張鳳芹, 朱愛東
( 延邊大學理學院 物理系, 吉林 延吉 133002 )
?
在無消相干子空間中確定性地實現(xiàn)多目標量子比特相位翻轉門
張鳳芹,朱愛東*
( 延邊大學理學院 物理系, 吉林 延吉 133002 )
摘要:基于腔的輸入輸出過程,在無消相干子空間中利用腔中束縛的2個原子編碼成邏輯量子比特來確定性的實現(xiàn)多目標邏輯量子比特受控相位門.該方案不僅對抵御整體退相位錯誤是魯棒的,而且容易實現(xiàn).通過對相位門保真度的分析得知,該方案對腔衰減更加魯棒,在中度耦合條件下,它的保真度可以達到1.最后,本文討論了在當前實驗條件下該方案的可行性. 無消相干子空間; 原子與光子的相互作用; 多量子比特相位門 O431
文獻標識碼:A
1單邊腔的輸入輸出過程
考慮2個相同的二能級原子與單模腔相互作用的系統(tǒng),耦合系統(tǒng)的哈密頓可以寫成[28](?=1):
(1)
(2)
圖1 腔中原子的能級結構(a)和單邊光學腔的輸入輸出過程(b)
其中ω是單光子脈沖的頻率, κ/2和γm/2分別為腔衰減率和第m個原子衰減率.假設在方程(2)中κ是足夠大的,那么它可以確保原子與光子相互作用后原子布局仍保留在基態(tài)上.原子的衰減率,以及原子與腔模相互作用的耦合強度分別滿足關系: γ1=γ2=γ, g1=g2=g.在共振條件下ωc=ω0=ω, 反射系數(shù)r(ω)可以寫成:
(3)
其中下角標“2”代表2個原子與腔模相互作用.在強耦合(g?κ,γ)區(qū)域中,發(fā)射系數(shù)r2≈1, 此時反射出來的光子將會攜帶一個φ2=0的相位;在去耦合(g=0)條件下,反射系數(shù)r0≈-1, 此時反射出來的光子將會攜帶一個φ0=π的相位;當單光子與腔中的一個原子相耦合時,反射系數(shù)r1≈1, 此時反射出來的光子將攜帶φ1=0的相位[28-29,32-33].
(4)
將方程(4)定義成UR, 它表示的是極化光子和原子躍遷之間的選擇性定則,其目的是實現(xiàn)一些無消相干子空間中的量子邏輯操作.
2無消相干子空間中多目標的受控相位翻轉門的實現(xiàn)
(5)
經(jīng)過這個模塊以后,腔中的2個原子就和單光子脈沖糾纏在一起.
圖2 糾纏門的示意圖 (PBS代表極化分束器,QWP代表四分之一波片,HWP22.5°表示半波片)
圖3 實現(xiàn)三量子比特受控相位門的裝置圖
(6)
(7)
當光子脈沖通過模塊Pc后,系統(tǒng)的態(tài)將演化成
(8)
(9)
則方程(8)可以寫成
(10)
最后,光子到達探測器.當探測器Dv響應時,原子態(tài)將塌縮到
(11)
即
(12)
此外,利用圖4的裝置可以將上述的方案拓展到實現(xiàn)多目標邏輯量子比特的受控相位翻轉門的情況.多目標邏輯量子比特受控相位翻轉門可以寫成[11]:
(13)
圖4 實現(xiàn)多目標邏輯量子比特受控相位翻轉門的裝置
(14)
利用編碼在無消相干子空間的原子所實現(xiàn)的上述糾纏態(tài)和量子邏輯門都不受整體退相位的影響,并且也不需要復雜的操作.
3討論與總結
(15)
圖5 多目標邏輯量子比特受控相位翻轉門的保真度F與g/κ的關系圖
(16)
(17)
從式(17)可以看出,在不同腔中的不同噪聲,不會使量子態(tài)發(fā)生變化.
本文通過在無消相干子空間中的輸入輸出過程,提出了確定性的實現(xiàn)光子和原子的糾纏門,以及多目標邏輯量子比特的受控相位翻轉門的方案.該方案對環(huán)境噪聲所引起的整體退相位有很好的魯棒性,并且在中度耦合強度下有較高的保真度,所以該方案有望被應用于分布式量子計算網(wǎng)絡中.
參考文獻:
[1]Grover L K. Quantum mechanics helps in searching for a needle in a haystack[J]. Phys Rev Lett, 1997,79:325.
[2]Turchette Q A, Hood C J, Lange W, et al. Measurement of conditional phase shifts for quantum logic[J]. Phys Rev Lett, 1995,75:4710.
[3]Zou X B, Xiao Y F, Li S B, et al. Quantum phase gate through a dispersive atom-field interaction[J]. Phys Rev A, 2007,75:064301.
[4]Zou X B, Zhang S L, Li K, et al. Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors[J]. Phys Rev A, 2007,75:034302.
[5]Cirac J I, Zoller P. Quantum computations with cold trapped ions[J]. Phys Rev Lett, 1995,74:4091.
[6]Barenco A, Bennett C H, Cleve R, et al. Elementary gates for quantum computation[J]. Phys Rev A, 1995,52:3457.
[7]Chow1 J M, Gambetta J M, Cross A W, et al. Microwave-activated conditional-phase gate for superconducting qubits[J]. New J Phys, 2013,15:115012.
[8]Doherty A C, Wardrop M P. Two-qubit gates for resonant exchange qubits[J]. Phys Rev Lett, 2013,111:050503.
[9]Milburn G J. Quantum optical fredkin gate[J]. Phys Rev Lett, 1989,62:2124.
[10]Yang C P, Han S. N-qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator[J]. Phys Rev A, 2005,72:032311.
[11]Yang C P, Su Q P, Zhang F Y, et al. Single-step implementation of a multiple-target-qubit controlled phase gate without need of classical pulses[J]. Opt Lett, 2014,39:003312.
[12]Chen C Y, Feng M, Gao K L. Toffoli gate originating from a single resonant interaction with cavity QED[J]. Phys Rev A, 2006,73:064304.
[13]Deng Z J, Zhang X L, Wei H, et al. Implementation of a nonlocaln-qubit conditional phase gate by single-photon interference[J]. Phys Rev A, 2007,76:044305.
[14]Deng Z J, Feng M, Gao K L. Preparation of entangled states of four remote atomic qubits in decoherence-free subspace[J]. Phys Rev A, 2007,75:024302.
[15]Lidar D A, Chuang I L, Whaley K B. Decoherence-free subspaces for quantum computation[J]. Phys Rev Lett, 1998,81:2594.
[16]Beige A, Braun D, Tregenna B, et al. Quantum computing using dissipation to remain in a decoherence-free subspace[J]. Phys Rev Lett, 2000,85:1762.
[17]Kempe J, Bacon D, Lidar D A, et al. Theory of decoherence-free fault-tolerant universal quantum computation[J]. Phys Rev A, 2001,63:042307.
[18]Lidar D A, Bacon D, Kempe J, et al. Decoherence-free subspaces for multiple-qubit errors. II. Universal, fault-tolerant quantum computation[J]. Phys Rev A, 2001,63:022307.
[19]Feng M. Grover search with pairs of trapped ions[J]. Phys Rev A, 2001,63:052308.
[20]Mohseni M, Lundeen J S, Resch K J, et al. Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm[J]. Phys Rev Lett, 2003,91:187903.
[21]Duan L M, Kimble H J. Scalable photonic quantum computation through cavity-assisted interactions[J]. Phys Rev Lett, 2004,92:127902.
[22]Wei H, Yang W L, Deng Z J, et al. Many-qubit network employing cavity QED in adecoherence-free subspace[J]. Phys Rev A, 2008,78:014304.
[23]Hu Y M, Chen Q, Feng M. Grover search in decoherence-free subspace with low-Qcavities[J]. J Phys B: At Mol Opt Phys, 2011,44:175504.
[24]Wei H, Deng Z J, Zhang X L, et al. Ransfer and teleportation of quantum states encoded in decoherence-free subspace[J]. Phys Rev A, 2007,76:054304.
[25]Liu A P, Cheng L Y, Chen L, et al. Quantum information processing in decoherence-free subspace with nitrogen-vacancy centers coupled to a whispering-gallery mode microresonator[J]. Opt Commun, 2013,313:180.
[26]Duan L M, Guo G C. Preserving coherence in quantum computation by pairing quantum bits[J]. Phys Rev Lett, 1997,79:1953.
[27]Kielpinski D, Monroe C, Wineland D J. Architecture for a large-scale ion-trap quantum computer[J]. Nature, 2002,417:709.
[28]Chen Q, Feng M. Quantum-information processing in decoherence-free subspace with low-Qcavities[J]. Phys Rev A, 2010,82:052329.
[29]Wang C, Wang T J, Zhang Y, et al. Concentration of entangled nitrogen-vacancy centers in decoherence free subspace[J]. Opt Express, 2014,22:1551.
[30]An J H, Feng M, Oh C H. Quantum-information processing with a single photon by an input-output process with respect to low-Qcavities[J]. Phys Rev A, 2009,79:032303.
[31]Garnier A A, Simon C, Gérard J M, et al. Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime[J]. Phys Rev A, 2007,75:053823.
[32]Duan L M, Kimble H J. Scalable photonic quantum computation through cavity-assisted interactions[J]. Phys Rev Lett, 2004,92:127902.
[33]Lin X M, Xue P, Chen M Y, et al. Scalable preparation of multiple-particle entangled states via the cavity input-output process[J]. Phys Rev A, 2006,74:052339.
[34]McKeever J, Buck J R, Boozer A D, et al. State-insensitive cooling and trapping of single atoms in an optical cavity[J]. Phys Rev Lett, 2003,90:133602.
[35]McKeever J, Boca A, Boozer A D, et al. Experimental realization of a one-atom laser in the regime of strong coupling[J]. Nature, 2003,425:268.
[36]Boca A, Miller R, Birnbaum K M, et al. Observation of the vacuum rabi spectrum for one trapped atom[J]. Phys Rev Lett, 2004,93:233603.
Deterministic implementation of a controlled phase gate with multi-target qubits in decoherence-free subspace
ZHANG Fengqin,ZHU Aidong*
(DepartmentofPhysics,CollegeofScience,YanbianUniversity,Yanji133002,China)
Abstract:A scheme is proposed for deterministically implementing a controlled-phase flip gate with multi-target logic qubits via the input-output process of the cavity, in which two atoms are trapped and encoded as one logic qubit in the decoherence-free subspace. The scheme is not only robust against the collective dephasing errors, but also easy to implement. The analysis of fidelity for this gate shows the robustness to cavity decay. Under a medium coupling strength it reaches a high fidelity near unity. The discussion on experiment shows its feasibility with current technology.
Keywords:decoherence-free subspace; interactions of atoms with photons; multi-qubit phase gate
文章編號:1004-4353(2015)04-0300-07
*通信作者:朱愛東(1968—),女,博士,教授,研究方向為量子光學和量子信息學.
收稿日期:2015-10-13基金項目: 國家自然科學基金資助項目(11564041,61465013,11264042)