何傳新,任圣穎,謝敏隨,袁安朋,洪 飛,張黔玲,劉劍洪
深圳大學化學與化工學院,深圳 518060
?
【材料科學 / Material Science】
基于Fe3O4-PEI納米粒子構(gòu)建葡萄糖傳感器的研究
何傳新,任圣穎,謝敏隨,袁安朋,洪 飛,張黔玲,劉劍洪
深圳大學化學與化工學院,深圳 518060
采用共沉淀法制備核層為四氧化三鐵(Fe3O4)殼層為聚乙烯亞胺(polyethyleneimine, PEI)的磁性復(fù)合納米粒子Fe3O4-PEI.掃描電子顯微鏡和透射電子顯微鏡表征結(jié)果顯示,制備的磁性復(fù)合納米粒子Fe3O4-PEI粒徑均勻,直徑約為25 nm. 通過振動樣品磁強計比較Fe3O4-PEI和Fe3O4納米粒子的磁滯回線,結(jié)果表明,經(jīng)PEI包覆后復(fù)合納米粒子飽和磁化值為38.2 emu/g,仍具有較好的磁性. 熱重分析表明,包覆在Fe3O4納米粒子表面的PEI質(zhì)量分數(shù)約為23.26%.通過靜電作用,實現(xiàn)了Fe3O4-PEI復(fù)合納米粒子對葡萄糖氧化酶的負載,以鉑電極為基底電極,制備了Fe3O4-PEI-GOx/Pt葡萄糖傳感器. 在最優(yōu)測試條件下,該修飾電極對葡萄糖表現(xiàn)出優(yōu)異的電化學催化性能,具有靈敏度高、抗干擾能力強、穩(wěn)定性好的特點.
高分子化學;葡萄糖傳感器;磁性納米粒子;聚乙烯亞胺,葡萄糖氧化酶,靜電作用
自1956年Clark提出氧電極與酶的電化學反應(yīng)理論以來,經(jīng)科學家長期不懈地努力,葡萄糖酶傳感器已取得長足發(fā)展[1].一般來講,葡萄糖酶傳感器具有選擇性好[2-3]和靈敏度高等優(yōu)點[4-5],但由于其所負載的葡萄糖氧化酶易受pH值和溫度等外界環(huán)境的影響而降低或喪失活性,從而導(dǎo)致該類型電極穩(wěn)定性差[6-7].
磁性納米粒子具有良好的生物相容性、磁導(dǎo)向性和磁場響應(yīng)性等性能,在核磁共振成像、藥物的緩釋、標記DNA和蛋白質(zhì)等生物醫(yī)學領(lǐng)域得到廣泛應(yīng)用[8-10]. 在有酶型葡萄糖傳感器的制備上,需借助載體將葡萄糖氧化酶修飾到電極界面.如何在載體上盡可能多的負載葡萄糖氧化酶,并保留酶的活性,是提高葡萄糖傳感器綜合性能的一個關(guān)鍵因素.利用Fe3O4磁性納米粒子負載葡萄糖氧化酶,不僅使制備的葡萄糖傳感器具有良好的生物相容性,有利于酶活性的保留,且在負載酶的過程中易于分離,降低了酶活性的損失[11-14].一般來說,酶在載體上固定的方法主要有共價鍵合法、包埋法、吸附法和交聯(lián)法[15-18].其中,吸附法條件溫和,對酶的結(jié)構(gòu)影響較小,能夠較好地保持酶的催化活性.本研究采用共沉淀法合成出帶有正電的磁性納米復(fù)合粒子四氧化三鐵-聚乙烯亞胺(Fe3O4-polyethyleneimine,F(xiàn)e3O4-PEI),并通過靜電吸附作用將帶有負電的葡萄糖氧化酶修飾到Fe3O4-PEI納米粒子上,以鉑(platinum,Pt)電極為基底電極,制備了電流型葡萄糖傳感器. 電化學測試結(jié)果表明,通過該方法制備的葡萄糖傳感器對葡萄糖具有優(yōu)異的電化學催化氧化性能,且靈敏度高、響應(yīng)范圍大、穩(wěn)定性好.
1.1 儀器與試劑
儀器:日本日立公司SU-70掃描電子顯微鏡(scanning electron microscope,SEM);日本JEM-2100F場發(fā)射透射電子顯微鏡(transmission electron microscope,TEM);美國 Quantum Design 公司VersaLab振動樣品磁強計;德國耐馳公司STA409PC同步熱分析儀;英國Solartron SI 1260綜合電化學分析儀.
試劑:FeCl2·4H2O(分析純)、FeCl3·6H2O (分析純)和 聚乙烯亞胺(polyethylenimine, PEI,相對分子質(zhì)量10 000)購自阿拉丁試劑(上海)有限公司,D-葡萄糖、戊二醛(體積分數(shù)為50%)、葡萄糖氧化酶(glucose oxidase, GOx,來源于黑曲霉Aspergillusniger, 25 ℃條件下酶活性大于1 000 U/g)購自生物生工(上海)工程有限公司;NaOH、HCl和KH2PO4購自國藥集團化學試劑有限公司,使用前未作處理.實驗用水為超純水(電阻率值為18.2 MΩ·cm).
1.2 修飾電極的制備
1.2.1 Fe3O4-PEI納米粒子的制備
采用共沉淀法合成Fe3O4-PEI納米粒子[14],具體過程如下:將0.1 moL的FeCl2·4H2O與0.2 moL的FeCl3·6H2O溶于20 mL 超純水中,在25 ℃高速機械攪拌條件下將鐵鹽混合溶液勻速滴加到含有125 mL濃度為1.5 mol/L NaOH溶液的三口燒瓶中.滴加完成后,將溫度升高至80 ℃熟化30 min,然后冷卻至室溫,磁分離后用超純水洗5遍,最后分散于110 mL超純水中.反應(yīng)均在氮氣保護下進行.
在80 ℃高速攪拌條件下將110 mL質(zhì)量濃度為0.02 g/mL的PEI溶液勻速滴加到Fe3O4溶液中,攪拌30 min.待溶液冷卻,將PEI包覆后的粒子磁分離,用超純水洗5遍,分散于110 mL、pH=7.4的磷酸鹽緩沖液(phosphate buffered saline,PBS)中保存.
1.2.2 Fe3O4-PEI-GOx/Pt修飾電極的制備
將Pt電極依次用1.00、 0.50和0.05 μm的Al2O3粉在麂皮上打磨拋光,分別在無水乙醇和超純水中反復(fù)超聲5次,然后,在0.5 mol/L的H2SO4中于-0.2~1.5 V電位范圍內(nèi)進行循環(huán)伏安掃描,直到得到穩(wěn)定循環(huán)伏安曲線,再用超純水超聲清洗,經(jīng)高純氮氣吹干后使用.
將0.5 mL的Fe3O4-PEI復(fù)合納米粒子分散液與1 mL 8 mg/mL GOx溶液(pH=7.4)混合3 h后,移取3 μL混合溶液滴加到處理過的鉑電極表面; 室溫下干燥后,滴加2.5 μL體積分數(shù)為1%的戊二醛; 室溫下再次干燥后,在pH=7.4的PBS溶液浸泡30 min.制好的電極不用時在4 ℃條件下,貯存于pH=7.4的PBS緩沖溶液中.
電化學測試采用三電極系統(tǒng):Fe3O4-PEI-GOx/Pt電極作為工作電極, Ag/AgCl(飽和KCl)作為參比電極,鉑柱電極作為對電極.
2.1 Fe3O4-PEI磁性納米復(fù)合粒子的表征
圖1是Fe3O4-PEI納米粒子的SEM和TEM結(jié)果.從圖1可見,采用共沉淀法制備的Fe3O4-PEI納米粒子近似球形.圖1(b)顯示,F(xiàn)e3O4-PEI納米粒子的平均粒徑約為25 nm.
圖1 Fe3O4-PEI納米粒子的SEM圖和 TEM圖Fig.1 SEM and TEM images of Fe3O4-PEI nanoparticles
圖2(a)是通過振動樣品磁強計(vibrating sample magnetometer, VSM)測定的磁滯回線,F(xiàn)e3O4納米粒子的粒徑小于臨界尺寸,矯頑力和剩磁幾乎都為0,表現(xiàn)出超順磁性.Fe3O4納米粒子的飽和磁化值M為52.1emu/g,有較高的磁響應(yīng)性;Fe3O4-PEI納米粒子的M為38.2emu/g.飽和磁化值的下降可能是包裹在磁性納米粒子表面的PEI所引起的.從圖2(b)中的熱重(thermogravimetry,TG)曲線分析得知,F(xiàn)e3O4-PEI粒子的失重分為兩個階段,第1階段在120 ℃以下,失重率為3.1%,這個溫度段的失重是真空干燥后復(fù)合納米粒子中仍殘留的結(jié)合水蒸發(fā)所致;第2階段是從120 ℃開始并最終趨于穩(wěn)定, 這段的失重主要是聚合物PEI分解造成的.經(jīng)計算,PEI在Fe3O4表面的包覆量為約23.26%.
圖2 VSM和TG表征結(jié)果Fig.2 Results of VSM curves and TG curves
2.2Fe3O4-PEI-GOx/Pt對葡萄糖的電催化氧化
圖3是PEI-Fe3O4-GOx/Pt修飾電極對不同濃度的葡萄糖響應(yīng)的循環(huán)伏安法(cyclicvoltammetry,CV)曲線圖.從圖3可見,加入1mmol/L葡萄糖后,修飾電極的氧化電流明顯增大.隨著葡萄糖濃度持續(xù)增加,修飾電極的氧化電流也不斷增大. 這些結(jié)果表明,F(xiàn)e3O4-PEI-GOx/Pt修飾電極對葡萄糖濃度具有較好的線性響應(yīng).
圖3 修飾電極在葡萄糖濃度分別為0、1、2、3和 4 mmol/L的磷酸鹽緩沖液(0.05 mmol/L, pH=7.4)中的循環(huán)伏安圖(掃描速度50 mV/s)Fig.3 CV curves of Fe3O4-PEI-GOx/Pt with 0, 1, 2, 3, and 4 mmol/L glucose in PBS buffer solution (pH=7.4, scan rates: 50 mV/s)
2.3 工作條件的優(yōu)化
工作電壓及緩沖液pH值的優(yōu)化對葡萄糖傳感器的性能有著重要影響.通常,較高的工作電位有利于增加葡萄糖傳感器的電流響應(yīng)值,但對血液中存在的抗壞血酸和尿酸等電活性物質(zhì)的抗干擾能力會有所降低.相反,較低的電位有助于獲得較好的抗干擾能力,但低電位下的電流響應(yīng)會相應(yīng)的降低。此外,葡萄糖氧化酶作為一種生物催化劑,其活性易受pH值影響,較高或較低的pH值都會造成其活性的降低或損失.圖4是Fe3O4-PEI-GOx/Pt修飾電極工作電位及pH值(優(yōu)化結(jié)果).從圖4可見,在工作電位超過0.4V,pH值在7.0~8.5時,修飾電極具備較高的電流響應(yīng).考慮到修飾電極的干擾性及正常人體血液的pH值(7.4左右),最優(yōu)測試參數(shù)可選擇為:工作電位0.4V;PBS緩沖液pH=7.4.
圖5 連續(xù)加入葡萄糖時Fe3O4-PEI-GOx/Pt 在0.4 V、 pH=7.4 條件下的電流響應(yīng)圖 (小圖是其電流與其對應(yīng)的葡萄糖濃度線性曲線圖)Fig.5 Amperometric responses of Fe3O4-PEI-GOx/Pt for successive addition of glucose solution at optimal conditions (0.4 V, pH=7.4) (Inset: linear relationship of response current versus the concentration of glucose)
2.4 傳感器的性能
在最佳測試參數(shù)條件下(工作電壓為0.4V,在pH=7.4,0.05mol/LPBS溶液中測試),利用計時安培法,研究了PEI-Fe3O4-GOx/Pt電極對葡萄糖的催化性能,如圖5所示.從圖5可見, 隨著葡萄糖的不斷加入,相應(yīng)的響應(yīng)電流呈階躍式增加.在0.39~6.36mmol/L之間,電流響應(yīng)值與葡萄糖濃度c呈良好的線性關(guān)系,線性回歸方程為i=2.999c+1.324,R=0.992.電極的檢出限為1×10-8mol/L,靈敏度為95.5μA/(mmol·L-1·cm2).
2.5 抗干擾性及耐久性
由于在傳感器的實際操作中,人體血液中的尿酸(uricacid,UA)、抗壞血酸(ascorbicacid,AA)會對葡萄糖濃度的測定產(chǎn)生干擾,因此,通過計時安培法研究這些物質(zhì)在Fe3O4-PEI-GOx/Pt電極上的響應(yīng). 工作電壓為0.4V條件下,在pH=7.4的PBS中分別加入葡萄糖、尿酸和抗壞血酸溶液.如圖6(a)所示,當加入葡萄糖溶液后,響應(yīng)電流迅速增加并在極短時間內(nèi)達到平衡,而加入抗壞血酸和尿酸后響應(yīng)電流值基本沒有變化.這說明制備的電極具有較好的選擇性, 可消除其他物質(zhì)的干擾.
圖6 傳感器的選擇性和穩(wěn)定性Fig.6 The selectivity and stability of the biosensor
GOx的等電點在4.6左右. 在pH=7.4的PBS中,GOx由于羧基電離而帶負電;通常,包覆在納米粒子表面的高分子可以顯著影響納米粒子的空間行為. 包覆在Fe3O4納米粒子上的PEI在Fe3O4-PEI-GOx復(fù)合納米粒子形成過程中具有重要作用,它有效地阻止了Fe3O4納米粒子的聚沉;其次,由于包覆在Fe3O4納米粒子表面的PEI氨基電離使Fe3O4-PEI表面帶有正電荷[19-21],可以通過靜電作用將GOx固定在其表面. 將制備的電極在4 ℃條件下浸入PBS溶液中存儲30d后,仍能保持90%的響應(yīng)電流, 如圖6(b)所示. 這種較長時間的耐久性一方面歸功于Fe3O4-PEI納米粒子具有較好生物相容性,另一方面,與酶在載體上比較溫和的固定,對酶的結(jié)構(gòu)破壞較少有關(guān).
通過共沉淀法制備了粒徑較為均一的核殼型Fe3O4-PEI復(fù)合納米粒子,并將其應(yīng)用在電流型酶葡萄糖傳感器上.在0.4V的工作電壓下,制備的Fe3O4-PEI-GOx/Pt電極對葡萄糖具有良好的催化活性,靈敏度高達95.5μA/(mmol·L-1·cm2),電流響應(yīng)與葡萄糖濃度在0.39~6.36mmol/L范圍內(nèi)呈現(xiàn)出良好的線性關(guān)系,表現(xiàn)出優(yōu)異的抗干擾性能.由于制備的Fe3O4-PEI納米粒子具備良好的生物相容性且能夠較長時間的保持吸附在其表面的葡萄糖氧化酶的活性,對實現(xiàn)該類型葡萄糖傳感器產(chǎn)業(yè)化具有重要意義.
/ References:
[1] Heller A, Feldman B. Electrochemical glucose sensors and their applications in diabetes management[J]. Chemical Reviews, 2008, 108(7): 2482-2505.
[2] Mathew M, Sandhyarani N. A highly sensitive electrochemical glucose sensor structuring with Nickel hydroxide and enzyme glucose oxidase[J]. Electrochimica Acta, 2013, 108: 274-280.
[3] Wu Shouguo, Liu Gang, Li Ping, et al. A high-sensitive and fast-fabric glucose biosensor based on Prussian blue/topological insulator Bi2Se3hybrid film[J]. Biosensors and Bioelectronics, 2012, 38(1): 289-294.
[4] Huang Kejing, Wang Lan, Li Jing, et al. Glassy Carbon electrode modified with glucose oxidase-graphene-nano-copper composite film for glucose sensing[J]. Measurement, 2013, 46(1): 378-383.
[5] Lin Jiehua, He Chunyan, Zhao Yue, et al. One-step synthesis of Silver nanoparticles/Carbon nanotubes/chitosan film and its application in glucose biosensor[J]. Sensors and Actuators B-Chemical, 2009, 137(2): 768-773.
[6] Wang Zhijuan, Zhou Xiaozhu, Zhang Juan, et al. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase[J]. Journal of Physical Chemistry C, 2009, 113(32): 14071-14075.
[7] Toghill K E,Compton R G.Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation[J].International Journal of Electrochemical Science, 2010, 5(9): 1246-1301.
[8] Xia Tingting, Guan Yueping, Yang Mingzhu, et al. Synthesis of polyethylenimine modified Fe3O4nanoparticles with immobilized Cu2+for highly-efficient proteins adsorption[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443: 552-559.
[9] Hultman K L, Raffo A J, Grzenda A L, et al. Magnetic resonance imaging of major histocompatibility class II expression in the renal medulla using immunotargeted superparamagnetic Iron oxide nanoparticles[J]. ACS Nano, 2008, 2(3): 477-484.
[10] Wang Aijun, Li Yongfang, Li Zhonghua, et al. Amperometric glucose sensor based on enhanced catalytic reduction of Oxygen using glucose oxidase adsorbed onto core-shell Fe3O4@silica@Au magnetic nanoparticles[J]. Materials Science & Engineering C-Materials for Biological Applications, 2012, 32(6): 1640-1647.
[11] Marand Z R, Shahtahmassebi N, Housaindokht M R, et al. Construction of an amperometric glucose biosensor by immobilization of glucose oxidase on nanocomposite at the surface of FTO electrode[J]. Electroanalysis, 2014, 26(4): 840-848.
[12] Sharma R, Sinha R K, Agrawal V V. Electroactive prussian blue encapsulated iron oxide nanostructures for mediator-free cholesterol estimation[J]. Electroanalysis, 2014, 26(7): 1551-1559.
[13] Tan Xuecai, Zhang Jinlei, Tan Shengwei, et al. Amperometric hydrogen peroxide biosensor based on horseradish peroxidase immobilized on Fe3O4/chitosan modifiedGlassy carbon electrode[J]. Electroanalysis, 2009, 21(13): 1514-1520.
[14] Teymourian H, Salimi A, Firoozi S. A high performance electrochemical biosensing platform for glucose detection and IgE aptasensing based on Fe3O4/reduced graphene oxide nanocomposite[J]. Electroanalysis, 2014, 26(1): 129-138.
[15] Pellissier M, Zigah D, Barriere F, et al. Optimized preparation and scanning electrochemical microscopy analysis in feedback mode of glucose oxidase layers grafted onto conducting carbon surfaces[J]. Langmuir, 2008, 24(16): 9089-9095.
[16] Jeykumari D R S,Narayanan S S.A novel nanobiocomposite based glucose biosensorusing neutral red functionalized carbon nanotubes[J]. Biosensors and Bioelectronics, 2008, 23(19) : 1404-1411.
[17] Gooding J J, Praig V G, Hall E A H. Platinum-catalyzed enzyme electrodes immobilized on gold using self-assembled layers[J]. Analytical Chemistry, 1998, 70(11): 2396-2402.
[18] Yu Jiuhong, Liu Songqin, Ju Huangxian. Glucose sensor for flow injection analysis of serum glucose based on immobilization of glucose oxidase in titania sol-gel membrane[J]. Biosensors and Bioelectronics, 2003, 19(4): 401-409.
[19] Lou Lei, Yu Ke, Zhang Zhengli, et al. Dual-mode protein detection based on Fe3O4-Au hybrid nanoparticles[J]. Nano Research, 2012, 5(4): 272-282.
[20] Zhou Xi, Xu Wenlong, Wang Yan, et al. Fabrication of cluster/shell Fe3O4/Au nanoparticles and application in protein detection via a SERS method[J]. Journal of Physical Chemistry C, 2010, 114(46): 19607-19613.
[21] Goon I Y, Lai L M, Lim M, et al. Fabrication and dispersion of Gold-Shell-Protected magnetite nanoparticles: systematic control using polyethyleneimine[J]. Chemistry of Materials, 2009, 21(4): 673-681.
【中文責編:晨 兮;英文責編:新 谷】
Glucose sensor based on Fe3O4-PEI nanoparticles
He Chuanxin?, Ren Shengying, Xie Minsui, Yuan Anpeng, Hong Fei,Zhang Qianling, and Liu Jianhong?
College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, P.R.China
Fe3O4-PEI nanoparticles with Fe3O4core and polyethylenimine (PEI) shell were prepared via the co-precipitation method. Results from scanning electron microscope (SEM) and transmission electron microscope (TEM) show that Fe3O4-PEI nanoparticles present globular shape with almost uniform diameters of about 25 nm. Magnetic hysteresis loops of Fe3O4-PEI and Fe3O4nanoparticles were obtained by a vibrating sample magnetometer (VSM). The magnetism of Fe3O4nanoparticles still remains a lot after coating with PEI, and the saturation magnetization value of Fe3O4-PEI nanoparticles is 38.2 emu/g. Thermogravimetry (TG) analysis indicats that the loading amount of PEI on the surface of Fe3O4nanoparticles is about 23.26%. The glucose oxidase (GOx) enzyme was immobilized on the Fe3O4-PEI nanoparticles surface by electrostatic interaction. Fe3O4-PEI-GOx/Pt glucose sensor was prepared with platinum (Pt) as its basal electrode, which exhibits a good electrochemical catalysis for glucose, high sensitivity, strong anti-interference ability and long-term durability for glucose detection under an optimal preparation condition.
polymer chemistry; glucose sensor; magnetic nanoparticles; polyethyleneimine; glucose oxidase; electrostatic interaction
:He Chuanxin, Ren Shengying, Xie Minsui, et al. Glucose sensor based on Fe3O4-PEI nanoparticles[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(1): 76-81.(in Chinese)
O 63
A
10.3724/SP.J.1249.2015.01076
國家自然科學基金資助項目(21374064,21004040)
何傳新(1983—),男(漢族),安徽省宣城市人,深圳大學副教授、博士.E-mail:hechuanxin2002@163.com
Received:2014-08-14;Accepted:2014-10-19
Foundation:National Natural Science Foundation of China (21374064, 21004040)
? Corresponding author:Associate professor He Chuanxin. E-mail:hechuanxin2002@163.com; Professor Liu Jianhong. E-mail: Liujh@szu.edu.cn
引 文:何傳新,任圣穎,謝敏隨,等. 基于Fe3O4-PEI納米粒子構(gòu)建葡萄糖傳感器的研究[J]. 深圳大學學報理工版,2015,32(1):76-81.