王琳琳,魏敏杰,何苗
綜述
低氧誘導(dǎo)因子在腫瘤干細(xì)胞介導(dǎo)的腫瘤發(fā)生發(fā)展中的作用
王琳琳,魏敏杰,何苗△
低氧及低氧誘導(dǎo)因子(HIFs)是腫瘤干細(xì)胞、轉(zhuǎn)移起始細(xì)胞及其分化后代在腫瘤發(fā)生發(fā)展過程中,能夠適應(yīng)氧氣和營(yíng)養(yǎng)物質(zhì)缺乏的主要調(diào)節(jié)因子。在白血病、膠質(zhì)母細(xì)胞瘤、黑色素瘤、前列腺癌、乳腺癌、胰腺癌等腫瘤中均發(fā)現(xiàn)HIFs的表達(dá)上調(diào),尤其集中表達(dá)在低氧區(qū)域?;罨腍IFs可以誘導(dǎo)多種干性及多藥耐藥等基因的表達(dá),對(duì)腫瘤及干性介導(dǎo)的腫瘤細(xì)胞的自我更新、能量代謝改變、侵襲轉(zhuǎn)移、血管生成以及治療抵抗均起著重要作用。因此,研究HIFs分子在干細(xì)胞介導(dǎo)的不同腫瘤細(xì)胞中的靶向調(diào)節(jié)作用和代謝通路的改變,將為腫瘤的靶向治療提供新線索。
腫瘤干細(xì)胞;低氧誘導(dǎo)因子;代謝通路;靶向治療
低氧是實(shí)體腫瘤的常見特征,由于腫瘤細(xì)胞快速分裂和血管微環(huán)境異常造成血液供應(yīng)不足而導(dǎo)致缺氧[1-3]。低氧誘導(dǎo)腫瘤細(xì)胞產(chǎn)生低氧誘導(dǎo)因子(hypoxia-induced factors,HIFs),HIFs在癌組織的低氧局部調(diào)節(jié)轉(zhuǎn)錄,誘導(dǎo)下游基因的表達(dá),使細(xì)胞適應(yīng)低氧環(huán)境,獲得較強(qiáng)的增殖、侵襲、轉(zhuǎn)移能力,對(duì)放、化療不敏感,并對(duì)預(yù)后造成影響[4]。因此,研究HIFs在不同腫瘤干細(xì)胞中的靶向調(diào)節(jié)作用和代謝通路的改變,對(duì)于提高現(xiàn)有治療方法療效和尋找新方法具有重要意義[5]。
HIFs是重要的調(diào)控細(xì)胞缺氧反應(yīng)的轉(zhuǎn)錄因子家族,是由結(jié)構(gòu)亞單位(HIFβ)和功能亞單位(HIFα)構(gòu)成的異二聚體。HIFα亞基具有生物活性,是可接受氧濃度變化調(diào)控的亞單位。已鑒定出HIFα有HIF-1α、HIF-2α和HIF-3α 3個(gè)亞型,其中對(duì)HIF-1α和HIF-2α的研究較多。HIFβ亞基的表達(dá)不受缺氧的影響,主要發(fā)揮保持HIFs結(jié)構(gòu)穩(wěn)定性的作用。在常氧條件下,HIFα產(chǎn)物的表達(dá)與降解處于動(dòng)態(tài)平衡。HIFα通常由脯氨酸羥化酶(prolyl hydroxylase domain,PHD)蛋白烴基化而來,能夠與希佩爾-林道病腫瘤抑制蛋白(Von Hippel-Lindau tumor suppressor protein,pVHL)相互作用。pVHL能夠與泛素連接酶E3作用,從而導(dǎo)致HIFα多聚泛素化而快速降解[4]。
在低氧狀態(tài)下,HIFα因無法烴基化故不能被降解,而是在細(xì)胞核內(nèi)聚集,并與從胞漿轉(zhuǎn)移到核內(nèi)的HIFβ結(jié)合成異二聚體,形成有活性的HIF復(fù)合物。HIF復(fù)合物再與靶基因的缺氧反應(yīng)元件(hypoxic response element,HRE)上的HIFα結(jié)合位點(diǎn)結(jié)合,啟動(dòng)靶基因的轉(zhuǎn)錄,引起細(xì)胞對(duì)缺氧的一系列反應(yīng)[3-4]。
研究表明,在腫瘤細(xì)胞的發(fā)生、發(fā)展過程中,??蓹z測(cè)到HIFs的活性增強(qiáng)及高表達(dá)[1,6]。腫瘤細(xì)胞對(duì)環(huán)境應(yīng)激反應(yīng)的表達(dá)產(chǎn)物中也可見HIFs的誘導(dǎo)表達(dá)。而且,HIFs與腫瘤細(xì)胞,尤其是腫瘤干細(xì)胞介導(dǎo)的腫瘤細(xì)胞的增殖、侵襲、轉(zhuǎn)移能力,放療、化療敏感性,預(yù)后及復(fù)發(fā)均密切相關(guān)[7]。
除了低氧條件的作用,腫瘤細(xì)胞中HIFs活性的上調(diào)也與生長(zhǎng)因子、細(xì)胞因子途徑和氧化應(yīng)激的持續(xù)刺激有關(guān)[8]。生長(zhǎng)因子信號(hào)元件包括多種受體酪氨酸激酶(receptor tyrosine kinases,RTKs),如表皮生長(zhǎng)因子受體(epidermal growth factor receptor,EGFR)、胰島素樣生長(zhǎng)因子-1受體(insulinlike growth factor-1R,IGF-1R)、干細(xì)胞因子(stem cell factor,SCF)受體、Notch受體、白細(xì)胞介素-6受體(IL-6R)以及轉(zhuǎn)化生長(zhǎng)因子β受體(TGF-βR)等。RTKs刺激激活其下游的信號(hào)通路,如PI3K/AKT/mTOR通路、RAS/MEK/ERK通路、核因子-κB(NF-κB)和信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子3(signal transducers and activators of transcription,STAT3)通路等,進(jìn)而上調(diào)HIFs的表達(dá),并增強(qiáng)其穩(wěn)定性[9-10]。同時(shí),由于pVHL、10號(hào)染色體磷酸酶張力缺失蛋白(phosphatase tensin deleted on chromosome 10,PTEN)和p53等腫瘤抑制蛋白的失活,HIFs降解減少,積累增加,進(jìn)而導(dǎo)致HIFs調(diào)控的基因高表達(dá)[11]。
缺氧以及HIF-α的高表達(dá)可以引起多種基因表達(dá)的上調(diào)。由HIFs調(diào)節(jié)的基因表達(dá)產(chǎn)物包括:多能性誘導(dǎo)調(diào)節(jié)因子(Oct-3/4、Sox-2和Nanog)、上皮間質(zhì)轉(zhuǎn)化因子(EGFR、CXCR4)、葡萄糖轉(zhuǎn)運(yùn)蛋白(GLUT-1/2)、血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factors,VEGF)等。HIFs的調(diào)節(jié)還可影響代謝途徑,如調(diào)節(jié)糖酵解酶、microRNAs(miRNAs)和耐藥相關(guān)分子(ABCB2、bcl-xL和bcl-2)等。這些HIFs誘導(dǎo)的信號(hào)分子使得腫瘤干細(xì)胞、轉(zhuǎn)移起始細(xì)胞及其分化后代的自我更新能力增強(qiáng),通過增強(qiáng)有氧、無氧糖酵解提高能量供應(yīng),促進(jìn)血管生成,最終影響腫瘤細(xì)胞的增殖、侵襲、轉(zhuǎn)移能力,對(duì)放療、化療的敏感性,預(yù)后以及復(fù)發(fā)[11]。
2.1 HIF-1α對(duì)白血病干細(xì)胞及其分化后代的影響 白血病可能是由于造血干細(xì)胞(haematopoietic stem cells,HSCs)、癌前白血病干細(xì)胞(precancerous-LSCs,pre-LSCs)和髓系始祖細(xì)胞獲得高度的自我更新和異常分化能力,致使其遺傳或表觀遺傳性狀改變所致[12]。骨內(nèi)膜的低氧區(qū)域內(nèi),靜息狀態(tài)下的pre-LSCs可以使未成熟的白血病細(xì)胞維持在低循環(huán)狀態(tài),防止其受氧化應(yīng)激、DNA損傷和細(xì)胞死亡的刺激。而LSCs及活化的pre-LSCs可以引起HIF-1α上調(diào),使得未成熟的白血病細(xì)胞的代謝發(fā)生改變,以適應(yīng)低氧、低營(yíng)養(yǎng)物質(zhì)的微環(huán)境。這也是白血病容易對(duì)治療產(chǎn)生抵抗的主要原因[13]。以慢性粒細(xì)胞白血病(chronic myeloid leukaemia, CML)為例,CML小鼠模型實(shí)驗(yàn)顯示,HIF-1α能夠誘導(dǎo)具有酪氨酸激酶活性的BCR-ABL融合蛋白的產(chǎn)生,使CML細(xì)胞適應(yīng)低氧、低營(yíng)養(yǎng)物質(zhì)的微環(huán)境;相反,使用HIF-1α抑制劑,則可以抑制LSCs細(xì)胞周期的進(jìn)展,誘導(dǎo)細(xì)胞凋亡[14]。
2.2 HIFs在干性介導(dǎo)的多形性膠質(zhì)母細(xì)胞瘤發(fā)生、發(fā)展中的作用 膠質(zhì)母細(xì)胞瘤是最常見的惡性腦腫瘤之一,具有強(qiáng)侵襲性,且對(duì)放療、化療不敏感。膠質(zhì)瘤干細(xì)胞(glioma stem cells,GSCs)也稱膠質(zhì)瘤起始細(xì)胞,其干性表達(dá)產(chǎn)物包括CD133、巢蛋白(nestin)、CD44、Oligo-2、Oct-3/4、Sox-2、Nanog 和Bmi-1等。這些干性標(biāo)志物使得GSCs獲得高度的自我更新能力和強(qiáng)致瘤性,而且可以驅(qū)動(dòng)多形性膠質(zhì)母細(xì)胞瘤(glioblastoma multiformes,GBMs)的發(fā)展和局部侵襲,也與GBMs對(duì)放療、化療的耐受性和疾病復(fù)發(fā)有關(guān)[4,15]。免疫組化分析表明,GBMs發(fā)生發(fā)展過程中,HIF-1α、HIF-2α以及它們的靶基因通常在腫瘤細(xì)胞壞死區(qū)的缺氧區(qū)附近呈高表達(dá)狀態(tài),包括糖酵解酶和VEGF等;而且,HIF-1α、HIF-2α在腫瘤細(xì)胞中的表達(dá)也與腫瘤的分級(jí)及GBMs組織標(biāo)本的血管分布密切相關(guān)[16]。以上研究表明,HIF-1α、HIF-2α可通過誘導(dǎo)VEGF的高表達(dá),介導(dǎo)膠質(zhì)母細(xì)胞瘤的血管生成,促使GBMs的缺氧區(qū)快速?gòu)?fù)氧,從而促進(jìn)GBMs的發(fā)生、發(fā)展[17]。
2.3 HIFs在干性介導(dǎo)的黑色素瘤發(fā)生、發(fā)展中的作用 黑色素瘤是惡性極強(qiáng)的皮膚腫瘤,預(yù)后不良。由于發(fā)展速度快,局部侵襲和轉(zhuǎn)移能力強(qiáng),對(duì)放療、化療耐受性強(qiáng),黑色素瘤的復(fù)發(fā)率、病死率高。由于黑色素瘤干細(xì)胞亞型、數(shù)量、表型以及功能特性間存在差異,且瘤體內(nèi)和瘤體間也存在異質(zhì)性,當(dāng)具有高度自我更新能力和異常分化潛能的黑色素瘤干細(xì)胞被移植到動(dòng)物模型的皮膚、骨骼中時(shí),能夠產(chǎn)生類似人類組織病理學(xué)特點(diǎn)的黑色素瘤。實(shí)驗(yàn)中檢測(cè)到黑色素瘤的干性表達(dá)產(chǎn)物包括CD133、nestin、CD271、Oct-3/4、Nanog、多藥耐藥蛋白-1(multi-drug resistance protein-1,MDR1)和三磷酸腺苷結(jié)合盒轉(zhuǎn)運(yùn)蛋白(ABCG2/ABCB5)[4,18]。在原發(fā)性和轉(zhuǎn)移性黑色素瘤中,HIF-1α、HIF-2α及其靶基因產(chǎn)物的檢出率高達(dá)80%,尤其是在腫瘤的壞死區(qū)邊緣;此外,多能性相關(guān)的轉(zhuǎn)錄因子Oct-3/4的核染色實(shí)驗(yàn)發(fā)現(xiàn),在低氧條件下,黑色素瘤細(xì)胞中HIF-1α、HIF-2α及其靶基因表達(dá)迅速上調(diào),包括 Oct-3/4、Nanog、結(jié)締組織生長(zhǎng)因子(connective tissue growth factor,CTGF)、snail-1和VEGF,使得其自我更新能力、致瘤性、轉(zhuǎn)移能力、對(duì)化療藥物的耐受力提高[19]。
2.4 HIFs在干性介導(dǎo)的前列腺癌發(fā)生、發(fā)展中的作用 前列腺癌(prostate cancers,PCs)是男性最常見的惡性腫瘤之一。轉(zhuǎn)移性PCs已成為第二大強(qiáng)致死性癌癥[20]。目前的抗激素治療以及以多西紫杉醇為基礎(chǔ)的一線化療對(duì)轉(zhuǎn)移性PCs大多只有緩解作用,大部分患者在12~19個(gè)月內(nèi)死亡。在原發(fā)性PCs的發(fā)展和骨轉(zhuǎn)移中,PCs細(xì)胞中的HIF-1α和HIF-2α表達(dá)水平和轉(zhuǎn)錄活性顯著增加。PCs干細(xì)胞和轉(zhuǎn)移起始細(xì)胞具有較高的自我更新能力,其干性表達(dá)產(chǎn)物包括CD133+、CD44+、乙醛脫氫酶(ALDH+)、ABCG2+和趨化因子受體4(CXCR4+)等,與PCs的發(fā)生、發(fā)展、轉(zhuǎn)移和治療抵抗密切相關(guān)[20-21]。
EGF-TGFα/EGFR-TGFβ/TGFβR的持續(xù)激活、PTEN基因表達(dá)的下調(diào)或缺失以及炎癥細(xì)胞因子[如腫瘤壞死因子(TNF)-α]表達(dá)水平的增強(qiáng),均會(huì)刺激PI3K/Akt/mTOR、NF-κB以及絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信號(hào)通路。這些信號(hào)通路可以誘導(dǎo)HIF-1α和HIF-2α高表達(dá)、基因產(chǎn)物局部積累以及核易位,進(jìn)而導(dǎo)致上述干細(xì)胞基因產(chǎn)物的高表達(dá),使得PCs細(xì)胞獲得強(qiáng)惡性表型。尤其是多藥轉(zhuǎn)運(yùn)體(multi-drug transporter)、ABCG2、抗凋亡因子以及Bcl-xL等耐藥性相關(guān)分子,其高水平表達(dá)在PCs的治療中不容忽視[22-24]。
2.5 HIFs在干性介導(dǎo)的乳腺癌發(fā)生、發(fā)展中的作用 乳腺癌是一種發(fā)生在乳腺上皮細(xì)胞的基底層和管腔中,由于遺傳和表觀遺傳改變積累而形成的異質(zhì)性疾病。乳腺癌若在腫瘤發(fā)生早期即被發(fā)現(xiàn),經(jīng)乳腺腫瘤切除,患者存活率相對(duì)較高。但對(duì)于晚期的、強(qiáng)侵襲性的和轉(zhuǎn)移型乳腺癌,目前的抗激素治療、人體第二表皮生長(zhǎng)因子受體(human epidermalgrowth-actor receptor 2,HER2)靶向治療以及放療、化療通常作用不大[25]。乳腺癌干細(xì)胞(BCSCs)及其早期始祖細(xì)胞具有異質(zhì)性、強(qiáng)致瘤性,致使乳腺惡性腫瘤獲得了高度的自我更新能力、強(qiáng)侵襲能力以及轉(zhuǎn)移能力,其干性表達(dá)產(chǎn)物包括CD44+、CD24-、上皮細(xì)胞特異性抗原(epithelial-specific antigen,ESA+)、CD133+、ALDH1+、Oct-3/4、Nanog、Kruppel因子(Kruppel-like factor,KLF)及CXCR4+[26]。利用基因表達(dá)富集分析法(gene set enrichment analysis,GSEA)測(cè)得:在表達(dá)CD44+和CD24-干性表達(dá)產(chǎn)物的BCSCs亞群中,TGFβ、TNF-α、干擾素和NF-κB通路的相關(guān)基因表達(dá)增加,致使HIFs及其誘導(dǎo)的基因表達(dá)產(chǎn)物水平升高,特別是促進(jìn)了上皮間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)和多藥轉(zhuǎn)運(yùn)蛋白表達(dá)的升高,如乳腺癌耐藥蛋白(breast cancer resistance protein,BCRP)、DNA修復(fù)酶等,使得乳腺癌的侵襲轉(zhuǎn)移能力和治療抵抗能力大大增強(qiáng)[4,25-26]。
2.6 HIFs在干細(xì)胞介導(dǎo)的胰腺癌發(fā)生、發(fā)展中的作用 胰腺導(dǎo)管腺癌(pancreatic ductal adenocarcinomas,PDACs)是實(shí)質(zhì)性腫瘤中惡性極強(qiáng)的一類腫瘤。放療和一線化療藥物對(duì)于晚期和轉(zhuǎn)移型PDACs只能起到緩解作用。PDACs的治療效果差、預(yù)后不良,主要是由于原發(fā)型PDACs進(jìn)展為轉(zhuǎn)移型PDACs的速度較快,且對(duì)傳統(tǒng)治療的耐受性強(qiáng)所致。PDACs干細(xì)胞產(chǎn)生的干性表達(dá)產(chǎn)物包括CD133、CD44和ABCG2多藥耐藥轉(zhuǎn)運(yùn)體[27]。HIF-1α核染色實(shí)驗(yàn)顯示,88%的PDACs組織標(biāo)本中存在HIF-1α,43%的鄰近間質(zhì)中可以檢測(cè)到,而僅有16%的正常胰腺組織中顯示HIF-1α的存在。胰腺癌細(xì)胞中,IGF-1R和SCF/KIT軸通過激活PI3K/Akt和RAS/MEK/ERK信號(hào)通路,促進(jìn)HIF-1α高表達(dá)。HIF-1α的表達(dá)上調(diào),進(jìn)一步激活其調(diào)控的基因表達(dá),如致癌產(chǎn)物、耐藥相關(guān)分子及VEGF等,從而導(dǎo)致PDACs發(fā)生腫瘤血管生成、侵襲轉(zhuǎn)移能力升高及耐藥性增強(qiáng)等一系列惡性化轉(zhuǎn)變[28]。
HIF-1α和HIF-2α是腫瘤細(xì)胞適應(yīng)低氧和營(yíng)養(yǎng)缺乏的主要調(diào)節(jié)因子。HIFs通過誘導(dǎo)下游腫瘤相關(guān)基因的表達(dá),實(shí)現(xiàn)對(duì)腫瘤干細(xì)胞自我更新能力及其異質(zhì)性的調(diào)節(jié),并引起其分化后代的信號(hào)轉(zhuǎn)導(dǎo)通路及代謝途徑的改變。因此,更加精確地掌握HIF-1α和HIF-2α的具體功能,以及與其他轉(zhuǎn)錄因子、生長(zhǎng)因子的相互作用,將有助于在分子水平對(duì)癌癥的治療方面取得新的突破。針對(duì)腫瘤干細(xì)胞、轉(zhuǎn)移起始細(xì)胞、其分化后代以及宿主細(xì)胞中的HIFs進(jìn)行靶向治療,將從改變能量代謝途徑和抗腫瘤血管生成等方面影響腫瘤的生長(zhǎng)發(fā)育及侵襲轉(zhuǎn)移。與傳統(tǒng)的抗激素治療、放療及化療相比,HIFs的靶向治療將從分子水平抑制癌細(xì)胞生長(zhǎng)、促進(jìn)凋亡,提高癌細(xì)胞清除率,從而克服治療抵抗,防止疾病的復(fù)發(fā),降低癌癥患者的病死率。
[1]Sakamoto T,Weng JS,Hara T,et al.Hypoxia-inducible factor 1 regulation through cross talk between mTOR and MT1-MMP[J].Mol Cell Biol,2014,34(1):30-42.doi:10.1128/MCB.01169-13.
[2]Zhou Y,Liu XH,Qu SD,et al.Hyperbaric oxygen intervention on expression of hypoxia-inducible factor-1α and vascular endothelial growth factor in spinal cord injury models in rats[J].Chin Med J (Engl),2013,126(20):3897-3903.
[3]Iwase T,F(xiàn)u J,Yoshida T,et al.Sustained delivery of a HIF-1 antagonist for ocular neovascularization[J].J Control Release,2013,172 (3):625-633.doi:10.1016/j.jconrel.2013.10.008.
[4]Mimeault M,Batra SK.Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer-and metastasis-initiating cells[J].J Cell Mol Med,2013,17(1):30-54.doi:10.1111/jcmm.12004.
[5]Mathieu J,Zhang Z,Zhou W,et al.HIF induces human embryonic stem cell markers in cancer cells[J].Cancer Res,2011,71(13): 4640-4652.doi:10.1158/0008-5472.CAN-10-3320.
[6]Semenza GL.HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations[J].J Clin Invest,2013,123(9): 3664-3671.doi:10.1172/JCI67230.
[7]Bedessem B,Stephanou A.Role of compartmentalization on HiF-1α degradation dynamics during changing oxygen conditions:a computational approach[J].PLoS One.2014,9(10):e110495.doi: 10.1371/journal.pone.0110495.eCollection 2014.
[8]Schoolmeesters A,Brown DD,F(xiàn)edorov Y.Kinome-wide functional genomics screen reveals a novel mechanism of TNF alpha-induced nuclear accumulation of the HIF-1alpha transcription factor in cancer cells[J].PLoS One,2012,7(2):e31270.doi:10.1371/journal.pone.0031270.
[9]Sun JD,Liu Q,Wang J,et al.Selective tumor hypoxia targeting by hypoxia-activated prodrug TH-302 inhibits tumor growth in preclinical models of cancer[J].Clin Cancer Res,2012,18(3):758-770.doi:10.1158/1078-0432.CCR-11-1980.
[10]Kawakami K,Hattori M,Inoue T,et al.A novel fusicoccin derivative preferentially targets hypoxic tumor cells and inhibits tumor growth in xenografts[J].Anticancer Agents Med Chem,2012,12(7): 791-800.
[11]Liu Q,Sun JD,Wang J,et al.TH-302,a hypoxia-activated prodrug with broad in vivo preclinical combination therapy efficacy:optimization of dosing regimens and schedules[J].Cancer Chemother Phar-macol,2012,69(6):1487-1498.doi:10.1007/s00280-012-1852-8.
[12]Kida A,Kahn M.Hypoxia selects for a quiescent,CML stem/leukemia initiating-like population dependent on CBP/catenin transcription[J].Curr Mol Pharmacol,2013,6(3):204-210.
[13]Heddleston JM,Wu Q,Rivera M,et al.Hypoxia-induced mixed-lineage leukemia 1 regulates glioma stem cell tumorigenic potential[J].CellDeath Differ,2012,19(3):428-439.doi:10.1038/ cdd.2011.109.
[14]Zhang H,Li H,Xi HS,et al.HIF1alpha is required for survival maintenance of chronic myeloid leukemia stem cells[J].Blood,2012,119(11):2595-2607.doi:10.1182/blood-2011-10-387381.
[15]Heddleston JM,Li Z,McLendon RE,et al.The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype[J].Cell Cycle,2009,8 (20):3274-3284.
[16]Hong XY,Wang J,Li Z.AGR2 expression is regulated by HIF-1 and contributes to growth and angiogenesis of glioblastoma[J].Cell Biochem Biophys,2013,67(3):1487-1495.doi:10.1007/s12013-013-9650-4.
[17]Dalloul A.Hypoxia and visualization of the stem cell niche[J].Methods Mol Biol,2013,1035:199-205.doi:10.1007/978-1-62703-508-8_17.
[18]Sivridis E,Koukourakis MI,Mendrinos SE,et al.Beclin-1 and LC3A expression in cutaneous malignant melanomas:a biphasic survival pattern for beclin-1[J].Melanoma Res,2011,21(3):188-195.doi:10.1097/CMR.0b013e328346612c.
[19]Braig S,Wallner S,Junglas B,et al.CTGF is overexpressed in malignant melanoma and promotes cell invasion and migration[J].Br J Cancer,2011,105(2):231-238.doi:10.1038/bjc.2011.226.
[20]Befani CD,Vlachostergios PJ,Hatzidaki E,et al.Bortezomib represses HIF-1alpha protein expression and nuclear accumulation by inhibiting both PI3K/Akt/TOR and MAPK pathways in prostate cancer cells[J].J Mol Med,2012,90(1):45-54.doi:10.1007/ s00109-011-0805-8.
[21]Tu SM,Lin SH.Prostate cancer stem cells[J].Clin Genitourin Cancer,2012,10(2):69-76.doi:10.1016/j.clgc.2012.01.002.
[22]Ravenna L,Principessa L,Verdina A,et al.Distinct phenotypes of human prostate cancer cells associate with different adaptation to hypoxia and pro-inflammatory gene expression[J].PLoS One,2014,9(5):e96250.doi:10.1371/journal.pone.0096250.eCollection 2014.
[23]Miyazawa K,Tanaka T,Nakai D,et al.Immunohistochemical expression of four different stem cell markers in prostate cancer:High expression of NANOG in conjunction with hypoxia-inducible factor-1α expression is involved in prostate epithelial malignancy[J].Oncol Lett,2014,8(3):985-992.
[24]Al-Ubaidi FL,Schultz N,Egevad L,et al.Castration therapy of prostate cancer results in downregulation of HIF-1 alpha levels[J].Int J Radiat Oncol Biol Phys,2012,82(3):1243-1248.doi:10.1016/j.ijrobp.2011.10.038.
[25]Chen JP,Liang HY,Li XB,et al.Immunohistochemical studies on variation of ER,PR and Her-2 in breast DCIS,DCIS with microinvasive and invasive ductal carcinoma[J].Med J Chin PLA,2014,39 (9):695-698.[陳君平,梁海英,李曉兵,等.ER、PR及Her-2在乳腺導(dǎo)管原位癌、導(dǎo)管原位癌伴微浸潤(rùn)及浸潤(rùn)性導(dǎo)管癌中變化的免疫組化研究[J].解放軍醫(yī)學(xué)雜志,2014,39(9):695-698].doi:10.11855/j.issn.0577-7402.2014.09.04.
[26]Rajkovi?-Molek K,Musta? E,Had?isejdi? I,et al.The prognostic importance of nuclear factor κB and hypoxia-inducible factor 1α in relation to the breast cancer subtype and the overall survival[J].Appl Immunohistochem Mol Morphol,2014,22(6):464-470.doi: 10.1097/PAI.0b013e31829271ce.
[27]Zhu GH,Huang C,F(xiàn)eng ZZ,et al.Hypoxia-induced snail expression through transcriptional regulation by HIF-1α in pancreatic cancer cells[J].Dig Dis Sci,2013,58(12):3503-3515.doi:10.1007/ s10620-013-2841-4.
[28]Chaika NV,Yu F,Purohit V,et al.Differential expression of metabolic genes in tumor and stromal components of primary and metastatic loci in pancreatic adenocarcinoma[J].PLoS One,2012,7(3): e32996.doi:10.1371/journal.pone.0032996.
(2014-12-03收稿 2015-02-13修回)
(本文編輯 李鵬)
Role of hypoxia-induced factors in cancer development mediated by cancer stem cells
WANG Linlin,WEI Minjie,HE Miao△
Department of Pharmacology,School of Pharmacy,China Medical University,Shenyang 110001,China
△Corresponding AuthorE-mail:hemiao_cmu@126.com
Hypoxia and hypoxia-induced factors(HIFs)are main regulators for tumor stem cells,metastasis-initiating cells and their differentiated progenies to adapt to the environment which lacks oxygen and nutrient in the process of cancer development.HIFs are up-regulated in many tumors,including leukemia,glioblastoma,melanoma,prostate cancer,breast cancer and pancreatic cancer,in where they are especially highly expressed in hypoxic regions.HIFs activation can induce expression of numerous stem cell related genes and multidrug resistance genes,which may play important roles in tumour and stem cell-mediated self-renewing,energy metabolism alternation,invasion,metastasis,angiogenesis and treatment resistance of neoplastic cells.Consequently,it will provide new clues for cancer therapy after investigating the role of HIFs in targeted regulation and metabolic pathway modulation in various stem cell-mediated tumor cells.
neoplastic stem cells;hypoxia-induced factors(HIFs);metabolic pathway;targeted therapy
R730.5
A DOI:10.11958/j.issn.0253-9896.2015.06.030
國(guó)家自然科學(xué)基金資助項(xiàng)目(81102472,81373427);遼寧省高等學(xué)校杰出青年學(xué)者成長(zhǎng)計(jì)劃項(xiàng)目(LJQ2014084);遼寧省大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(201410159040,201410159012)
中國(guó)醫(yī)科大學(xué)藥學(xué)院藥理教研室,沈陽(yáng)(郵編110001)
王琳琳(1992),女,本科在讀,主要從事藥理學(xué)研究
△E-mail:hemiao_cmu@126.com