospitalofChinaMedicalUniversity,Shenyang110004,China)
Abstract:MitoQ is a synthetic analogue of coenzyme Q10.As a mitochondrial targeted antioxidant,MitoQ could directionally accumulate in mitochondrial to remove excessive oxygen free radicals.Simultaneously,it also can inhibit lipid peroxidation,protect mitochondria and cell membranes from oxidative stress damage,and improve the mitochondrial function.Rencently,many studies have shown that MitoQ has certain effects in treating nervous system diseases with mitochondrial dysfunction and oxidative stress damage as main pathological manifestations,such as cerebral ischemia,Alzheimer disease,Parkinson disease,Friedreich ataxia,and multiple sclerosis.
Key words:MitoQ; Coenzyme Q10; Mitochondrial targeted antioxidant; Nervous system disease
收稿日期:2015-03-06修回日期:2015-05-16編輯:鄭雪
doi:10.3969/j.issn.1006-2084.2015.24.014
中圖分類號:R741
文獻(xiàn)標(biāo)識碼:A
文章編號:1006-2084(2015)24-4457-04