• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flight Control System of Unmanned Aerial Vehicle

    2015-02-10 16:36:07PuHuangzhong浦黃忠ZhenZiyang甄子洋XiaMan夏曼
    關(guān)鍵詞:黃忠

    Pu Huangzhong(浦黃忠),Zhen Ziyang(甄子洋)*,Xia Man(夏曼)

    1.UAV Research Institute,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    Flight Control System of Unmanned Aerial Vehicle

    Pu Huangzhong(浦黃忠)1,Zhen Ziyang(甄子洋)2*,Xia Man(夏曼)2

    1.UAV Research Institute,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    To date unmanned aerial system(UAS)technologies have attracted more and more attention from countries in the world.Unmanned aerial vehicles(UAVs)play an important role in reconnaissance,surveillance,and target tracking within military and civil fields.Here one briefly introduces the development of UAVs,and reviews its various subsystems including autopilot,a ground station,mission planning and management subsystem,navigation system and so on.Eurthermore,an overview is provided for advanced design methods of UAVs control system,including the linear feedback control,adaptive and nonlinear control,and intelligent control techniques. Einally,the future of UAVs flight control techniques is forecasted.

    unmanned aerial vehicle(UAV);flight control;optimal control;adaptive control;intelligent control

    0 Introduction

    Unmanned aerial vehicle(UAV)is also commonly referred to as aerial robot and unmanned aerial system(UAS)adopted by the US Department of Defense and the Civil Aviation Authority of the UK.The design and application of UAVs begin to skyrocket around the world nowadays since UAVs play an important role in military missions,such as reconnaissance,attack,surveillance,fire fighting,and target tracking.In civilian applications,UAVs also have been used for insecticide spray,patrolling railway,transmission line inspection,goods transportation,and so on.

    Ref.[1]summarized the main characteristics of micro and mini fixed-wing,rotary-wing,and multi-rotor UAS according to a weight-based categorization,i.e.,″micro″,which refers to UAS less than 5 kg,″mini″(less than 30 kg),and″tactical″(less than 150 kg).A large number of world-wide UASs,categorized by size,weight,operating range as well as certification potential are provided in Ref.[2].The command,control and communication technologies for UAVs are overviewed in Ref.[3].A review of available opensource hardware and software for UAS can be found in Ref.[4].

    UAVs can be remotely controlled by a ground control station,or can be fly autonomously based on many kinds of automatic flight control systems(ECSs)and flight management systems. Authors recapitulate the UAS for the system constituted by a UAV,a ground control station(GCS)and a communication data link for the flight commands and control from the GCS.Eurthermore,other UAV components are considered critical,such as autopilots,navigation sensors,vision sensors,mechanical servos,and wireless systems.

    1 Unmanned Aerial System

    Autonomous flight of UAV depends on the following capabilities:localization,path planning,and control,where localization is defined asthe positioning for UAV in surrounding space,path planning chooses the feasible route and gives guidance for control,and control is to guarantee the flight performance of UAV.Therefore,high levels of integrity and reliability are required for a UAV system.

    1.1 Unmanned aerial vehicle

    Since the first UAV was manufactured by the Americans Lawrence and Sperry in 1916,the U.S.has owned the highest techniques for designing UAVs in the world and has developed many typical UAVs.Among them,Northrop Grumman RQ-4 Global Hawk,a UAV for surveillance,is initially designed by Ryan Aeronautical which provides a systematic surveillance and broad overview by high resolution synthetic aperture radar(SAR)and long-range electro-optical/infrared sensors with long loiter times over target areas. Predator,designed by General Atomics Aeronautical Systems,is a UAV for surveillance and reconnaissance.It has been configured with air-toair or air-to-ground weapons,and joined the military actions in Balkans,Southwest Asia,and Middle East.X-47,designed by Northrop Grumman,is an unmanned combat vehicle which has been successfully recovered from the aircraft carrier in recent years.X-43 is an unmanned hypersonic aircraft as a part of the X-plane series,specifically of Hyper-X program of NASA,which is the fastest aircraft on record at approximately 11 000 km/h.Boeing X-37 known as orbital test vehicle(OTV)is an reusable unmanned spacecraft.Boeing X-51 is an unmanned scramjet demonstration aircraft for hypersonic flight.Eurthermore,there are many other kinds of UAVs designed by USA and other countries,such as MQ-8B Eire Scout(USA),RQ-5A Hunter(USA),Spektre(UK),Kestrel(Erance),Kleinfluggerat Zielortung(Germany),Pioneer(State of Israel),and so on.

    The UAV techniques in China have been rapidly developed these years.The development of UAVs in China is mainly undertaken by aerospace scientific research institutions.Especially,Nanjing University of Aeronautics and Astronautics,Northwestern Polytechnical University and Beihang University are the three major institutions.Every two years,the China International Aviation&Aerospace Industries is exhibited in Zhuhai of Guangdong Province of China.UAS China Conference&Exhibition has been held for the fifth time,and in the fifth meeting Nanjing University of Aeronautics and Astronautics displays a spy drone for trade and business,a short range spy drone,a long-endurance reconnaissance UAV,and a small integrated reconnaissance and strike UAV.In the second Aviation Industry Corporation of China(AVIC)Cup-International UAV Innovation Grand Prix held in Beijing 2013,Nanjing University of Aeronautics and Astronautics won several awards in competitions.In the above meetings and activities,new kinds of UAVs impressed most visitors.

    Compared with the manned aircrafts,UAVs have many particular characteristics.Eor instance,the autonomous flight capability is one of the characteristics,which means the system autonomously generates the optimized control strategy and completes a variety of missions without human intervention via online environment perception and information processing.Realization of the autonomous control of UAVs and improvement of intelligence degree are two important development trends of UAVs.Since there are no cockpit and environmental control lifesaving equipments,UAV is lightweight and thereby restrictions on its design conditions can be lossened.Normally,the economic cost of UAV is much lower than that of a manned aircraft. Thanks to flexible operation,UAV can replace the manned aircraft in various dangerous and hazardous tasks.

    1.2 Subsystems of UAV

    One of the main UAV components is the autopilot system.It can monitor and control many of the aircraft subsystems,provide artificial stability and improve the flying qualities of a UAV. Initially,the autopilot systems were primarilyconceived to stabilize the aircraft once disturbed from equilibrium of flight attitude.Modern autopilot systems are much more complex and essential to flight paramedic in flight control,navigation and guidance,flight management,stability augmentation,as well as take-off and landing operations.A survey of UAS autopilots can be found in Ref.[5]and a comprehensive compilation of the main brands of UAS autopilots is provided in UAV MarketSpace[6].An autopilot system for a small flying wing UAV is described,which only consists of a single axis rate gyro,a pressure sensor,and a GPS receiver[7].In the research being done in Cal Poly Pomona using a Piccolo II autopilot on autonomous UAV,a dynamics model was then used in the hardware-inthe-loop(HIL)simulation environment for the determination of feedback gains required for the autonomous flight.Einally,the autopilot is integrated into UAV for autonomous flying[8].The topic of this paper is the development and integration of the autopilot and avionics package in the UAV platform.We describe the selection process and configuration for an autopilot and avionics package,and then integrate them into a hobby remote control aircraft being configured for autonomous flight[9].Ref.[10]designed a longitudinal autopilot for the entire flight envelope of a Jindivik UAV,and used a linear parameter-varying method based on H1 gain-scheduling control to guarantee the stability,robustness and performance of the aircraft[10].

    All UAVs have a ground station where they are given commands,and video or aerial images are relayed.The pilots can fly the UAVs through it.GCSs are transportable hardware and software devices being stationary on ground or mobile platform to monitor the UAVs for mission and safety requirements.GCS is vital in applications,especially when the UAS integrates with air traffic control(ATC)in non-segregated airspace[2].The data of UAV states and the image data obtained by the cameras can be transmitted to the GCSs. The commands and control parameters are sent back to UAVs through data links,which enables UAV to interface with human intelligence.In Ref.[11]a universal and interoperable ground station simulator for UAVs was presented,which considered the compliance with NATO Combined/Joint Services Operational Environment(STANAG 4586)and assigned the UAV a certain degree of autonomy.It is known that multimodal technologies may improve operator performance in GCS,and information through sensory channels is also the benefit of addressing high information loads.Ref.[12]explored different techniques that can be applied to the development of GCS equipped with a multimodal interface.The interface was comprised of three screens and managed by a single operator.The system integrated visual,aural and tactile modalities,and multiple experiments showed that the use of those modalities had improved the performance of the system[12].

    An important component of UAS for geodata acquisition is the mission planning and flight management subsystem,which is the key for competitive exploitation of UAS for remote sensing and photogrammetry[2].Path planning guides the UAV to find a feasible path which is safe and meets kinematic and optimization constrains. Many approaches had been used in path planning algorithms,mainly including three sorts:the first sort is the algorithms based on grid,the second is the optimization algorithms based on intelligent algorithm,and the last is the algorithms based on curves.Besides,UAV path planning is divided into static and dynamic ones.The static path planning constructs a route once from the initial position to the final position,whereas dynamic path planning requires online path replanning.Eor interception of a moving target,dynamic path planning must be implemented along the movement of the target.Several dynamic path planning approaches were presented by researchers.Eor instance,Zhen proposed rapidlyexploring random tree(RRT)algorithm to solve the problem of cooperative path replanning for multiple UAVs under timing constraints[13].

    Navigation system is also a critical compo-nent for UAS.The autopilot repeatedly reads the aircraft′s position,velocity and attitude from the system and uses it in the ECS.A UAS is usually automatically piloted by an autopilot based on two main navigation technologies,global navigation satellite systems(GNSS)(such as GPS)and inertial navigation systems(INS),which can also be fused in certain navigation structures[14].

    2 Flight Control Approach

    Autonomous flight control technology is the key to complete tasks for UAVs.According to Ref.[15],autonomous control can be divided into three types:adaptive autonomy that adapts UAV for all kinds of uncertainty,such as the uncertainties of aircraft,environment and tasks;cooperative autonomy that makes UAV collaborate with other agents as an independent agent;and learning autonomy that has the ability of learning to correct and optimize.

    Design of ECS depends on the development of control theory.In recent years,various control methods have been utilized for the design and analysis of UAV control systems,such as linear feedback control,optimal control,adaptive/robust control,nonlinear control,and intelligent control.

    2.1 Linear feedback control

    Proportion integration differentiation(PID)control is still the most popular method for UAV control engineering due to its simplicity and reliablity.The development in processing capabilities enables the feasible use of new costly computational control methods like the model predictive control(MPC)on real-time applications.An MPC implemented on an internal loop capacitates PID autopilot to add new capabilities into the internal loop through little corrections on its control demands[16].

    Vanek presented a dynamic control allocation architecture for the design of reconfigurable and fault-tolerant control systems in UAV,which was based on linear parameter-varying(LPV)control methods.The design was demonstrated on the lateral axis motion of the NASA Air STAR Elight Test Vehicle simulation model[17].

    Optimal control is a modern control used in ECSs[18].Zhen proposed an information fusion based optimal control(IEBOC)algorithms and applied them to the attitude control and trajectory tracking control of UAVs.The IEBOC method fuses the information of system model,performance index function and desired future state or output trajectory to estimate an optimal control input[19-20].

    2.2 Adaptive and nonlinear control

    Eor the nonlinear system dynamics and physical limitations such as actuator saturation and state constraints,the common linear controllers generally are difficult to provide good tracking performance.

    The back-stepping control technique applies a recursive procedure to the dynamic system model for stabilization,which needs to be compatible with a strict-feedback form.Based on Lyapunov method,an input profile is defined to guide the system to a desired stable state.Back-stepping can be used in combination with adaptive techniques that is adaptive back-stepping.It expands the application in non-affine systems in presence of modeling errors,external perturbations or even dramatic modifications of its dynamic equations.There is an increasing interest in adaptive and nonlinear control for aircrafts,especially UAVs.In Ref.[21],a modeling process which involves the estimation of aerodynamic and propulsion system structure and parameters is carried out,and the back-stepping control is applied to nonlinear flight controller design.Einally,the convergence of the system relative to a reference and the robustness in terms of modeling errors is ensured by this method.Ref.[22]presented a mini-UAV attitude controller using a back-stepping control method.

    Sliding mode control(SMC)exhibits robust performance against the strong uncertainties in system dynamics.The feedback structure is altered when the system state crosses each disconti-nuity surface.The system possesses high robustness against uncertainties of various kinds while on the sliding mode,so it is attractive for controlling the uncertain systems.Ref.[23]presented a tracking algorithm based on sliding mode control that enabled a fixed-wing UAV to keep tracking an uncooperative moving target.It is ensured that the UAV could maintain a persistent circular motion with respect to the moving target if the target was not far away from the UAV.Asymptotic stability was achieved for the tracking algorithm. SMC theory has also been applied to decentralized controller design for consensus and formation control of UAVs swarms,which enables a connected and leaderless UAVs swarm to reach a unification in altitude and heading angle autonomously[24].Babaei et al.developed an efficient flight control strategy combined a classic controller as a basic autopilot and a multi-objective genetic algorithm-based fuzzy output SMC,which was robust to parametric uncertainties,un-modeled nonlinear terms,and external disturbances[25].

    A nonlinear control law based on the inputoutput linearization technique for a pan-tilt camera to be installed on-board a fixed wing UAV was proposed in Ref.[26].The aim of camera gimbals control was to automatically track a moving target on ground.After introducing a nonlinear dynamics model of a UAV,an adaptive controller based on feedback linearization and using Lyapunov stabilized method was proposed to perform perfect path tracking maneuvers[27].A combination of linear model predictive control(LMPC)and feedback linearization(EL)was implemented on an autonomous team of UAVs to accomplish dynamic encirclement[28].

    In model reference adaptive control(MRAC),the modeling uncertainty is often assumed to be parameterized with unknown ideal time-invariant parameters.The convergence of parameters of the adaptive element to these ideal parameters is beneficial,as it guarantees exponential stability and makes an online learned model of the system available.Most MRAC methods, however,require persistent excitation of the states to guarantee that the adaptive parameters converge to the ideal values.Ref.[29]investigated an MRAC adaptive control method that leveraged the increasing ability to online record and process data by neural networks used as adaptive elements,which was verified by the flight test of a UAV.

    Yang et al.presented an adaptive nonlinear model predictive control(NMPC)for the pathfollowing control of a UAV,which guaranteed accurate tracking performance,by varying the control horizon according to the path curvature profile for tight tracking[30].

    2.3 Intelligent control

    Recently,the artificial intelligence-based technique has represented an alternative design method for various control systems.An intelligent control scheme based on recurrent wavelet neural networks(RWNN)for trajectory tracking of a UAV was investigated in Ref.[31].RWNN was suitable for dynamic system approximation and used to mimic an ideal controller.Moreover,the adaptive tuning laws were designed by slidingmode approach.The control performance of UAV was examined under the condition of control effort deterioration and crosswind disturbance[31].Several fuzzy logic PID controllers and fuzzy logic-based sliding mode adaptive controller were designed for stable autopilot system of UAV[32].

    Pu and Zhen presented a novel intelligent control strategy based on a brain emotional learning(BEL)algorithm,which was investigated in the application of attitude control of a UAV.BEL was used to regulate the control gains of traditional flight controllers on-line.Obviously,a BEL intelligent control system is self-learning and self-adaptive,which is important for UAVs when flight conditions change,while traditional ECSs remain unchanged after design[33].

    Swarm optimization algorithms or evolutionary algorithm is one of bionic optimization techniques which is intelligent,random and heuristic.Genetic algorithm(GA)as an evolutionary algorithm can be used to optimize the gains for a variety of control approaches for UAVs[34].An improved particle swarm optimization(PSO)algorithm[35]and an improved frog shuffled leaping algorithm(SELA)[36]are presented to determine the UAV flight controller parameters,which provide an automatic searching method for controller gains.

    3 Conclusions

    In future,flying capability will open new opportunities in UAV applications,such as search and rescue,surveillance navigations and mapping operations.To keep the UAV flying steadily,and even to complete special missions,all important parts of UAV system should be perfectly matched.Therefore,flight control is a meaningful and hot research topic,not to mention the complexity of UAVs and the difficulty of flight control problems.Control methods have developed from the earliest classic PID control for the linear systems to the modern control methods(such as sliding mode control,back-stepping control,feedback linearization control,adaptive control,intelligent control and so on)for the nonlinear systems,making simulation model closer to the actual system and achieving ideal performance in the study.

    Development of the autonomous ability of UAVs can improve the perception on battlefield,the speed and precision of localization,and the flexibility of missions.However,it still has a long way to go[37].Eor prospect,several points can be summarized for the future of UAVs as follows:

    (1)New UAVs with novel configurations will be developed for invisibility,super-maneuvering,and hypersonic,which enhances the role of UAVs in combat.

    (2)Small UAVs with fixed-wing or rotor wing will be widely developed for commercial applications in agriculture,public safety,networking fields,and so on.

    (3)Along with the development of materials,sensors,chips,communication,and computer technologies,the autonomous level will be upgraded.

    (4)Elight control will still be a key technique for the autonomous flight of UAVs.Therefore,advanced control methods that are adaptive,intelligent,and robust will be preferred in applications.

    (5)Eormation/cooperative control of multiple UAVs become more and more popular for achieving a higher level of autonomy and intelligence.

    (6)UAVs with hypersonic flight,super-maneuvering,invisibility and elastic wing deformation are gradually coming into public view.

    Acknowledgements

    This work was supported by the National Natural Science Eoundation of China(No.61304223),the Specialized Research Eund for the Doctoral Program of Higher Education(No.20123218120015),and the Eundamental Research Eunds for the Central Universities(No. NZ2015206).

    [1] Colomina I,Molina P.Unmanned aerial systems for photogrammetry and remote sensing:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2014(92):79-97.

    [2] Van Blyenburgh P.2013—2014 RPAS Year book: Remotely piloted aircraft systems:The global perspective 2013/2014[R].Paris,Erance:UVS International,2013.

    [3] Barnard J.Small UAV(<150 kg TOW)command,control and communication issues[R].UK:Institution of Engineering and Technology,2007.

    [4] Mészáros J.Aerial surveying UAV based on opensource hardware and software[C]∥International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,UAV-g 2011,Conference on Unmanned Aerial Vehicle in Geomatics.Zurich,Switzerland:[s.n.],2011.

    [5] Chao H,Cao Y,Chen Y.Autopilots for small unmanned aerial vehicles:A survey[J].International Journal of Control,Automation and Systems,2010(8):36-44.

    [6] UAV MarketSpace.Autopilot Navigation[EB/OL].[2014-12-08].http://uavm.com.

    [7] Pisano W J,Lawrence,Dale A,Gray P C.Autonomous UAV control using a 3-sensor autopilot[J]. Collection of Technical Papers 2007 AIAA InfoTech at Aerospace Conference,2007(1):423-436.

    [8] Nick A,Bryan H,Ronnie E,et al.Elight-testing of a UAV aircraft for autonomous operation using Piccolo II autopilot[C]∥AIAA Atmospheric Elight Mechanics Conference and Exhibit.[S.l.]:AIAA,2008.

    [9] Erdos D,Watkins S E.UAV autopilot integration and testing[C]∥IEEE Region 5 Conference.[S.l.]: IEEE,2008.

    [10]Chumalee S,Whidborne J E.LPV autopilot design of a Jindivik UAV[C]∥AIAA Guidance,Navigation,and Control Conference and Exhibit.[S.l.]: AIAA,2009.

    [11]Ajami Alain,Balmat Jean-Erancois,Gauthier Jean-Paul.Path planning and ground control station simulator for UAV[C]∥IEEE Aerospace Conference.Big Sky,MT:IEEE,2013.

    [12]Maza I,Caballero E,Molina R.Multimodal interface technologies for UAV ground control stations[J]. Journal of Intelligent and Robotic Systems,2010,57(1/2/3/4):371-391.

    [13]Zhen Ziyang,Gao Chen,Zhao Qiannan,et al.Cooperative path planning for multiple UAVs formation[C]∥IEEE International Conference on Cyber Technology in Automation,Control and Intelligent Systems.Hong Kong,China:IEEE,2014:469-477.

    [14]Zhen Ziyang,Hao Qiushi,Gao Chen,et al.Information fusion distributed navigation for UAVs formation[C]∥Proceedings of 2014 IEEE Chinese Guidance,Navigation and Control Conference.Yantai,China:IEEE,2014:1520-1525.

    [15]Wang Yingxun,Cai Zhihao.Autonomous flight control of unmanned aerial vehicle[J].Aeronautical Manufacturing Technology,2009(8):26-31.

    [16]de Bonfim Gripp J A,Sampaio U P.Automatic landing of a UAV using model predictive control for the surveillance of internal autopilot′s controls[C]∥2014 International Conference on Unmanned Aircraft Systems(ICUAS).Orlando,EL:[s.n.],2014:27-30.

    [17]Vanek B,Peni T,Szabo Z.Eault tolerant LPV control of the GTM UAV with dynamic control allocation[C]∥AIAA Guidance,Navigation,and Control Conference.National Harbor,MD:AIAA,2014: 13-17.

    [18]Zhen Ziyang,Wang Xinhua,Li Xin,et al.Optimal attitude control for large civil aircraft in landing phase,2012 Chinese Guidance[C]∥Navigation and Control Conference(CGNCC2012).Beijing:[s.n.],2012:521-525.

    [19]Zhen Ziyang,Wang Daobo,Kang Qi.UAV flight trajectory control based on information fusion control method[C]∥2010 IEEE International Conference on Networking,Sensing and Control.Chicago,USA: IEEE,2010:337-341.

    [20]Zhen Ziyang,Jiang Ju,Wang Xinhua,et al.Information fusion-based optimal attitude control for an alterable thrust direction unmanned aerial vehicle[J]. International Journal of Advanced Robotic Systems,2013,10(43):1-9.

    [21]Cayero J,Morcego B,Nejjari E.Modelling and adaptive backstepping control for TX-1570 UAV path tracking[J].Aerospace Science and Technology,2014(39):342-351.

    [22]Lungu M,Lungu R.Adaptive backstepping flight control for a mini-UAV[J].International Journal of Adaptive Control and Signal Processing,2013,27(8):635-650.

    [23]Zhang Mingfeng,Liu H H T.Tracking a moving target by a fixed-wing UAV based on sliding mode control[C]∥AIAA Guidance,Navigation,and Control(GNC)Conference.Boston,MA,USA: AIAA,2013:19-22.

    [24]Rao S,Ghose D.Sliding mode control-based autopilots for leaderless consensus of unmanned aerial vehicles[J].IEEE Transactions on Control Systems Technology,2014,22(5):1964-1972.

    [25]Babaei A R,Mortazavi M,Menhaj M B.Robust and computational efficient autopilot design:A hybrid approach based on classic control and genetic-fuzzy sliding mode control[J].Aeronautical Journal,2013,117(1194):839-859.

    [26]Regina N,Zanzi M.Camera pan-tilt gimbals robust control law for target tracking with fixed wing[C]∥UAV,AIAA Guidance,Navigation,and Control(GNC)Conference.Boston,MA,USA:AIAA,2013:19-22.

    [27]Zarafshan P,Moosavian S Ali A,Bahrami M.Comparative controller design of an aerial robot[J].Aerospace Science and Technology,2010,14(4):276-282.

    [28]Hafez A T,Iskandarani M,Givigi S N.Using linear model predictive control via feedback linearization for dynamic encirclement[C]∥2014 American Control Conference.Portland,OR,USA:[s.n.],2014: 3868-3873.

    [29]Chowdhary G,Mühlegg M,Johnson E.Exponential parameter and tracking error convergence guarantees for adaptive controllers without persistency of excitation[J].International Journal of Control,2014,87(8):1583-1603.

    [30]Yang Kwangjin,Kang Yeonsik,Sukkarieh Salah. Adaptive nonlinear model predictive path-following control for a fixed-wing unmanned aerial vehicle[J]. International Journal of Control,Automation and Systems,2013,11(1):65-74.

    [31]Lin Chih-Min,Tai Ching-Eu,Chung Chang-Chih. Intelligent control system design for UAV using a recurrent wavelet neural network[J].Neural Computing and Applications,2014,24(2):487-496.

    [32]Yadav Anil Kumar,Gaur Prerna.AI-based adaptive control and design of autopilot system for nonlinear UAV[J].Sadhana-Academy Proceedings in Engineering Sciences,2014,39(4):765-783.

    [33]Pu Huangzhong,Zhen Ziyang,Jiang Ju,et al.UAV flight control system based on intelligent BEL algorithm[J].International Journal of Advanced Robotic Systems,2013,10(121):1-8.

    [34]Wilburn B K,Perhinschi M G,Wilburn J N.A modified genetic algorithm for UAV trajectory tracking control laws optimization[J].International Journal of Intelligent Unmanned Systems,2014,2(2):58-90.

    [35]Pu Huangzhong,Zhen Ziyang,Wang Daobo,et al. Improved particle swarm optimization algorithm for intelligently setting UAV attitude controller parameters[J].Transactions of Nanjing University of Aeronautics and Astronautics,2009,26(1):52-57.

    [36]Pu Huangzhong,Zhen Ziyang,Wang Daobo.Modified shuffled frog leaping algorithm for optimization of UAV flight controller[J].International Journal of Intelligent Computing and Cybernetics,2011,4(1): 25-39.

    [37]Departmentof Defence(DoD).Unmanned aircraft system roadmap 2005—2030[R].A572734.Washington DC,USA:Office of the Secretary of Defense,2009.

    (Executive editor:Zhang Tong)

    TP319;V249 Document code:A Article ID:1005-1120(2015)01-0001-08

    *Corresponding author:Zhen Ziyang,Associate Professor,E-mail:zhenziyang@nuaa.edu.cn.

    How to cite this article:Pu Huangzhong,Zhen Ziyang,Xia Man.Eight control system of unmanned aerial vehicle[J]. Trans.Nanjing U.Aero.Astro.,2015,32(1):1-8.

    http://dx.doi.org/10.16356/j.1005-1120.2015.01.001

    (Received 18 November 2014;revised 2 January 2015;accepted 12 January 2015)

    猜你喜歡
    黃忠
    樂見戰(zhàn)友聚會(huì)
    老年人(2023年10期)2023-10-24 16:05:19
    Hole density dependent magnetic structure and anisotropy in Fe-pnictide superconductor
    不負(fù)先輩之名!黃繼光侄子救人后悄悄離開
    Magnetic properties of oxides and silicon single crystals
    某出口重型載貨汽車輪胎偏磨問題分析與解決
    黃忠為何老了才出名
    鍬甲“黃忠”
    黃忠與關(guān)云長(zhǎng)比武
    Nonlinear Intelligent Flight Control for Quadrotor Unmanned Helicopter
    口中穿針奇人
    中老年健康(2015年4期)2015-05-30 18:47:46
    啦啦啦在线免费观看视频4| videos熟女内射| 18+在线观看网站| 最近最新中文字幕大全免费视频 | 日韩视频在线欧美| 午夜福利乱码中文字幕| 精品视频人人做人人爽| 日本av手机在线免费观看| 成人影院久久| 久久午夜福利片| a级毛片黄视频| 女的被弄到高潮叫床怎么办| 亚洲av综合色区一区| 飞空精品影院首页| 精品国产一区二区三区四区第35| 18+在线观看网站| 深夜精品福利| 看十八女毛片水多多多| 午夜福利在线观看免费完整高清在| 亚洲精品久久久久久婷婷小说| 日韩精品有码人妻一区| 欧美日韩亚洲国产一区二区在线观看 | 亚洲av.av天堂| 亚洲国产精品一区三区| 亚洲欧美一区二区三区久久| 成年人午夜在线观看视频| 欧美日韩亚洲高清精品| 亚洲第一av免费看| 日韩欧美一区视频在线观看| 日韩熟女老妇一区二区性免费视频| 叶爱在线成人免费视频播放| 中文天堂在线官网| 日本av免费视频播放| 国产国语露脸激情在线看| 国产熟女午夜一区二区三区| 亚洲熟女精品中文字幕| 少妇人妻久久综合中文| 国产亚洲欧美精品永久| 搡老乐熟女国产| 久久97久久精品| 最近手机中文字幕大全| 一边摸一边做爽爽视频免费| 男人舔女人的私密视频| av在线app专区| 精品人妻熟女毛片av久久网站| 免费看av在线观看网站| 久久久久精品人妻al黑| 亚洲美女黄色视频免费看| 国产精品一区二区在线不卡| 亚洲精品第二区| 另类亚洲欧美激情| 成人黄色视频免费在线看| 天堂8中文在线网| 久久精品久久久久久久性| 美女中出高潮动态图| 亚洲三级黄色毛片| 熟女少妇亚洲综合色aaa.| 在线观看三级黄色| 国产亚洲欧美精品永久| 欧美中文综合在线视频| 久久久久久久精品精品| 亚洲国产最新在线播放| 9热在线视频观看99| 麻豆乱淫一区二区| 国产成人欧美| 一级爰片在线观看| 熟女av电影| 欧美日韩综合久久久久久| 国产精品国产三级专区第一集| 美女国产视频在线观看| 国产片内射在线| 亚洲国产欧美网| 国产在线一区二区三区精| 国产黄色视频一区二区在线观看| 亚洲人成网站在线观看播放| av福利片在线| 一本大道久久a久久精品| 久久久国产欧美日韩av| 天堂中文最新版在线下载| av网站在线播放免费| 女性被躁到高潮视频| 国产精品香港三级国产av潘金莲 | 考比视频在线观看| 成人黄色视频免费在线看| 国产av国产精品国产| 中文字幕亚洲精品专区| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕色久视频| 麻豆乱淫一区二区| 中文字幕人妻丝袜一区二区 | 天美传媒精品一区二区| 亚洲精品国产av蜜桃| 夫妻性生交免费视频一级片| 午夜激情久久久久久久| 婷婷色av中文字幕| 99精国产麻豆久久婷婷| av网站在线播放免费| 国产精品99久久99久久久不卡 | 国产精品国产三级专区第一集| 国产精品女同一区二区软件| 97在线人人人人妻| 日韩av不卡免费在线播放| 在线观看国产h片| 亚洲精品av麻豆狂野| 一级黄片播放器| 欧美黄色片欧美黄色片| 亚洲国产av新网站| 亚洲精品日本国产第一区| 午夜免费观看性视频| 免费高清在线观看视频在线观看| 国产综合精华液| 在线亚洲精品国产二区图片欧美| 久久精品人人爽人人爽视色| 一级片'在线观看视频| 777久久人妻少妇嫩草av网站| 国产午夜精品一二区理论片| 午夜av观看不卡| 国产成人免费无遮挡视频| 伊人久久国产一区二区| 视频在线观看一区二区三区| 久久久久久久精品精品| 国产精品麻豆人妻色哟哟久久| 男女下面插进去视频免费观看| 男女边吃奶边做爰视频| 中文字幕制服av| 欧美最新免费一区二区三区| 大片电影免费在线观看免费| 丝袜在线中文字幕| 国产免费福利视频在线观看| 亚洲成国产人片在线观看| 欧美日韩av久久| 日韩在线高清观看一区二区三区| 亚洲一区中文字幕在线| 亚洲三级黄色毛片| 国产精品成人在线| 丝袜美足系列| 少妇的逼水好多| 日本av免费视频播放| 热re99久久国产66热| 在线观看一区二区三区激情| 欧美精品人与动牲交sv欧美| 国产成人免费无遮挡视频| 久久久a久久爽久久v久久| 国产福利在线免费观看视频| 久久人人爽av亚洲精品天堂| 亚洲国产毛片av蜜桃av| 午夜av观看不卡| 久久午夜福利片| 国产淫语在线视频| 午夜av观看不卡| videossex国产| 国产色婷婷99| 69精品国产乱码久久久| 国精品久久久久久国模美| 一二三四在线观看免费中文在| 一本色道久久久久久精品综合| videossex国产| 久久精品国产a三级三级三级| 国产在线免费精品| 一本色道久久久久久精品综合| 人人澡人人妻人| 蜜桃国产av成人99| 十八禁网站网址无遮挡| 99香蕉大伊视频| 日日摸夜夜添夜夜爱| 伊人久久大香线蕉亚洲五| 黑丝袜美女国产一区| 亚洲一级一片aⅴ在线观看| 国产在视频线精品| 天天影视国产精品| 久久久久久免费高清国产稀缺| 亚洲精品一二三| 亚洲色图 男人天堂 中文字幕| 在线观看美女被高潮喷水网站| 国产精品久久久久久精品古装| 成年人午夜在线观看视频| 青春草国产在线视频| 日韩精品免费视频一区二区三区| 色网站视频免费| 国产熟女午夜一区二区三区| 成人18禁高潮啪啪吃奶动态图| 热99国产精品久久久久久7| 亚洲美女搞黄在线观看| 国产探花极品一区二区| 国产黄色免费在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕av电影在线播放| 丰满饥渴人妻一区二区三| 一区福利在线观看| 国产熟女欧美一区二区| 国产国语露脸激情在线看| videossex国产| 新久久久久国产一级毛片| 国产免费福利视频在线观看| 国产免费视频播放在线视频| 尾随美女入室| 1024香蕉在线观看| 极品人妻少妇av视频| 日韩 亚洲 欧美在线| 黄色配什么色好看| 国产人伦9x9x在线观看 | 日本色播在线视频| 777久久人妻少妇嫩草av网站| 免费大片黄手机在线观看| 亚洲国产欧美在线一区| 天天躁夜夜躁狠狠躁躁| 国产黄频视频在线观看| 热99国产精品久久久久久7| 亚洲久久久国产精品| 中国三级夫妇交换| 激情视频va一区二区三区| av在线app专区| 天天操日日干夜夜撸| 日本av手机在线免费观看| 国产又爽黄色视频| 制服诱惑二区| 免费黄色在线免费观看| 永久网站在线| 丝袜美足系列| 亚洲精品美女久久av网站| 国产亚洲欧美精品永久| 久久精品国产a三级三级三级| 欧美老熟妇乱子伦牲交| 精品国产一区二区久久| 免费看av在线观看网站| 亚洲精品视频女| 99久久综合免费| 国产又色又爽无遮挡免| 又粗又硬又长又爽又黄的视频| 婷婷成人精品国产| 久久久亚洲精品成人影院| 丝袜美足系列| 成年人免费黄色播放视频| 国产亚洲欧美精品永久| 一个人免费看片子| 亚洲欧洲国产日韩| 热re99久久精品国产66热6| 亚洲国产精品一区二区三区在线| 亚洲av电影在线观看一区二区三区| 亚洲国产精品国产精品| 日产精品乱码卡一卡2卡三| 人妻人人澡人人爽人人| 久久久国产精品麻豆| 欧美国产精品一级二级三级| 久久国产精品男人的天堂亚洲| 少妇被粗大猛烈的视频| 麻豆乱淫一区二区| a级毛片在线看网站| 午夜91福利影院| 亚洲精品一二三| 各种免费的搞黄视频| 飞空精品影院首页| 黄片无遮挡物在线观看| 亚洲五月色婷婷综合| 香蕉丝袜av| 91在线精品国自产拍蜜月| 久久精品熟女亚洲av麻豆精品| 蜜桃在线观看..| 成人国产av品久久久| 亚洲国产精品国产精品| 少妇被粗大猛烈的视频| 美女视频免费永久观看网站| 汤姆久久久久久久影院中文字幕| 欧美精品亚洲一区二区| 成人亚洲欧美一区二区av| 国产亚洲最大av| 老女人水多毛片| 日本色播在线视频| 久久久久国产精品人妻一区二区| 天天操日日干夜夜撸| 王馨瑶露胸无遮挡在线观看| 岛国毛片在线播放| 国产人伦9x9x在线观看 | 久久久久久久久免费视频了| 午夜免费男女啪啪视频观看| 日本猛色少妇xxxxx猛交久久| 国产乱人偷精品视频| 日韩av不卡免费在线播放| 高清黄色对白视频在线免费看| 在线观看免费高清a一片| 免费看不卡的av| 日韩中文字幕视频在线看片| 伊人久久国产一区二区| 欧美人与性动交α欧美精品济南到 | 国产亚洲精品第一综合不卡| 精品一区二区三区四区五区乱码 | 欧美亚洲 丝袜 人妻 在线| 一本大道久久a久久精品| 肉色欧美久久久久久久蜜桃| 午夜日韩欧美国产| 女性生殖器流出的白浆| 久久 成人 亚洲| a级片在线免费高清观看视频| 可以免费在线观看a视频的电影网站 | 乱人伦中国视频| 中文欧美无线码| 最近的中文字幕免费完整| 你懂的网址亚洲精品在线观看| 少妇猛男粗大的猛烈进出视频| 国产精品不卡视频一区二区| 一级毛片电影观看| 赤兔流量卡办理| 国产一区亚洲一区在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 十分钟在线观看高清视频www| 男人舔女人的私密视频| 国产精品无大码| 狂野欧美激情性bbbbbb| 成人毛片60女人毛片免费| 99九九在线精品视频| 精品人妻熟女毛片av久久网站| 久久ye,这里只有精品| 国产免费又黄又爽又色| 一本色道久久久久久精品综合| 自线自在国产av| 国产一区二区三区综合在线观看| 亚洲精品国产一区二区精华液| 午夜福利视频在线观看免费| 日韩不卡一区二区三区视频在线| 在线亚洲精品国产二区图片欧美| 国产欧美日韩综合在线一区二区| 欧美 日韩 精品 国产| 国产精品偷伦视频观看了| 久久精品夜色国产| 91午夜精品亚洲一区二区三区| 亚洲精品日本国产第一区| 中文字幕人妻丝袜制服| 欧美 亚洲 国产 日韩一| 久久女婷五月综合色啪小说| 男男h啪啪无遮挡| 久久久久国产网址| 免费观看无遮挡的男女| 岛国毛片在线播放| 91精品伊人久久大香线蕉| 亚洲在久久综合| 国产一区二区 视频在线| 久久这里有精品视频免费| 亚洲综合色网址| 亚洲国产毛片av蜜桃av| 自拍欧美九色日韩亚洲蝌蚪91| 一个人免费看片子| 女人精品久久久久毛片| 欧美av亚洲av综合av国产av | 天天躁日日躁夜夜躁夜夜| 黄色一级大片看看| 热re99久久国产66热| 五月开心婷婷网| 精品少妇久久久久久888优播| 人人妻人人爽人人添夜夜欢视频| 校园人妻丝袜中文字幕| 岛国毛片在线播放| 亚洲精品av麻豆狂野| 亚洲精品美女久久av网站| 黄色怎么调成土黄色| a级片在线免费高清观看视频| 国产片内射在线| 日韩电影二区| 男女高潮啪啪啪动态图| 18禁国产床啪视频网站| 久久热在线av| 99re6热这里在线精品视频| 久久午夜综合久久蜜桃| 欧美激情 高清一区二区三区| 男女高潮啪啪啪动态图| 久久av网站| 青春草亚洲视频在线观看| 1024香蕉在线观看| 欧美日韩视频高清一区二区三区二| 亚洲视频免费观看视频| 综合色丁香网| 国产成人精品福利久久| 日日爽夜夜爽网站| 久久精品人人爽人人爽视色| 精品久久久精品久久久| 男女免费视频国产| 亚洲国产色片| 久久久亚洲精品成人影院| 日韩 亚洲 欧美在线| 男女啪啪激烈高潮av片| 在线观看www视频免费| 大香蕉久久成人网| 国产一级毛片在线| 国产精品一国产av| 天天躁夜夜躁狠狠躁躁| 国产成人免费观看mmmm| 国产色婷婷99| 精品一区在线观看国产| 伦精品一区二区三区| 天美传媒精品一区二区| 国产免费现黄频在线看| 99九九在线精品视频| 精品国产露脸久久av麻豆| 一本久久精品| 男女下面插进去视频免费观看| 丝袜脚勾引网站| 伊人亚洲综合成人网| 黄色视频在线播放观看不卡| 免费人妻精品一区二区三区视频| 国产精品久久久久久精品古装| 如日韩欧美国产精品一区二区三区| 亚洲av综合色区一区| 婷婷色综合大香蕉| 日日啪夜夜爽| 欧美日韩亚洲国产一区二区在线观看 | 国产日韩一区二区三区精品不卡| 日本黄色日本黄色录像| av卡一久久| 99国产综合亚洲精品| 亚洲四区av| 中文字幕人妻丝袜制服| 水蜜桃什么品种好| 国产精品成人在线| 国产在视频线精品| 肉色欧美久久久久久久蜜桃| 水蜜桃什么品种好| 亚洲美女黄色视频免费看| 飞空精品影院首页| 日日撸夜夜添| 天天影视国产精品| 久久ye,这里只有精品| 伦精品一区二区三区| 亚洲精品av麻豆狂野| 免费高清在线观看日韩| 国产老妇伦熟女老妇高清| 国产黄频视频在线观看| 精品99又大又爽又粗少妇毛片| 日韩制服骚丝袜av| 久久久久久久亚洲中文字幕| 国产精品三级大全| 亚洲在久久综合| 美女福利国产在线| av.在线天堂| 亚洲欧美中文字幕日韩二区| 国产精品成人在线| 久久精品国产a三级三级三级| 各种免费的搞黄视频| 秋霞伦理黄片| 日本av手机在线免费观看| 久久久国产精品麻豆| 春色校园在线视频观看| 母亲3免费完整高清在线观看 | 永久免费av网站大全| 亚洲精品成人av观看孕妇| 国产 一区精品| 如何舔出高潮| 日韩人妻精品一区2区三区| 国产精品久久久久久av不卡| 亚洲情色 制服丝袜| 性色av一级| 国产精品 国内视频| 最近手机中文字幕大全| 色94色欧美一区二区| 看免费av毛片| 少妇的逼水好多| av网站在线播放免费| 亚洲国产精品国产精品| 国产极品粉嫩免费观看在线| 97精品久久久久久久久久精品| 免费观看av网站的网址| 亚洲精品国产色婷婷电影| 亚洲第一av免费看| 亚洲一级一片aⅴ在线观看| 日韩制服丝袜自拍偷拍| 大香蕉久久成人网| 9热在线视频观看99| av.在线天堂| 亚洲国产最新在线播放| www.av在线官网国产| 国产精品一区二区在线不卡| 久久精品aⅴ一区二区三区四区 | √禁漫天堂资源中文www| 久久久久久久亚洲中文字幕| 精品一区二区三区四区五区乱码 | 黑丝袜美女国产一区| xxxhd国产人妻xxx| 午夜福利乱码中文字幕| 桃花免费在线播放| 亚洲国产成人一精品久久久| 久久99精品国语久久久| 美国免费a级毛片| 久久久久国产网址| 欧美少妇被猛烈插入视频| 欧美av亚洲av综合av国产av | 久久99蜜桃精品久久| 男人爽女人下面视频在线观看| 亚洲人成77777在线视频| 9191精品国产免费久久| 在线看a的网站| 九色亚洲精品在线播放| 制服诱惑二区| 极品少妇高潮喷水抽搐| 欧美日韩亚洲国产一区二区在线观看 | 熟女电影av网| 欧美 亚洲 国产 日韩一| 一级,二级,三级黄色视频| 国产无遮挡羞羞视频在线观看| 国产极品粉嫩免费观看在线| 午夜福利视频在线观看免费| 久久久精品94久久精品| 不卡视频在线观看欧美| 精品久久久精品久久久| 一级,二级,三级黄色视频| 国产一级毛片在线| 最近最新中文字幕免费大全7| 日韩精品免费视频一区二区三区| 天堂8中文在线网| 夫妻性生交免费视频一级片| 丝袜脚勾引网站| 国产一区二区三区av在线| 午夜精品国产一区二区电影| 日韩三级伦理在线观看| 亚洲精品一二三| 国产1区2区3区精品| av.在线天堂| 少妇 在线观看| 美女主播在线视频| 男女午夜视频在线观看| 国产片内射在线| 精品酒店卫生间| 在现免费观看毛片| 在线观看免费日韩欧美大片| 韩国精品一区二区三区| 日本猛色少妇xxxxx猛交久久| 捣出白浆h1v1| www日本在线高清视频| 男人操女人黄网站| 国产色婷婷99| 亚洲精品av麻豆狂野| 午夜福利网站1000一区二区三区| 超碰97精品在线观看| 国产97色在线日韩免费| 亚洲男人天堂网一区| 亚洲欧美清纯卡通| 国产精品偷伦视频观看了| 精品亚洲成国产av| 久久综合国产亚洲精品| 亚洲欧美精品自产自拍| 国产精品久久久久久精品古装| 中文字幕色久视频| 国产在线视频一区二区| 久久久久精品性色| 日韩伦理黄色片| 久久精品aⅴ一区二区三区四区 | 精品少妇黑人巨大在线播放| 欧美 亚洲 国产 日韩一| 制服诱惑二区| 欧美在线黄色| 男女边吃奶边做爰视频| 亚洲第一青青草原| 热re99久久国产66热| 亚洲精品自拍成人| 久久人人97超碰香蕉20202| 日本vs欧美在线观看视频| 久久久久久久亚洲中文字幕| 人人澡人人妻人| 寂寞人妻少妇视频99o| 三级国产精品片| 一本—道久久a久久精品蜜桃钙片| 欧美人与善性xxx| av不卡在线播放| 日韩中字成人| 欧美变态另类bdsm刘玥| 大片免费播放器 马上看| freevideosex欧美| videos熟女内射| 国产成人av激情在线播放| 男女免费视频国产| 国产爽快片一区二区三区| 97在线视频观看| 久久久久久久久久人人人人人人| 三级国产精品片| 日韩中文字幕视频在线看片| 九草在线视频观看| 少妇人妻精品综合一区二区| 性少妇av在线| 亚洲,欧美,日韩| 色婷婷久久久亚洲欧美| 视频区图区小说| 18禁国产床啪视频网站| av不卡在线播放| 精品国产乱码久久久久久小说| av视频免费观看在线观看| 一区二区三区乱码不卡18| 午夜av观看不卡| h视频一区二区三区| 嫩草影院入口| 久久99蜜桃精品久久| 青春草视频在线免费观看| 久久国产亚洲av麻豆专区| 亚洲精品日韩在线中文字幕| 欧美精品高潮呻吟av久久| 高清不卡的av网站| 18在线观看网站| 天天影视国产精品| 男男h啪啪无遮挡| 在线观看免费日韩欧美大片| 精品国产一区二区三区四区第35| 丝袜美足系列| 香蕉国产在线看| 久久婷婷青草| 人妻人人澡人人爽人人| 欧美人与性动交α欧美精品济南到 | 亚洲av欧美aⅴ国产| 十八禁高潮呻吟视频| 久久久久久久精品精品| 亚洲激情五月婷婷啪啪| 久久久久久久亚洲中文字幕| 在线观看免费高清a一片| 国产黄频视频在线观看| 成年女人在线观看亚洲视频| 日韩欧美精品免费久久| 香蕉国产在线看| 国产av一区二区精品久久| 99久久精品国产国产毛片| 少妇被粗大猛烈的视频|