• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability of a tumblehome hull under the dead ship condition*

    2015-02-16 06:50:50GUMin顧民LUJiang魯江WANGTianhua王田華

    GU Min (顧民), LU Jiang (魯江), WANG Tian-hua (王田華)

    Jiangsu Key Laboratory of Green Ship Technology, China Ship Scientific Research Center, Wuxi 214082 , China, E-mail: gumin702@163.com

    Stability of a tumblehome hull under the dead ship condition*

    GU Min (顧民), LU Jiang (魯江), WANG Tian-hua (王田華)

    Jiangsu Key Laboratory of Green Ship Technology, China Ship Scientific Research Center, Wuxi 214082 , China, E-mail: gumin702@163.com

    (Received May 11, 2014, Revised August 13, 2014)

    Some methods for direct stability assessment under the dead ship condition were currently developed by the international maritime organization (IMO) under the Second Generation Intact Stability Criteria. Model tests and simulations are carried out to validate the numerical methods used in assessing the stability under the dead ship condition. This is done in three stages. Firstly, the uncoupled roll mathematical model (1 DOF) is adopted to calculate the roll motion based on the irregular beam waves and the steady wind. Secondly, a drift free experiment is conducted to measure the roll motion under irregular beam waves with zero speed, and then two restrained experiments with counter weights and four springs are performed under the same condition. Finally, the effects of the drift and sway motions on stability under the dead ship condition are then verified by experimental results, and the results of the numerical methods are compared to the results of the model experiments. It is concluded that more accurate numerical methods could be developed for assessing the direct stability under the dead ship condition.

    dead ship condition, direct stability assessment, second generation intact stability criteria, irregular waves

    Introduction

    Some methods for direct stability assessment under the dead ship condition were currently developed by the international maritime organization (IMO) under the Second Generation Intact Stability Criteria. Some approaches based on probability assessment were investigated, such as the piece-wise linear method and the critical wave group method[1,2]. For the direct stability assessment under the dead ship condition, Japan and Italy carried out a Monte Carlo simulation on an uncoupled roll model with irregular beam winds and waves (1 DOF) in time domain for the direct stability assessment of the dead ship condition[3,4]. However, Italy’s 1 DOF approach contains too much simplications for a direct stability assessment, and thus this approach was not accepted by the majority of the working group.

    Umeda et al.[5]performed physical model tests of capsizing in irregular beam waves with non-fluctuating wind and validated the results of the numerical method based on an uncoupled roll equation and piece-wise linear approach. Kubo et al.[6]developed a coupled sway-heave-roll-pitch (4 DOF) numerical model for assessing the stability under the dead ship condition, and it was concluded that the 4 DOF numerical model is better than the 1 DOF numerical model as compared with the model tests of capsizing in irregular beam waves with fluctuating wind. Ogawa et al.[7]pointed out that the drift speed affects the capsizing probability under the dead ship condition; and the capsizing probability of a passenger ship with drift is higher than that without, based on model experiments of a passenger ship under moored and drift conditions.

    In order to develop a more reliable numerical method to analyze the stability under the dead ship condition, model experiments are conducted by using three methods: a drift free test, a restrained test with counter weights, and a restrained test with four springs. The effects of drift and sway motions on the stability under the dead ship condition are verified by experimental results, and the results of the uncoupled roll mathematical model (1 DOF) are then compared with the results obtained by model experiments. It is shown that a more precise numerical method should be developed for assessing the direct stability under the dead ship condition.

    The authors pointed out[8]that the stability of a tumblehome hull with a low freeboard is vulnerable under the dead ship condition. The ONR tumblehome ship is selected in this study as the objective ship, which is provided by an IMO’s intercessional corresponding group as one of standard models for drafting second generation intact stability criteria.

    1. Mathematical model

    In order to calculate the probability of the unstability under the dead ship condition, the nonlinear and uncoupled equation with a stochastic wave excitation and a wind moment is used.

    whereφis the roll angle,μthe linear roll damping coefficient,βthe quadratic roll damping coefficient, W the ship weight,Ixxthe roll moment of inertia Jxxthe added roll moment of inertia,GZ the righting arm, Mwind(t)the wind induced moment consisting of the steady and the fluctuating wind moments,Mwave(t)is the Froude-Krylov component of the wave exciting moment. The roll diffraction moment and the roll radiation moment due to the sway cancels out when the wave length is sufficiently longer than the ship breadth. The dots denote differentiation with respect to time.

    The wind induced excitation moment can be calculated by the following equation

    where ρa(bǔ)iris the air density,Cmthe aerodynamic drag coefficient,Uwthe mean wind velocity,U( t) the fluctuating wind velocity calculated by the Davenport spectrum[9],ALthe lateral windage area, and HCthe height of the center of the wind force from the center of the hydrodynamic reaction force.

    The fluctuating wind velocity is calculated by the following equation, where the Davenport spectrum[10]is used.

    where

    The Froude-Krylov component of the wave exciting moment can be calculated by the following equation

    where γ is the effective wave slope coefficient, which can be calculated by the recommended formula in the 2008IS code or the strip method[11], and Θ (t) is the wave slope calculated from the ITTC wave spectrum[ 12] as follows:

    H1/3is the significant wave height and T01is the mean wave period.

    Fig.1 The ONR Tumblehome model

    Fig.2 ONR Tumblehome lines

    2. Model and test description

    The tested model is the ONR Tumblehome provided by the coordinator of the corresponding group of the second generation intact stability criteria, and its superstructure is replaced by a quadrate organic glass structure (Figs.1, 2). The scale ratio is λ=40.526and the model length between the perpendiculars(LPP)is 3.8 m. The other geometrical and mechanical data of the model are listed in Table 1.

    Table1 Principal particulars of the ONR tumblehome

    The experiment is performed in the seakeeping basin (of 69 m in length, 46 m in breadth and 4 m in depth) in the China Ship Scientific Research Center, equipped with a flap wave maker at two adjacent sides of the basin. A servo-needle wave height sensor is used to measure the incoming waves. It is placed at the port side, 1 m from the model and the left-fore perpendicular.

    Three mooring methods are adopted in the test. Firstly, the model is drifted freely in the beam seas with two protected ropes to avoid the ship from escaping at the worst scenario due to the yaw moment[13]as shown in Fig.3(a). Secondly, the ship model is made perpendicular to the wave direction in the test through a wire system of four wires connected to the ship model at the bow and the stern, respectively, and close to the water surface as shown in Fig.3(b). In the second method, the drift and the yaw may be softly restrained by the counter weight, however, the heave, the pitch, the roll and the sway are free. Thirdly, the ship model is kept perpendicular to the wave direction by a wire system, with four wires connected to the ship model through four short springs at the bow and the stern, respectively, in level with the water surface as shown in Fig.3(c). In the third method, the other ends of the four wires are fixed steadily, so the drift is restrained and the heave, the pitch and the yaw are softly restrained.

    Fig.3 Layout of experimental set-ups

    Roll decay tests are carried out under calm water conditions. The model is heeled to an initial heeling angle and then released. This series of tests are used to determine the roll damping and eventually its linear and nonlinear components[14], which are then used in simulations, as shown in Fig.4.

    Irregular wave’s spectrums generated with five seed numbers by the wave maker agree well with the ITTC Spectrum, as shown in Fig.5. The roll, pitch and yaw amplitudes are measured by the micro electromechanical system (MEMS) based gyroscope placedon the ship model.

    Fig.4 Roll damping curves and the extinction curve (a,b are linear and square extinction coefficients)

    Fig.5 Wave spectrum

    Fig.6 Roll amplitudes with T =12.38s,Fr =0,χ=90o, GM=1.781m

    3. Results and discussions

    The roll amplitudes from the simulations using the 1 DOF approach in a regular beam wave are larger than those from model experiments, with the exception of the case of small wave height as shown in Fig.6. The discrepancy is attributed to the assumption of a linear relationship between the wave exciting moments and the wave amplitude in the 1 DOF simulation. The roll amplitudes from the free drift test and the restrained tests with counter weight are in agreement with each other, and with the results from restrained tests with four springs at low wave heights, however, they are larger at high wave heights. In the second method, only the drift and the yaw are weakly restrained by the counter weight, while in the third method the drift is restrained, and the heave, the pitch and the yaw are weakly restrained. The effects of test methods on the roll amplitudes are reduced at low wave heights.

    Fig.7 Maximum roll angles with H1/3=14.0 m,T01=12.38s, Fr =0,χ=90o,GM=1.781m

    Capsizing occurs at seed number 5 in restrained tests with counter weight and four springs when encountering a large wave as shown in Figs.7 and 8. However, no capsizing is witnessed in free drift tests and the maximum roll angle is 41.5o. It is because the free drift and sway could damp the instantaneous large wave force on the ship hull and reduce the water on the deck.

    The maximum roll angle is63oin the restrained tests with counter weight and is50oin the free drift test at seed number 4 when encountering two large waves, as shown in Fig.7. The difference between the maximum roll angles is due to the same reason as stated above. The maximum roll angle is only23.4oin the restrained test with four springs at seed number 4 as the ship motion is restrained by the four wires and springs. The differences between the maximum roll angles are not very large at seed numbers 1, 2, 3 among three model tests, without encountering a severe wave, as shown in Fig.7.

    The numerical simulations at different seed numbers predict larger roll angles as shown in Fig.7. The capsizing does not occur in the simulations as the largest encounter wave in the experiments are not reproduced in the numerical simulations.

    Fig.8 Wave record and roll time history with H1/3=14.0 m, T=12.38s,Fr =0,χ=90o,GM=1.781mand01seed number 5

    Fig.9 Probability of upcross with H1/3=14.0 m,T01=12.38s, Fr =0,χ=90o,GM=1.781m

    The probabilities of up-cross[15]in experiments and simulations are calculated as shown in Fig.9.Pupis the up-cross number per second, and the experimental duration is 10 min in 1 h simulations. Although capsizing is not observed at seed number 5 in the free drift test, the probability of up-cross at seed number 1, 3, 5 without wave loads on the superstructure is larger than those in other two tests with wave forces on the superstructure, thus the capsizing probability with drift motions is higher than those without drift motions, as observed by Ogawa et al.[7]. However, in this study, capsizing occurs in both restrained tests and does not occur in free drift tests.

    In conclusion, the 1 DOF simulation results are found to overestimate the maximum roll angle and the probability of up-cross as shown in Figs.7 and 9, with the exception of the cases of seed numbers 4 and 5. As discussed above, a more advanced numerical modelling is desirable to take account of both drift and sway motions.

    4. Conclusions

    From the results of the experimental and numerical studies of the stability under the dead ship condition, the following conclusions are drawn:

    (1) The capsizing probabilities with drift motions are higher than those without drift motions, yet capsizing only occurs in the restrained tests in the experiments in this study.

    (2) It is recommended that more accurate numerical models should be developed for assessing the direct stability under the dead ship condition to include the effects of the drift and the sway on the roll motion in beam seas.

    (3) Restrained tests with counter weight tend to produce more conservative results than the free drift test for the capsizing prediction.

    Acknowledgement

    This paper was presented at the 13th International Ship Stability Workshop. Prof. Umeda N. from Osaka University (Japan) gave useful advices on predicting stability under dead ship condition and the standard model ship.

    [1] THEMELIS N., SPYROU K. J. Probabilistic assessment of ship stability[J]. Transactions of the Society of Naval Architects and Marine Engineers, 2007, 115: 181-206.

    [2] ISKANDAR B. H., ANDUMEDA N. Some examinations of capsizing probability calculation for an Indonesian RoRo passenger ship in waves[J]. Journal of Kansai Society of Naval Architects, 2001, 236: 81-86.

    [3] BULIAN G., FRANCESCUTTO A. Safety and operability of fishing vessels in beam and longitudinal waves[J]. Transactions of the Royal Institution of Naval Architects Part B: International Journal of Small Craft Technology, 2006, 148(2): 1-16.

    [4] MCTAGGART, K., ANDDEKAT J. O. Capsizing risk of intact frigates in irregular seas[J]. Transactions of the Society of Naval Architects and Marine Engineers, 2000, 108(492): 147-177.

    [5] UMEDA N., IZAWA S. and SANO H. et al. Validation attempts on draft new generation intact stability criteria[C]. Proceedings of the12th International Ship Stability Workshop. Washington DC, USA, 2011, 19-26.

    [6] KUBO T., UMEDA N. and IZAWA S. et al. Total stability failure probability of a ship in irregular beam wind and waves: Model experiment and numerical simulaton[C]. Proceedings of 11th International Conference on the Stability of Ships and Ocean Vehicles. Athens, Greece, 2012, 39-46.

    [7] OGAWA Y., De KAT J. O. and ISHIDA S. Analytical study of the effect of drift motion on the capsizing probability under dead ship condition[C]. Proceedings of 9th International Conference on the Stability of Ships and Ocean Vehicles. Rio de Janeiro, Brazil, 2006, 1: 29-36.

    [8] GU M., LU J. and WANG T. An investigation on stability under dead ship condition of a tumblehome hull[C]. Proceedings of 11th International Conference on the Stability of Ships and Ocean Vehicles. Athens, Greece, 2012, 593-598.

    [9] BULIAN G., FRANCESCUTTO A. A simplified modular approach for the prediction of the roll motion due to the combined action of wind and waves[J]. Journal of Engineering for the Maritime Environment, 2004, 218(3): 189-212.

    [10] PAROKA D., OHKURA Y. and UMEDA N. Analytical prediction of capsizing probability of a ship in beam wind and waves[J]. Journal of Ship Research, 2006, 50(2): 187-195.

    [11] BULIAN G., FRANCESCUTTO A. Experimental results and numerical simulations on strongly nonlinear rolling of multihulls in moderate beamseas[J]. Proceedings of the Institution of Mechanical Engineers-Part M-Journal of Engineering for the Maritime Environment, 2009, 223(2): 189-210.

    [12] PAROKA D., UMEDA N. Capsizing probability prediction for a large passenger ship in irregular beam wind and waves: Comparison of analytical and numerical methods[J]. Journal of Ship Research, 2006, 50(4): 371-377.

    [13] UMEDA N., KOGA S. and UEDA J. et al. Methodology for calculating capsizing probability for a ship under dead ship condition[C]. Proceedings of the 9th International Ship Stability Workshop. Hamburg, Germany, 2007.

    [14] IKEDA Y. Prediction methods of roll damping of ships and their application to determine optimum stabilization devices[J]. Marine Technology, 2004, 41(2): 89-93.

    [15] BELENKY V., WEEMS K. M. and LIN W. M. Numerical procedure for evaluation of capsizing probability with split time method[C]. 27th Symposium on Naval Hydrodynamics. Seoul, Korea, 2008.

    * Project supported by Ministry of Industry and Information Technology of China (Grant No. [2012] 533)

    Biography: GU Min (1962- ), Male, Master, Professor

    LU Jiang,

    E-mail: lujiang1980@aliyun.com

    亚洲人成77777在线视频| 亚洲人成伊人成综合网2020| 国产成人欧美| 自线自在国产av| 久久午夜亚洲精品久久| 欧美中文综合在线视频| 久久久国产精品麻豆| 久久狼人影院| 999精品在线视频| 9191精品国产免费久久| 精品日产1卡2卡| 一边摸一边抽搐一进一小说| 亚洲成av片中文字幕在线观看| 精品电影一区二区在线| 国产成+人综合+亚洲专区| 亚洲国产精品久久男人天堂| 十八禁人妻一区二区| 色综合站精品国产| 亚洲国产看品久久| 亚洲一区二区三区色噜噜| www日本在线高清视频| 久久久久久久久免费视频了| 久99久视频精品免费| 国产成人精品无人区| 欧美黄色片欧美黄色片| 最好的美女福利视频网| 夜夜看夜夜爽夜夜摸| 亚洲最大成人中文| 精品一区二区三区av网在线观看| 国产激情久久老熟女| 99精品久久久久人妻精品| 色精品久久人妻99蜜桃| 国产精品自产拍在线观看55亚洲| 欧美老熟妇乱子伦牲交| 精品一品国产午夜福利视频| 婷婷精品国产亚洲av在线| 色哟哟哟哟哟哟| 国产精品电影一区二区三区| 国产精品秋霞免费鲁丝片| 一边摸一边抽搐一进一小说| 亚洲激情在线av| 欧美成人午夜精品| 色av中文字幕| 国产精品秋霞免费鲁丝片| 成人手机av| 啪啪无遮挡十八禁网站| www.999成人在线观看| 99在线人妻在线中文字幕| 深夜精品福利| 日韩欧美三级三区| 黄色视频不卡| 国产成年人精品一区二区| 每晚都被弄得嗷嗷叫到高潮| 大型黄色视频在线免费观看| 最好的美女福利视频网| 亚洲激情在线av| 十八禁网站免费在线| 国产精品免费一区二区三区在线| 国产精品香港三级国产av潘金莲| 日韩 欧美 亚洲 中文字幕| 亚洲 国产 在线| 午夜精品国产一区二区电影| 日韩中文字幕欧美一区二区| 国语自产精品视频在线第100页| 91在线观看av| 日韩欧美在线二视频| 真人一进一出gif抽搐免费| 嫁个100分男人电影在线观看| 国产精品久久视频播放| 一夜夜www| 久久人妻熟女aⅴ| 亚洲性夜色夜夜综合| 国产高清有码在线观看视频 | 国产在线观看jvid| 国产主播在线观看一区二区| 99精品欧美一区二区三区四区| 岛国视频午夜一区免费看| 黄片小视频在线播放| 日本精品一区二区三区蜜桃| 国产精品二区激情视频| av视频免费观看在线观看| 日韩欧美一区视频在线观看| 欧美在线黄色| 日本 av在线| 亚洲,欧美精品.| 欧美激情 高清一区二区三区| 国产在线观看jvid| 国产xxxxx性猛交| 啦啦啦免费观看视频1| 精品久久久久久,| 国产成人精品久久二区二区免费| 免费在线观看亚洲国产| 午夜精品久久久久久毛片777| 亚洲精品中文字幕在线视频| 可以免费在线观看a视频的电影网站| av福利片在线| 久99久视频精品免费| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成av人片免费观看| 丝袜人妻中文字幕| 电影成人av| 日韩av在线大香蕉| 免费搜索国产男女视频| 久久亚洲真实| 这个男人来自地球电影免费观看| 夜夜爽天天搞| 亚洲一码二码三码区别大吗| 日韩av在线大香蕉| a级毛片在线看网站| 一区二区三区精品91| 在线观看免费日韩欧美大片| www.www免费av| 麻豆av在线久日| 亚洲精品久久国产高清桃花| 国产极品粉嫩免费观看在线| 婷婷丁香在线五月| 一级毛片高清免费大全| 啦啦啦韩国在线观看视频| 在线观看舔阴道视频| 免费无遮挡裸体视频| 黑人巨大精品欧美一区二区mp4| 精品电影一区二区在线| 国产男靠女视频免费网站| 自线自在国产av| 午夜影院日韩av| 男女下面进入的视频免费午夜 | svipshipincom国产片| 日韩欧美国产在线观看| 精品久久久久久久久久免费视频| 午夜免费鲁丝| 国产激情欧美一区二区| 国产精品亚洲美女久久久| 亚洲一区二区三区不卡视频| 99精品在免费线老司机午夜| 亚洲情色 制服丝袜| 中文字幕av电影在线播放| 亚洲一区二区三区不卡视频| 一边摸一边抽搐一进一出视频| 免费无遮挡裸体视频| 女性被躁到高潮视频| 欧美成人午夜精品| 99久久久亚洲精品蜜臀av| 18禁观看日本| 日韩 欧美 亚洲 中文字幕| 亚洲专区中文字幕在线| 人人妻人人澡欧美一区二区 | 一卡2卡三卡四卡精品乱码亚洲| 日韩国内少妇激情av| 黑人欧美特级aaaaaa片| 91九色精品人成在线观看| 国产成人一区二区三区免费视频网站| 亚洲欧美激情综合另类| 中出人妻视频一区二区| 久久人人爽av亚洲精品天堂| 欧美乱码精品一区二区三区| 亚洲精品在线美女| 999精品在线视频| 亚洲专区中文字幕在线| 国产欧美日韩一区二区三| 国产亚洲欧美在线一区二区| 久久久久久久午夜电影| 亚洲国产欧美一区二区综合| 久久精品成人免费网站| 人人妻人人澡人人看| 91麻豆av在线| 丰满人妻熟妇乱又伦精品不卡| 啦啦啦观看免费观看视频高清 | 亚洲人成网站在线播放欧美日韩| 国产成人精品久久二区二区免费| 欧美久久黑人一区二区| xxx96com| 91精品国产国语对白视频| 色老头精品视频在线观看| 久久久久久免费高清国产稀缺| 国产精品 欧美亚洲| 后天国语完整版免费观看| 老司机午夜福利在线观看视频| 国产99久久九九免费精品| 国产成人精品久久二区二区免费| 少妇熟女aⅴ在线视频| 欧美日韩黄片免| 久久精品aⅴ一区二区三区四区| 露出奶头的视频| 久久性视频一级片| 成熟少妇高潮喷水视频| 精品一区二区三区四区五区乱码| bbb黄色大片| 精品日产1卡2卡| 精品国内亚洲2022精品成人| 搡老熟女国产l中国老女人| 手机成人av网站| 国产一区二区三区视频了| 人人妻,人人澡人人爽秒播| 美女国产高潮福利片在线看| 国产aⅴ精品一区二区三区波| 国产精品野战在线观看| 中文字幕av电影在线播放| 女性被躁到高潮视频| 老汉色∧v一级毛片| 精品久久久久久,| 在线免费观看的www视频| 天天添夜夜摸| 18禁观看日本| av电影中文网址| 夜夜看夜夜爽夜夜摸| 国产成人欧美| 韩国精品一区二区三区| 免费少妇av软件| 日韩欧美一区视频在线观看| 成人免费观看视频高清| 一级片免费观看大全| 黄色片一级片一级黄色片| 亚洲avbb在线观看| 一区二区三区国产精品乱码| 亚洲av五月六月丁香网| av天堂在线播放| 国产精品九九99| 亚洲七黄色美女视频| 高清毛片免费观看视频网站| 女人精品久久久久毛片| 自拍欧美九色日韩亚洲蝌蚪91| 欧美色欧美亚洲另类二区 | 男男h啪啪无遮挡| 老熟妇乱子伦视频在线观看| 丝袜在线中文字幕| 日本欧美视频一区| 18禁国产床啪视频网站| 国内毛片毛片毛片毛片毛片| 视频在线观看一区二区三区| 国产成人一区二区三区免费视频网站| 精品日产1卡2卡| 两性午夜刺激爽爽歪歪视频在线观看 | 国产亚洲av高清不卡| 亚洲国产精品sss在线观看| 久久久国产精品麻豆| 色精品久久人妻99蜜桃| 亚洲免费av在线视频| 久久人人爽av亚洲精品天堂| 又紧又爽又黄一区二区| 亚洲片人在线观看| 日韩欧美三级三区| 嫩草影院精品99| 在线观看免费日韩欧美大片| 久久久久国产一级毛片高清牌| 99国产精品99久久久久| 妹子高潮喷水视频| 日本 av在线| 黄频高清免费视频| 欧美黄色淫秽网站| 国产1区2区3区精品| 亚洲av成人不卡在线观看播放网| 黄色视频,在线免费观看| 99在线视频只有这里精品首页| svipshipincom国产片| 一本大道久久a久久精品| ponron亚洲| 他把我摸到了高潮在线观看| 亚洲五月天丁香| 久9热在线精品视频| 精品久久久久久成人av| 无限看片的www在线观看| 天天躁夜夜躁狠狠躁躁| 欧美黄色片欧美黄色片| 欧美在线一区亚洲| 首页视频小说图片口味搜索| 日日夜夜操网爽| 中文亚洲av片在线观看爽| 国产在线观看jvid| 日韩视频一区二区在线观看| 日韩高清综合在线| 国产在线精品亚洲第一网站| 中文字幕久久专区| 黑人巨大精品欧美一区二区mp4| 国产亚洲精品第一综合不卡| 中文字幕人妻丝袜一区二区| 桃红色精品国产亚洲av| 淫妇啪啪啪对白视频| 一二三四在线观看免费中文在| 国产野战对白在线观看| 色综合站精品国产| 丝袜人妻中文字幕| 色av中文字幕| 咕卡用的链子| 波多野结衣高清无吗| 天堂动漫精品| 国产精品久久久久久人妻精品电影| 欧美日韩福利视频一区二区| 欧美国产日韩亚洲一区| 一本大道久久a久久精品| 一进一出抽搐gif免费好疼| 黄色女人牲交| 精品免费久久久久久久清纯| 无人区码免费观看不卡| 999久久久精品免费观看国产| 国产又色又爽无遮挡免费看| 免费av毛片视频| 精品国产乱码久久久久久男人| 精品熟女少妇八av免费久了| 两个人看的免费小视频| 亚洲在线自拍视频| 精品福利观看| 国产精品亚洲一级av第二区| 乱人伦中国视频| 欧美日韩中文字幕国产精品一区二区三区 | 一进一出抽搐gif免费好疼| 亚洲av美国av| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久久久免费视频了| 老司机在亚洲福利影院| 97人妻精品一区二区三区麻豆 | 精品国产乱子伦一区二区三区| 亚洲国产日韩欧美精品在线观看 | 香蕉国产在线看| 国产aⅴ精品一区二区三区波| 成年版毛片免费区| 日本欧美视频一区| 免费观看人在逋| 很黄的视频免费| svipshipincom国产片| 欧美日韩瑟瑟在线播放| 每晚都被弄得嗷嗷叫到高潮| 国产真人三级小视频在线观看| 日本免费a在线| 女人被狂操c到高潮| 亚洲一区二区三区不卡视频| 纯流量卡能插随身wifi吗| 国产精品二区激情视频| 成人手机av| 怎么达到女性高潮| 悠悠久久av| 国产欧美日韩精品亚洲av| 久久这里只有精品19| 精品高清国产在线一区| 日韩精品青青久久久久久| 久久精品影院6| 禁无遮挡网站| 久久国产精品人妻蜜桃| 黑人巨大精品欧美一区二区mp4| 国产不卡一卡二| 午夜亚洲福利在线播放| 日本vs欧美在线观看视频| 亚洲国产欧美网| 自线自在国产av| 99在线人妻在线中文字幕| 国产亚洲av嫩草精品影院| 91大片在线观看| 精品不卡国产一区二区三区| 午夜福利欧美成人| 一夜夜www| 日韩欧美国产在线观看| www.自偷自拍.com| 俄罗斯特黄特色一大片| 好男人在线观看高清免费视频 | a在线观看视频网站| 国内久久婷婷六月综合欲色啪| 亚洲午夜精品一区,二区,三区| 久久人人精品亚洲av| 欧美日韩亚洲综合一区二区三区_| x7x7x7水蜜桃| 国产成+人综合+亚洲专区| 久久人人精品亚洲av| 精品国产美女av久久久久小说| 亚洲成av片中文字幕在线观看| 国产精品日韩av在线免费观看 | www国产在线视频色| 国产成人啪精品午夜网站| av天堂久久9| 我的亚洲天堂| 可以在线观看毛片的网站| 国产乱人伦免费视频| 999久久久国产精品视频| 午夜a级毛片| 淫秽高清视频在线观看| 亚洲黑人精品在线| 免费在线观看黄色视频的| 老司机福利观看| 窝窝影院91人妻| 超碰成人久久| 女人被躁到高潮嗷嗷叫费观| 亚洲精品一区av在线观看| 国产精品久久久人人做人人爽| 视频区欧美日本亚洲| 色播亚洲综合网| 国产麻豆成人av免费视频| 老司机午夜福利在线观看视频| 亚洲第一电影网av| 黄色a级毛片大全视频| 少妇粗大呻吟视频| 日本a在线网址| 欧美大码av| 午夜视频精品福利| 亚洲人成77777在线视频| 国产精品秋霞免费鲁丝片| 国产成人精品久久二区二区免费| 亚洲国产看品久久| 亚洲人成电影观看| 可以在线观看毛片的网站| 无遮挡黄片免费观看| 大型av网站在线播放| 免费观看精品视频网站| 97碰自拍视频| 欧美成人性av电影在线观看| 亚洲欧美精品综合久久99| 亚洲熟女毛片儿| 午夜福利免费观看在线| 欧洲精品卡2卡3卡4卡5卡区| 亚洲一区二区三区色噜噜| 制服丝袜大香蕉在线| 亚洲第一电影网av| 伊人久久大香线蕉亚洲五| 欧美日韩精品网址| 他把我摸到了高潮在线观看| 国产熟女午夜一区二区三区| 9191精品国产免费久久| 国产xxxxx性猛交| 男人操女人黄网站| netflix在线观看网站| 精品国产一区二区三区四区第35| 亚洲精华国产精华精| 窝窝影院91人妻| 18禁国产床啪视频网站| 美女 人体艺术 gogo| 身体一侧抽搐| 久久香蕉国产精品| 精品久久久久久久久久免费视频| 精品国产一区二区三区四区第35| 精品无人区乱码1区二区| 日本黄色视频三级网站网址| 1024视频免费在线观看| 午夜免费鲁丝| 成人国产一区最新在线观看| 国产成人精品久久二区二区91| 久久青草综合色| 亚洲国产毛片av蜜桃av| 国产成人影院久久av| 精品卡一卡二卡四卡免费| 深夜精品福利| svipshipincom国产片| 欧美av亚洲av综合av国产av| 桃红色精品国产亚洲av| 色老头精品视频在线观看| 99国产综合亚洲精品| 亚洲 欧美一区二区三区| 精品电影一区二区在线| 少妇裸体淫交视频免费看高清 | 精品国产国语对白av| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av电影不卡..在线观看| 国产成人免费无遮挡视频| 久久久久亚洲av毛片大全| 成人亚洲精品一区在线观看| 久久午夜亚洲精品久久| √禁漫天堂资源中文www| 一本大道久久a久久精品| 韩国精品一区二区三区| 亚洲久久久国产精品| 久久久久久久精品吃奶| 女人精品久久久久毛片| 亚洲中文日韩欧美视频| 欧美日本亚洲视频在线播放| av超薄肉色丝袜交足视频| 成人18禁在线播放| 中文字幕精品免费在线观看视频| 精品电影一区二区在线| 日韩三级视频一区二区三区| 一区在线观看完整版| 亚洲欧美日韩高清在线视频| 国产99白浆流出| 国产免费av片在线观看野外av| 啪啪无遮挡十八禁网站| 亚洲天堂国产精品一区在线| 精品国产超薄肉色丝袜足j| 一区二区日韩欧美中文字幕| 亚洲aⅴ乱码一区二区在线播放 | 一区二区日韩欧美中文字幕| 桃色一区二区三区在线观看| 动漫黄色视频在线观看| 搡老妇女老女人老熟妇| 中文字幕久久专区| 国产xxxxx性猛交| 亚洲人成电影免费在线| 免费无遮挡裸体视频| 一个人免费在线观看的高清视频| 国产精品 欧美亚洲| 亚洲电影在线观看av| 美女高潮喷水抽搐中文字幕| 首页视频小说图片口味搜索| 亚洲精品在线美女| а√天堂www在线а√下载| 亚洲精品av麻豆狂野| 国产主播在线观看一区二区| 国产成人一区二区三区免费视频网站| 国产乱人伦免费视频| 90打野战视频偷拍视频| 欧美大码av| 亚洲国产毛片av蜜桃av| 99在线视频只有这里精品首页| 久久久久国产精品人妻aⅴ院| 99在线人妻在线中文字幕| 国产激情久久老熟女| 亚洲伊人色综图| 国产av又大| 激情在线观看视频在线高清| 久久香蕉国产精品| 伦理电影免费视频| 亚洲美女黄片视频| 欧美色视频一区免费| 手机成人av网站| or卡值多少钱| 欧美一级a爱片免费观看看 | 亚洲免费av在线视频| 女人被躁到高潮嗷嗷叫费观| 视频在线观看一区二区三区| 一边摸一边抽搐一进一出视频| 成人亚洲精品一区在线观看| 怎么达到女性高潮| 亚洲av美国av| svipshipincom国产片| 免费少妇av软件| 午夜老司机福利片| 一区二区三区高清视频在线| 久久精品91无色码中文字幕| 亚洲自偷自拍图片 自拍| 天天添夜夜摸| 啦啦啦韩国在线观看视频| 国产精品,欧美在线| 国产激情久久老熟女| 午夜福利18| 操出白浆在线播放| 国产视频一区二区在线看| 国内毛片毛片毛片毛片毛片| 久久精品国产综合久久久| 日韩三级视频一区二区三区| 黄片播放在线免费| 1024香蕉在线观看| 欧美成人免费av一区二区三区| 午夜免费成人在线视频| 男人操女人黄网站| 亚洲中文字幕日韩| 99国产精品一区二区蜜桃av| 黄色毛片三级朝国网站| 长腿黑丝高跟| 久久人妻av系列| 色综合亚洲欧美另类图片| 精品久久久久久成人av| 中文字幕人成人乱码亚洲影| 国产亚洲欧美精品永久| 女人高潮潮喷娇喘18禁视频| 宅男免费午夜| 级片在线观看| 18禁国产床啪视频网站| 正在播放国产对白刺激| 久久精品国产亚洲av香蕉五月| 99久久综合精品五月天人人| 午夜福利18| 成人三级做爰电影| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品亚洲av一区麻豆| 亚洲av成人不卡在线观看播放网| 久久久国产成人免费| 国产一级毛片七仙女欲春2 | 一个人免费在线观看的高清视频| 日日夜夜操网爽| 亚洲精品粉嫩美女一区| 黄色a级毛片大全视频| 日韩欧美三级三区| 国产精品一区二区免费欧美| 国产av一区二区精品久久| 欧美中文综合在线视频| 午夜a级毛片| 国产亚洲欧美精品永久| 巨乳人妻的诱惑在线观看| 老司机午夜福利在线观看视频| 村上凉子中文字幕在线| 黄色片一级片一级黄色片| 久久久久久人人人人人| 两性夫妻黄色片| 激情视频va一区二区三区| 欧美成人一区二区免费高清观看 | 国产精品国产高清国产av| 日日干狠狠操夜夜爽| 香蕉久久夜色| 亚洲性夜色夜夜综合| 国产精品亚洲美女久久久| 黄色视频,在线免费观看| 欧美乱码精品一区二区三区| 成在线人永久免费视频| 精品久久久精品久久久| 国产精品精品国产色婷婷| 咕卡用的链子| 91av网站免费观看| 曰老女人黄片| 母亲3免费完整高清在线观看| 国产精品亚洲一级av第二区| 亚洲人成电影免费在线| 色在线成人网| 在线播放国产精品三级| 91精品三级在线观看| 中文字幕久久专区| 亚洲九九香蕉| 一边摸一边抽搐一进一出视频| 国产成人影院久久av| 成人av一区二区三区在线看| 免费在线观看黄色视频的| 久久人人97超碰香蕉20202| 很黄的视频免费| 亚洲美女黄片视频| 精品午夜福利视频在线观看一区| 午夜福利欧美成人| 高清在线国产一区| 色综合亚洲欧美另类图片| 最近最新中文字幕大全电影3 | 色老头精品视频在线观看| 1024视频免费在线观看| 身体一侧抽搐|