• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      中國大陸顯生宙俯沖型、碰撞型和復(fù)合型片麻巖穹窿(群)*

      2015-03-15 11:25:22許志琴馬緒宣
      巖石學(xué)報 2015年12期
      關(guān)鍵詞:核部組構(gòu)穹窿

      許志琴 馬緒宣

      XU ZhiQin1,2 and MA XuXuan1

      1. 中國地質(zhì)科學(xué)院地質(zhì)研究所,大陸構(gòu)造與動力學(xué)國家重點(diǎn)實(shí)驗(yàn)室,北京 100037

      2. 南京大學(xué)地球科學(xué)與工程學(xué)院,內(nèi)生金屬礦床成礦機(jī)制研究國家重點(diǎn)實(shí)驗(yàn)室,南京 210046

      1. State Key Laboratory for Continental Tectonics and Dynamics,Institute of Geology,CAGS,Beijing 100037,China

      2. State Key Laboratory for Mineral Deposits Research,School of Earth Sciences and Engineering,Nanjing University,Nanjing 210046,China

      2015-07-20 收稿,2015-09-09 改回.

      1 引言

      1.1 片麻巖穹窿的概念

      片麻巖穹窿(gneiss dome)為Eskola (1949)最早提出,意指中下地殼熱動力學(xué)過程產(chǎn)生的、與巖漿作用(或混合巖化作用)密切相關(guān)的穹窿狀構(gòu)造。其核部通常由花崗質(zhì)巖類巖石組成,周邊為花崗片麻巖,幔部由變形的高級片巖、片麻巖和其他類型變質(zhì)巖所環(huán)繞。片麻巖穹窿構(gòu)造是地殼深層次變動的產(chǎn)物,它幾乎出露在所有的折返造山中,反映了所在地區(qū)地殼的大幅度抬升(Vanderhaeghe,2004;Whitney et al.,2004)。很多片麻巖穹窿的形成與花崗質(zhì)巖漿上涌有關(guān),所形成的花崗巖體(或巖基)以無(或弱)組構(gòu)為特征,并伴隨混合巖化作用;而周邊的花崗片麻巖是具有面理和線理組構(gòu)的變形花崗巖;幔部的變質(zhì)圍巖往往強(qiáng)烈變形,發(fā)育層疊式褶皺(Cascading folds)(圖1)(Burg et al.,2004;Whitney et al.,2004)。但是,也有只受斷層作用而形成的片麻巖穹窿,即可以發(fā)育在拆離斷層的下盤,形成變質(zhì)核雜巖,也可以與逆沖斷層密切相關(guān),由于背斜堆垛而形成(Yin,2004)。

      分布范圍上,片麻巖穹窿普遍出露在世界范圍內(nèi)的折返造山帶中(Amato et al.,1994);形成時間上,從太古宙到現(xiàn)代造山帶都有形成(Schneider et al.,2004;Tinkham and Marshak,2004)。圖2 表示了已經(jīng)發(fā)表的從前寒武紀(jì)到現(xiàn)代的全球的66 個典型的片麻巖穹窿,包括前寒武紀(jì)地盾和全球顯生宙造山帶中的大量片麻巖穹窿。

      圖1 與巖漿作用相關(guān)的片麻巖穹窿結(jié)構(gòu)示意圖(據(jù)Whitney et al.,2004)核部為混合巖化的花崗巖,邊部為花崗片麻巖,幔部為變質(zhì)巖和層疊褶皺. 箭頭代表剪切指向Fig.1 The structure of magma-related gneiss dome (after Whitney et al.,2004)The gneiss dome is cored by migmatitic granites with granitic gneiss in the core’s margin,and mantled by metasedimentary rocks showing cascading folds

      1.2 片麻巖穹窿的構(gòu)造、巖石組合和組構(gòu)

      絕大部分片麻巖穹窿的構(gòu)造組合可以分為核、邊和幔三部分,核部為花崗巖和深熔混合巖,邊部為花崗片麻巖,幔部以高級變質(zhì)沉積巖和變質(zhì)火山巖為標(biāo)志的高角閃巖到麻粒巖相片麻巖(或者高溫片巖)為典型特征,也被簡化為核部(如,混合巖和花崗質(zhì)巖體)和上覆的變質(zhì)層(如,邊部的片巖和片麻巖)的雙層構(gòu)造(Stübner et al.,2013)。對于那些還沒有出露地表的片麻巖穹窿,其變質(zhì)的幔部之上還會覆蓋有未變質(zhì)的沉積地層。

      片麻巖穹窿的巖石組合方面,其核部主要為中酸性花崗巖類巖石以及混合巖。核部花崗巖和混合巖可同時形成,也可能是不同期的產(chǎn)物(Eskola,1949)。即使核部主要為花崗巖,也可能包含不同期次的花崗巖,代表早期形成的片麻巖穹窿的核部被后期多次巖體侵入(Yin,2004)。片麻巖穹窿的幔部主要是變質(zhì)巖,并有很好的分帶性??v然由于片麻巖形成的深度、上覆地層的巖性組合、以及變質(zhì)時的溫壓差異等,各個片麻巖穹窿的變質(zhì)組合和變質(zhì)級別會有不同程度的差異性,但整體而言,片麻巖穹窿幔部的變質(zhì)分帶還是有一定的規(guī)律性。如中國松潘-甘孜造山帶雅江地區(qū)三疊系西康群中的片麻巖穹窿其幔部的變質(zhì)由內(nèi)而外分別為夕線石帶、十字石帶、紅柱石帶、石榴石帶、黑云母帶和絹云母-綠泥石帶(許志琴等,1992)。類似地,北喜馬拉雅Mabja 片麻巖穹窿的變質(zhì)分帶分別為礦物組合為(夕線石+石榴石+十字石+黑云母)的夕線石帶、礦物組合為(藍(lán)晶石+石榴石+十字石+黑云母)的十字石帶、礦物組合為(石榴石+黑云母+綠泥石)的石榴石帶和礦物組合為(綠泥石+黑云母)的黑云母帶(Lee et al.,2004)。相似的變質(zhì)分帶也存在于帕米爾片麻巖穹窿帶內(nèi)(Schmidt et al.,2011)和法國比利牛斯山Aston 片麻巖穹窿變質(zhì)的幔部(Denèle et al.,2009),這些片麻巖穹窿變質(zhì)分帶說明中壓Barrovian 式變質(zhì)分帶是片麻巖穹窿幔部變質(zhì)的主要特點(diǎn)。

      圖2 全球典型片麻巖穹窿的位置圖(據(jù)Whitney et al.,2004)Fig.2 World map showing locations of representative gneiss domes (red dots)(after Whitney et al.,2004)

      組構(gòu)特征方面,從片麻巖穹窿核部到邊部再到圍巖,面理或片麻理呈放射狀向外圍傾斜(Andresen et al.,2010;Yin,2004);立體剖面上看,片麻巖穹窿與圍巖接觸的邊部組構(gòu)多是陡立的,頂部組構(gòu)則是近水平的,典型的例子如法國Velay 片麻巖穹窿(Ledru et al.,2001),埃及東非造山帶Meatiq 片麻巖穹窿(Andresen et al.,2010),以及美國新墨西哥Burro 山片麻巖穹窿(Amato et al.,2011)。如果片麻巖穹窿的核部以混合巖或花崗質(zhì)巖石為主,由于巖石的部分熔融作用產(chǎn)生的流動及褶皺效應(yīng),露頭規(guī)模的面理產(chǎn)狀會是變化多樣,而非單一的面理產(chǎn)狀。如果片麻巖穹窿的頂部和平面上展示的是平整的組構(gòu)特征(比如水平的流動面理),穹窿的邊部展示收縮型組構(gòu)的可能性就比較小,除非在部分前寒武紀(jì)穹窿中(Brun,1980;Collins et al.,1998)。相比之下,由于片麻巖穹窿核部是熔融體在高溫條件下重結(jié)晶的產(chǎn)物,且包含了比例較大的混合巖或花崗質(zhì)巖石,核部露頭規(guī)模的線理組構(gòu)則比較難以識別(Whitney et al.,2004)。有些片麻巖穹窿核外邊由共軛的剪切帶構(gòu)成的主伸展軸與核的邊呈切線相交,向核的內(nèi)部放射狀分布;裸露的穹窿核部位置的拉長線理也呈放射狀分布;頂部水平的面理疊置在陡傾的組構(gòu)之上(Gervais et al.,2004)。在有些片麻巖穹窿的深部,流動面理通道以漏斗狀為主,在地表則以穹窿狀為主,并且多數(shù)情況下在大的片麻巖穹窿內(nèi)部或邊緣會有次級的片麻巖穹窿體出露,或多個片麻巖穹窿呈線狀或面狀成群出露(Lagarde et al.,1994;Arnold et al.,1995;Vanderhaeghe et al.,1999;Fisher and Olsen,2004;Gervais et al.,2004;Ayarza and Martínez Catalán,2007)。

      通常情況下,片麻巖穹窿的核部和邊部記錄的變形組構(gòu)是有區(qū)別的,核部以巖漿組構(gòu)為主,邊部以亞巖漿組構(gòu)到塑性變形組構(gòu)為特征,可歸于以下的原因:1)巖漿系統(tǒng)通常與圍巖解耦,巖漿組構(gòu)容易被重置;2)巖漿組構(gòu)形成在巖漿房建立之后,幾乎不能提供巖漿上升或侵位的信息;3)巖漿組構(gòu)只記錄了巖漿結(jié)晶后期的應(yīng)力增量,在限定區(qū)域性構(gòu)造應(yīng)力上有很大的局限性(Paterson et al.,1998)。相比而言,片麻巖穹窿幔部的塑性變形組構(gòu)則更容易記錄區(qū)域性的構(gòu)造應(yīng)力及疊加效應(yīng),能為區(qū)域性的變形提供有價值的信息。此外,巖體的侵位深度越深,其侵位過程中伴隨的區(qū)域性的塑性變形就更容易疊加到巖漿侵位后期的結(jié)晶巖體的外邊,并以最后的應(yīng)力增量的形式保存下來(Paterson et al.,1998;Vernon,2000)。由于巖體侵位過程極為復(fù)雜,從早期的巖漿流動組構(gòu)到巖體結(jié)晶后期(或受區(qū)域性構(gòu)造應(yīng)力疊加)產(chǎn)生的塑性變形組構(gòu),以及介于兩個端元之間的亞巖漿組構(gòu)和高溫塑性變形組構(gòu),所以,需要借助野外觀察和室內(nèi)顯微變形分析等多種方式進(jìn)行綜合探索和厘定,進(jìn)而利用變形組構(gòu)對片麻巖穹窿形成過程進(jìn)行很好地揭示。

      對于變質(zhì)壓力,很多片麻巖穹窿核部比幔部變質(zhì)巖記錄到了更高的壓力,甚至可能代表了一個變質(zhì)地體或造山帶中最高的壓力,典型的例子如北阿帕拉契山(Spear et al.,2002)、希臘納克索斯(Buick and Holland,1989)和加拿大Thor-Odin 片麻巖穹窿(Norlander et al.,2002)。而溫度方面,部分片麻巖穹窿從核部到幔部巖石存在普遍的差異,核部巖石記錄的是從藍(lán)晶石到夕線石-堇青石近等溫的減壓過程,代表快速的隆升剝露或有持續(xù)的熱量輸入(Fayon et al.,2004),而幔部的變質(zhì)巖石則經(jīng)歷的是高溫變質(zhì)過程,伴隨著減壓過程的降溫冷卻效應(yīng)(Teyssier and Whitney,2002)。

      1.3 片麻巖穹窿的成因機(jī)制

      關(guān)于片麻巖穹窿的形成機(jī)制一直存在爭議。一種觀點(diǎn)認(rèn)為片麻巖穹窿是由底辟作用形成(Reesor and Moore,1971;Fletcher,1972;Soula,1982;Chardon et al.,1998;Calvert et al.,1999;Teyssier and Whitney,2002;Edwards et al.,2002;Siddoway et al.,2004),然而這一觀點(diǎn)受到了部分學(xué)者的質(zhì)疑,質(zhì)疑的根據(jù)在于很多情況下穹窿形成于部分熔融或巖漿作用之后(Lee et al.,2000;Rolland et al.,2001)。其他觀點(diǎn)諸如:1)片麻巖穹窿形成于地殼縮短的擠壓背景(Burg et al.,1984;Stipska et al.,2000);2)片麻巖穹窿形成于伸展背景,與變質(zhì)核雜巖的形成密切相關(guān)(Lister and Davis,1989;Escuder Viruete et al.,2000;Jolivet et al.,2004;Tirel et al.,2004);3)是縱彎褶皺或褶皺干涉或背斜堆垛的結(jié)果(Duncan,1984;Brown et al.,1986);4)片麻巖穹窿形成于造山垮塌環(huán)境,與控制伸展作用的部分熔融地殼的底辟上升有關(guān)(Vanderhaeghe et al.,1999);5)是地殼收縮(crustal necking)的結(jié)果(Fletcher and Hallet,2004);6)地殼伸展拆離之后的均衡回彈效應(yīng)(Buck,1991;Brun et al.,1994)。也有觀點(diǎn)認(rèn)為片麻巖穹窿的形成與造山帶地殼的擠出相關(guān)(Beaumont et al.,2001),當(dāng)然也有學(xué)者認(rèn)為片麻巖穹窿的形成與下地殼擠壓和上地殼伸展的共同作用相關(guān)(Lee et al.,2000;Crowley et al.,2001)。

      片麻巖穹窿與傳統(tǒng)意義上的巖漿底辟的區(qū)別和聯(lián)系:從物質(zhì)成分和結(jié)構(gòu)構(gòu)造上來說,片麻巖穹窿不僅包含核部的巖漿侵入體或混合巖單元,還包含上覆的變質(zhì)沉積蓋層,甚至還存在伴隨著上覆地層在伸展或擠壓背景下的運(yùn)動,諸如滑覆、拆離或褶皺等,因此,片麻巖穹窿是一個復(fù)雜的,集巖漿、變質(zhì)和構(gòu)造作用于一體的獨(dú)特的構(gòu)造單元,其形成需要有必要的地質(zhì)條件,因此片麻巖穹窿對區(qū)域性的構(gòu)造背景具有很強(qiáng)的指示意義(Whitney et al.,2004;Yin,2004)。相比之下,巖漿底辟更強(qiáng)調(diào)存在密度差異的情況下,巖漿沿著裂隙或構(gòu)造薄弱區(qū)的垂直侵位作用,其構(gòu)造背景指示意義有局限性。當(dāng)然,在特定的地質(zhì)背景下,巖漿底辟作用是形成片麻巖穹窿的動力學(xué)機(jī)制之一,能為部分片麻巖穹窿的形成提供動力。因此,如果一定要把巖漿底辟和片麻巖穹窿聯(lián)系起來,那就是部分片麻巖穹窿形成的動力學(xué)機(jī)制來源于巖漿底辟,底辟巖漿侵入體是這部分片麻巖穹窿的核部組成部分(Calvert et al.,1999;Lee et al.,2000;Rolland et al.,2001)。

      底辟作用是地殼中熱量和物質(zhì)轉(zhuǎn)移的有效機(jī)制,造成地殼中熱的、低密度的物質(zhì)的上升和高密度的物質(zhì)的下沉(下降)。底辟作用影響了造山帶中熱量的分配,并造成了減壓之后的快速冷卻。考慮到片麻巖穹窿在不同時代和不同地質(zhì)背景的造山帶中的普遍存在,造山帶地殼物質(zhì)的底辟作用不僅引發(fā)了大陸地殼的部分熔融,并且在大陸地殼物質(zhì)的熱量、機(jī)械運(yùn)動和化學(xué)演化等方面發(fā)揮了重要作用(Ramberg,1981)。全球多個典型的片麻巖穹窿被認(rèn)為是由底辟作用形成,如加拿大格林威爾省Aguanish 片麻巖穹窿群(Gervais et al.,2004)。

      由于如下原因,片麻巖穹窿和變質(zhì)核雜巖之間的區(qū)別被模糊和忽視:1)有些變質(zhì)核雜巖本身就是穹窿(如,美國蒙大拿Bitterroot complex;希臘Naxos);2)有些變質(zhì)核雜巖包含片麻巖穹窿,即片麻巖穹窿是變質(zhì)核雜巖內(nèi)部的組成部分(如,加拿大Shuswap complex 和美國Albion-Raft River-Grouse Creek complex)(圖3);3)變質(zhì)核雜巖的研究由于主要關(guān)注拆離斷層的形成機(jī)制和中地殼巖石的剝露上,而忽略了變質(zhì)核雜巖內(nèi)部穹窿構(gòu)造的產(chǎn)狀和形成機(jī)制研究(Whitney et al.,2004)。二者之間的聯(lián)系在于,在等溫減壓和地殼減薄的過程中,地殼物質(zhì)迅速剝離就會由片麻巖穹窿發(fā)展成變質(zhì)核雜巖(Teyssier and Whitney,2002),因此片麻巖穹窿是一個具有更廣泛意義的穹窿狀構(gòu)造。

      圖3 核部為片麻巖穹窿的變質(zhì)核雜巖構(gòu)造圖Fig.3 Model of metamorphic core complex cored by gneiss dome

      筆者認(rèn)為,片麻巖穹窿形成過程反映了從深部的地殼流在擠壓收縮背景上的上涌,侵位至地殼某一深度形成片麻巖穹窿時,穹窿頂部轉(zhuǎn)化為最大的垂直擠壓應(yīng)力和最大的水平伸展應(yīng)力,即片麻巖穹窿的形成經(jīng)歷了擠壓到伸展背景的轉(zhuǎn)換過程,典型的實(shí)例如法國比利牛斯山Agly 片麻巖穹窿(圖4)。

      1.4 片麻巖穹窿形成的大地構(gòu)造背景

      前人研究表明,顯生宙以來大量的片麻巖穹窿形成在大范圍的碰撞造山帶(Teyssier and Whitney,2002),如北美科迪勒拉和阿帕拉契造山帶,歐洲加里東造山帶、華里西和阿爾卑斯造山帶,喜馬拉雅和南亞等造山帶中。許多學(xué)者認(rèn)為,片麻巖穹窿往往形成在碰撞造山后期折返的過程中。典型例子如與后碰撞造山的高溫伸展有關(guān)的西班牙Lugo-Castroverde 片麻巖穹窿。

      圖4 法國Agly 片麻巖穹窿在擠壓轉(zhuǎn)換構(gòu)造背景下的形成模式(據(jù)Olivier et al.,2004)Fig.4 Model of formation of the Agly gneiss dome in a transpressive regime (after Olivier et al.,2004)

      位于西班牙北西的Lugo-Castroverde 片麻巖穹窿,呈190km 長和50km 寬的橢圓形,是歐洲華里西碰撞造山后期形成的構(gòu)造單元,為地殼折返導(dǎo)致的伸展作用產(chǎn)物。該地區(qū)的伸展構(gòu)造包括大規(guī)模的伸展剪切帶、后期演化的片麻巖穹窿和正斷裂,這些折返構(gòu)造疊置在早期由于碰撞造山收縮作用形成的Mondonedo 大型推覆雜巖構(gòu)造之上。此片麻巖穹窿包括外來巖片和其下的原地地塊,原地地塊由新元古代-古生代變沉積巖組成;外來的Mondonedo 推覆體由岡瓦納基底、蛇綠巖和早奧陶世島弧單元組成,它們遭受前華里西和早華里西期的俯沖作用,并且代表華里西碰撞標(biāo)志——縫合帶的異地地體(Arenas et al.,2007;Martínez Catalán et al.,2007;Sánchez Martíner et al.,2007)。在華里西碰撞早期外來巖片中普遍產(chǎn)生推覆變形、Barrovian 變質(zhì)及花崗巖侵位。在華里西碰撞后期的中-晚石炭世,造山地殼的厚度遭遇減薄和伸展的造山崩塌。整個Mondonedo 推覆體在兩條共軛伸展型剪切帶之間向東運(yùn)動,在石炭紀(jì)末期,兩條共軛伸展型剪切帶之間發(fā)育由若干混合巖化的次穹窿組成的Lugo-Castroverdeo 穹窿。在Lugo-Castroverde 穹窿的南面保留埋藏深處的幔部中-高級變質(zhì)巖石,北面保留淺處的低級變質(zhì)片巖和石英巖。在圖5b 中可以明顯看到Lugo-Castroverde 穹窿群切割早期形成的Mondonedo 推覆體,與Lugo-Castroverde 穹窿相伴生的韌性伸展型拆離剪切帶疊置在Mondonedo 推覆體的底部,在其前鋒轉(zhuǎn)換為出露在Mondonedo 推覆體前鋒的逆沖斷裂(Mondonedo 推覆體前緣的基底逆沖斷裂)。實(shí)際上,這條逆沖斷裂是與晚期Lugo-Castroverde 穹窿同時形成的(圖5)。大范圍的低密度混合巖化和不均勻的花崗巖顯示了190nT 的航磁異常幅度。

      此外,還有與斜向碰撞和折返造山過程(走滑斷裂)有關(guān)的片麻巖穹窿,典型例子為南喀喇昆侖Shigar 片麻巖穹窿群。喜馬拉雅西構(gòu)造結(jié)的納達(dá)克-科希斯坦巖漿弧北側(cè)的主喀喇昆侖逆沖斷裂(MKT)是喀喇昆侖地體的南界。在主喀喇昆侖逆沖斷裂(MKT)北側(cè)發(fā)育一條與NW-SE 方向喀喇昆侖右行走滑斷裂平行的Shigar 走滑斷裂。沿斷裂東側(cè),發(fā)育 包 括 Mangol,Dassu,Ho Lungma,Askole-Panhma 和Hemasil 在內(nèi)的片麻巖穹窿群(Debon et al.,1987;Lemanicier,1996;Pêcher and Le Fort,1999)(圖6),片麻巖穹窿群沿Shigar 走滑斷裂呈雁行狀排列,組成以核部混合巖化、邊部片麻巖為特征。穹窿群的形成與新近紀(jì)南北向縮短背景上導(dǎo)致的熔融中地殼的高溫折返有關(guān),受平行喀喇昆侖右行走滑斷裂相關(guān)的垂直地殼流的控制,初始的底辟作用具有局限性(Mahéo et al.,2004)(圖7),折返的后期是與EW 向褶皺的隆升與剝蝕有關(guān),并造成中低溫條件。這種南北向擠壓來源于印度-亞洲板塊碰撞和喀喇昆侖斷裂體系的右行走滑的分量。

      在圖2 中,中國大陸內(nèi)部的大部分片麻巖穹窿沒有標(biāo)注其中,實(shí)際上,中國大陸的片麻巖穹窿(群)研究是很多的,早期研究往往沒有記載在國際刊物上,以及沒有統(tǒng)一運(yùn)用“片麻巖穹窿”的概念,而被長期忽視。

      根據(jù)中國大陸顯生宙片麻巖穹窿(含變質(zhì)核雜巖)研究成果(許志琴等,1992;張進(jìn)江等,2011),我們發(fā)現(xiàn),與碰撞造山折返過程有關(guān)的片麻巖穹窿有“北喜馬拉雅拉軌崗日片麻巖穹窿群”(Chen et al.,1990;許志琴等,2007)、“松潘甘孜片麻巖穹窿群”(許志琴等,1992)和“桐柏-大別片麻巖穹窿群”(許志琴,1988;王國燦等,1996;崔建軍等,2009)。此外,新發(fā)現(xiàn)一批與大洋巖石圈板片俯沖有關(guān)的俯沖-增生型片麻巖穹窿:如與始特提斯大洋板片俯沖有關(guān)的“秦嶺片麻巖穹窿”,以及與俯沖和碰撞有關(guān)的“帕米爾空喀山片麻巖穹窿”和“岡底斯林芝片麻巖穹窿”等。

      因此,筆者認(rèn)為,在構(gòu)造背景尺度上,片麻巖穹窿(群)可以發(fā)生在大陸邊緣與大洋巖石圈板片俯沖相關(guān)的俯沖增生造山轉(zhuǎn)變?yōu)檎鄯翟焐降沫h(huán)境中,也可以發(fā)生在碰撞折返造山過程中,以及形成在“俯沖”和“碰撞”兩者兼有的復(fù)合背景中。

      1.5 片麻巖穹窿和地殼流動

      形成片麻巖穹窿的地殼垂直流動是造山帶和大陸演化中物質(zhì)和熱重新分配的一個重要因素。在世界范圍內(nèi),片麻巖穹窿具有幾何學(xué)、巖石學(xué)和構(gòu)造學(xué)上的相似性,這種相似性已經(jīng)超越了不同的構(gòu)造背景和單元。在一個地區(qū)片麻巖穹窿通常不是孤立的,而是呈“穹窿群”展布。在造山帶中,大多數(shù)的片麻巖穹窿,呈平行造山帶的線狀分布(如北美科迪勒拉和北喜馬拉雅片麻巖穹窿群)。片麻巖穹窿平面上長寬比在1∶1 和5∶1 之間,以橢球形為主。橢球形片麻巖穹窿普遍存在,說明片麻巖穹窿的形態(tài)和成因受造山過程中地殼流動力學(xué)(包括垂直與側(cè)向流動的相對速率比)的控制(Whitney et al.,2004)。

      圖5 西班牙Lugo-Castroverde 穹窿的剖面(據(jù)Ayarza et al.,2007)(a)北部剖面,顯示華里西早期形成的兩個單元:Mondonedo 推覆體和鄰區(qū)Ollo de Sapo 背形構(gòu)造,和華里西晚期形成的Lugo 片麻巖穹窿,伴隨韌性拆離構(gòu)造;(b)南部剖面,顯示華里西晚期形成的埋藏深部的Lugo 片麻巖穹窿已經(jīng)抬升,以及Lugo-Castroverdeo 花崗巖侵位Fig.5 Representative geological sections across the Lugo dome (after Ayarza et al.,2007)(a)the northern cross-section showing Mondonedo nappe,its autochthon and the Ollo de Sapo antiform,accompanied by the extensional detachment;(b)the southern cross-section,showing the exhumation of the burial Variscan Lugo gneiss dome and the intrusion of the Lugo Castroverdeo granite

      垂直地殼流動端元產(chǎn)生底辟構(gòu)造,側(cè)向流動端元產(chǎn)生區(qū)域性水平面理,而具有側(cè)向和垂直分量的地殼流動可以造成物質(zhì)的擠出(Ramsay and Huber,1987;Beaumont et al.,2001;Rey,2001)。圖8 表示從垂直底辟流動到側(cè)向的隧道流之間的不同樣式,由于兩者相對流動速率比值的不同而產(chǎn)生各種構(gòu)造樣式,顯示了從垂直流動為主造成的底辟構(gòu)造,垂直流動為主伴隨側(cè)向流動的層疊褶皺(Cascading folds)構(gòu)造,側(cè)向流動為主的攀疊褶皺(Climbing folds)構(gòu)造,到側(cè)向流動形成的“隧道流”構(gòu)造。后兩種構(gòu)造樣式已經(jīng)不屬于典型片麻巖穹窿的范疇。

      2 中國大陸造山帶中片麻巖穹窿典例

      在前人研究基礎(chǔ)上,筆者根據(jù)片麻巖穹窿所處的大地構(gòu)造背景,結(jié)合中國大陸的片麻巖穹窿研究成果,提出片麻巖穹窿形成的三類大地構(gòu)造背景:(1)與大洋巖石圈板片俯沖增生有關(guān)的島弧巖漿上涌生成的片麻巖穹窿(群),典例為與始特提斯洋巖石圈板片俯沖增生和折返造山有關(guān)的“秦嶺地體片麻巖穹窿”;(2)與碰撞折返造山過程相關(guān)的片麻巖穹窿(群),典例為北喜馬拉雅“拉軌崗日片麻巖穹窿群”和松潘-甘孜印支造山帶中的“雅江片麻巖穹窿群”;(3)復(fù)合型片麻巖穹窿,即早期與大洋巖石圈板片俯沖增生、后期與碰撞折返造山有關(guān)的片麻巖穹窿。如“帕米爾空喀山片麻巖穹窿”和“岡底斯林芝片麻巖穹窿”等。

      2.1 俯沖型片麻巖穹窿

      位于北中國陸塊和南中國陸塊之間的長條狀秦嶺地體,北側(cè)為二郎坪早古生代縫合帶,南側(cè)為商丹早古生代縫合帶,長600km,寬10 ~30km。片麻巖穹窿在秦嶺地體的中部呈橢圓形展布,長寬之比為4∶1。

      圖6 與喀喇昆侖地體南部Shigar 走滑斷裂伴隨的片麻巖穹窿群(據(jù)Mahéo et al.,2004)1-Mangol 穹窿;2-Dassu 穹窿;3-Ho Lungma 穹窿;4-Askole-Panhma 穹窿;5-Hemasil 穹窿Fig.6 The gneiss dome swarm distributed along the Shigar fault in the southern Karakorum terrane (after Mahéo et al.,2004)

      圖7 南喀喇昆侖新近紀(jì)片麻巖穹窿的高溫演化模式(據(jù)Mahéo et al.,2004)(a)由于地幔和地殼巖漿的熱對流產(chǎn)生下地殼的熱和局部熔融;(b)局部熔融的下地殼的底辟上升Fig.7 Model for the high-T evolution of the south Karakorum Neogene gneiss domes(a)heating and partial melting of the lower crust,induced by heat advection from mantle and crustal magmas;(b)development of diapiric ascent of the partly melted lower crust

      秦嶺地體中段是以二元結(jié)構(gòu)為特征,上部為外來疊置巖片,由超基性巖巖片、含超高壓麻粒巖塊體的角閃巖巖片和大理巖-角閃巖-片巖巖片組成,顯示疊置巖片自北向南的推覆;下部為原地的秦嶺群組成秦嶺片麻巖穹窿。秦嶺片麻巖穹窿包括三部分組成:3 個大型的花崗巖體組成核部,伴隨大量混合巖化(許志琴等,1988;張國偉等,1988;Xue et al.,1996;Wang et al.,2009),花崗巖年齡為499 ~421Ma (Wang et al.,2009);花崗巖邊部的花崗片麻巖,以及幔部的角閃巖-麻粒巖相的高級變質(zhì)巖(You et al.,1993 ;楊經(jīng)綏等,2002)(圖9)。大量老的基底年齡(1.8 ~1.7Ga,1.5 ~1.3Ga,0.98 ~0.72Ga)記錄在秦嶺群中(Kr?ner et al.,1993;You et al.,1993;張國偉等,2001;楊經(jīng)綏等,2002;Liu et al.,2011;Wang et al.,2011a,b;本文)。

      圖8 地殼的垂直流動和水平流動產(chǎn)生的構(gòu)造示意圖,根據(jù)地殼垂直和水平流動的函數(shù)比而形成的不同產(chǎn)出的構(gòu)造樣式(據(jù)Whitney et al.,2004)Fig.8 Schematic diagram showing a series of structures produced by vertical versus lateral crustal flow (after Whitney et al.,2004)

      秦嶺片麻巖穹窿中核部由無(或弱)組構(gòu)的花崗巖組成,邊部的花崗片麻巖具有面理和線理的變形組構(gòu);幔部高級變質(zhì)巖由夕線石-石榴石-黑云母-斜長石礦物組合的巴羅型角閃巖相和 >920℃和8.4 ~10.2kbar 條件下形成的含藍(lán)寶石的超高溫麻粒巖相(Xiang et al.,2014)變質(zhì)巖系。變質(zhì)的U-Pb 年齡為440 ~415Ma (Liu et al.,2011;Wang et al.,2011b;Xiang et al.,2012,2014),代表麻粒巖相巖石的變質(zhì)作用時代。

      秦嶺片麻巖穹窿總體為穹型結(jié)構(gòu),北側(cè)面理向北和南側(cè)面理向南呈中等-陡傾產(chǎn)出;西側(cè)向西和東側(cè)向東呈緩傾的面理產(chǎn)狀。由于若干個花崗巖巖體組成次穹窿結(jié)構(gòu),并受到后期構(gòu)造變動的影響,使片麻巖穹窿內(nèi)部面理產(chǎn)狀和褶皺構(gòu)造十分復(fù)雜,在片麻巖穹窿的腹部以發(fā)育軸面陡立的層疊褶皺為主。

      秦嶺片麻巖穹窿邊部花崗片麻巖和高級變質(zhì)巖中普遍發(fā)育近東西向拉伸線理,由拉伸矽線石和角閃石礦物、析離體、長英質(zhì)脈等組成,顯示物質(zhì)西部向西和東部向東運(yùn)動軌跡,代表一種片麻巖穹窿形成的伸展背景??紤]到秦嶺片麻巖穹窿的大量花崗巖體形成與南側(cè)的商丹早古生代洋盆巖石圈板片向北俯沖有關(guān),筆者認(rèn)為秦嶺片麻巖穹窿的形態(tài)、結(jié)構(gòu)和組構(gòu)特征的形成受區(qū)域構(gòu)造背景的南北向擠壓和東西向伸展作用的控制。

      2.2 碰撞型片麻巖穹窿群

      2.2.1 松潘-甘孜造山帶“雅江片麻巖穹窿群”

      雅江片麻巖穹窿群是三疊紀(jì)末期昆侖地體、羌塘地體和揚(yáng)子陸塊碰撞的產(chǎn)物。在大規(guī)模印支期滑脫-逆沖收縮事件之后,發(fā)生晚印支期至燕山期大量地殼重熔“S”型花崗巖侵位,使冷地殼轉(zhuǎn)變?yōu)闊岬貧?,出現(xiàn)以上升的深熔花崗巖體為中心的“熱隆”構(gòu)造(許志琴等,1992)。實(shí)際上,巖體邊部為花崗片麻巖,幔部為三疊紀(jì)變質(zhì)的片巖,屬于片(麻)巖穹窿類型。

      圖9 秦嶺早古生代造山帶中秦嶺中的片麻巖穹窿Fig.9 The gneiss domes in the Central Qinling belt of the Early Paleozoic Qinling orogen

      圖10 雅江地區(qū)三疊紀(jì)西康群中的片麻巖穹窿分布圖1-夕線石帶;2-十字石帶;3-紅柱石帶;4-石榴石帶;5-黑云母帶;6-絹云母-綠泥石帶Fig.10 The distribution of the gneiss domes of the Xikang Group in the Yajiang region1-sillimanite;2-staurolite;3-andalusite;4-garnet;5-biotite;6-sericite-chlorite

      在松潘甘孜地體NW-SE 向鮮水河左行走滑斷裂的西南側(cè)的雅江-道孚縣之間,發(fā)育長征、瓦多、甲基卡和容須卡等片(麻)巖穹窿群(圖10)。穹窿的幾何形態(tài)是以近N-S 向橢圓形為特征,長寬比為2 ~2.5∶1。穹窿的核部是以花崗巖類巖石為特征,發(fā)育面理組構(gòu)的花崗片麻巖,幔部的圍巖為區(qū)域三疊紀(jì)西康群復(fù)理石地層,其礦物組合為綠泥石+白(絹)云母+黑云母+石榴石+少量十字石,經(jīng)歷綠片巖相區(qū)域變質(zhì)作用;在穹窿形成過程中,發(fā)生同構(gòu)造軟化的高溫?zé)嶙冑|(zhì)作用,自里向外為夕線石變質(zhì)帶、十字石變質(zhì)帶、紅柱石變質(zhì)帶、石榴石變質(zhì)帶、黑云母變質(zhì)帶和絹云母-綠泥石變質(zhì)帶。根據(jù)熱溫度計計算結(jié)果,估計夕線石+十字石-紅柱石+石榴石+黑云母礦物組合形成溫度為T =550 ~650℃,P=4 ×105~5 ×105Pa。后期由于小型花崗巖的侵入,在邊部發(fā)生疊加熱接觸變質(zhì)作用,主要形成礦物為堇青石+電氣石+紅柱石;最后階段為退變質(zhì)作用,為黑云母+白云母+絹云母+綠泥石組合,形成壓力P=3 ×105~4 ×105Pa 和溫度T=450 ~500℃(許志琴等,1992)(圖11)。

      2.2.2 北喜馬拉雅“拉軌崗日片麻巖穹窿群”

      圖11 雅江地區(qū)長征片麻巖穹窿的構(gòu)造剖面圖Fig.11 The cross-section of the Changzheng gneiss dome in the Yajiang region

      圖12 北喜馬拉雅拉軌崗日片麻巖穹窿群分布圖(據(jù)Zeng et al.,2011)Fig.12 Simplified geological map of the Himalayan orogenic belt,southern Tibet showing the Laguigangri gneiss dome swarm(after Zeng et al.,2011)

      圖13 與新特提斯洋巖石圈板片俯沖和碰撞造山有關(guān)的林芝片麻巖穹窿(據(jù)Zhang et al.,2010)Fig.13 Geological map of the Linzhi gneiss dome,it was formed by the combination of the subduction of the Neo-Tethys and the collisional orogeny processes (after Zhang et al.,2010)

      拉軌崗日片麻巖穹窿帶(也稱藏南變質(zhì)核雜巖帶或北喜馬拉雅片麻巖穹窿帶)呈東西向展布,分布于雅江蛇綠混雜帶與北喜馬拉雅坳陷帶之間,其北部以薩迦逆沖斷層與雅江蛇綠混雜巖帶接觸,南部以定日-崗巴逆沖斷層與北喜馬拉雅坳陷帶接觸,更南則以藏南拆離系與高喜馬拉雅帶分開。該片麻巖穹窿帶內(nèi)存在多個片麻巖穹窿,表現(xiàn)為由一系列核部發(fā)育花崗巖體的具有伸展構(gòu)造性質(zhì)的熱穹窿(也叫熱隆)組成的隆起帶,該帶自東向西分別出露也拉香波、康瑪、拉軌崗日、普弄抗日、阿馬、馬拉山等多個片麻巖穹窿(張金陽等,2003;Guo et al.,2008;高利娥等,2011;辜平陽等,2013)(圖12)。此外,拉軌崗日片麻巖穹窿核部多發(fā)育有淡色花崗巖體,即為拉軌崗日淡色花崗巖帶(又稱北喜馬拉雅淡色花崗巖帶)(張金陽等,2003;張進(jìn)江等,2011;Gao et al.,2013)。在部分片麻巖穹窿核部出露有高Sr/Y 比值的二云母花崗巖,如也拉香波片麻巖穹窿(Zeng et al.,2011),表明拉軌崗日片麻巖穹窿帶穹窿核部有多期巖體侵位事件發(fā)生。

      拉軌崗日片麻巖穹窿帶內(nèi),盡管各個穹窿在產(chǎn)出狀態(tài)和出露規(guī)模上存在一定的差異,但總體上顯示相似的特征,核部由高級變質(zhì)巖和侵入其中的多期花崗巖組成,邊部為淺變質(zhì)或未變質(zhì)的特提斯沉積巖系,核部和邊部為韌性拆離斷層接觸(高利娥等,2011)。高級變質(zhì)巖分布于穹窿核部,由眼球狀花崗片麻巖、石榴石黑云母花崗質(zhì)片麻巖、含石榴石的泥質(zhì)片麻巖、角閃巖、石榴角閃巖、石榴輝石巖、綠簾石巖,含透輝石大理巖等組成,新生代花崗巖侵入其中,且普遍發(fā)育有混合巖化變質(zhì),巖石變形強(qiáng)烈,廣泛發(fā)育有剪切流變褶皺(袁晏明等,2003;高利娥等,2011)。片麻巖核部花崗巖體近等軸狀分布,花崗巖體邊緣片麻理發(fā)育。蓋層明顯地受多期巖漿侵入及其相關(guān)的熱活動的影響,發(fā)育次級拆離斷層和脆性正斷層,拆離斷層沿著能干性不同的巖性界面順層發(fā)育,以中等到低角度產(chǎn)出,斷層面在地表的傾角一般為30° ~45°,帶動核部變質(zhì)雜巖上升,導(dǎo)致其揭頂和剝露,引起基底與蓋層之間滑脫拆離(辜平陽等,2013)。蓋層中變質(zhì)地層之間變質(zhì)程度存在明顯的漸變過渡關(guān)系,由內(nèi)到外,分別為片麻狀、片狀、千枚狀和板狀;變質(zhì)分帶現(xiàn)象明顯,由內(nèi)到外可分為石榴子石帶和綠泥石帶等。變質(zhì)帶中石榴子石、黑云母、白云母和綠泥石中的某些元素(如Fe 、Mg )在剖面上呈規(guī)律性變化。拉軌崗日蓋層變質(zhì)帶的變質(zhì)溫度由內(nèi)而外逐漸降低(702 ~466℃),表明以片麻巖和淡色花崗巖為主體的片麻巖穹窿核部可能是蓋層變質(zhì)巖形成的主要熱源(袁晏明等,2003)。

      少部分片麻巖穹窿的核部花崗巖(或花崗片麻巖)形成時代較老(566 ~507Ma)(Lee et al.,2000;Cawood et al.,2007;Quigley et al.,2008;辜平陽等,2013),巖石地球化學(xué)顯示其主要形成于碰撞造山的擠壓環(huán)境向后碰撞造山的伸展背景轉(zhuǎn)化階段,可能是泛非造山事件在北喜馬拉雅的地質(zhì)記錄(辜平陽等,2013)。多數(shù)穹窿中的花崗巖為新生代花崗巖(44 ~10Ma),巖性以淡色花崗巖和二云母花崗巖為主(Sch?rer et al.,1986;Harrison et al.,1997;張金陽等,2003;張進(jìn)江等,2011;King et al.,2011;Zeng et al.,2011;Gao et al.,2013)。44 ~43Ma 花崗巖的形成可能與喜馬拉雅碰撞造山帶的早期由于俯沖板片的回卷或斷離導(dǎo)致的碰撞帶上下盤同時發(fā)生的部分熔融有關(guān)(高利娥等,2011)。約35 ~15Ma 藏南拆離系發(fā)生伸展減薄,引發(fā)大規(guī)模的淡色花崗巖的侵位,繼而底辟形成片麻巖穹窿,代表了區(qū)域性的構(gòu)造體制由擠壓轉(zhuǎn)為伸展,此后的構(gòu)造體制則由東西向的伸展所取代(Guo et al.,2008;張進(jìn)江等,2011)。

      2.3 俯沖+碰撞復(fù)合型片麻巖穹窿群

      2.3.1 岡底斯林芝片麻巖穹窿

      圖14 岡底斯東段與新特提斯洋俯沖有關(guān)的林芝片麻巖穹窿的形成模式(據(jù)Zhang et al.,2010)Fig.14 The genesis model of the Linzhi gneiss dome at the eastern segment of the Gangdese terrane related to Neo-Tethys oceanic subduction (after Zhang et al.,2010)

      在東喜馬拉雅構(gòu)造結(jié)以西的拉薩地體一側(cè),為岡底斯巖漿帶之東端的林芝地區(qū),構(gòu)成新特提斯俯沖帶的上盤,下盤高喜馬拉雅地體代表俯沖的印度陸塊。岡底斯巖漿帶由大量120 ~20Ma 的花崗巖基組成,在林芝地區(qū),核部花崗巖、邊部花崗片麻巖以及周圍幔部的中-高級變質(zhì)巖石組成若干個次片麻巖穹窿(即片麻巖穹窿群)(圖13)。研究表明,林芝地區(qū)幔部變質(zhì)巖主要經(jīng)歷了多期變質(zhì)作用:早期的麻粒巖相事件(90Ma),中期麻粒巖相變質(zhì)作用和部分熔融事件(67~52Ma),晚期的角閃巖相事件(36 ~33Ma)(Zhang et al.,2010,2013),可以確定前兩期發(fā)生在中-下地殼的巖漿和變質(zhì)作用與新特提斯雅魯藏布大洋巖石圈板片的俯沖有關(guān),后期變質(zhì)事件是印度/亞洲碰撞折返的結(jié)果。片麻巖穹窿核部90Ma 的紫蘇花崗巖、65 ~56Ma 的I 型花崗巖和30Ma 的花崗巖構(gòu)成復(fù)式巖體,表明由局部熔融造成的地殼流上升導(dǎo)致的花崗巖漿事件在俯沖和碰撞兩個階段有多期發(fā)生(圖14)。由此認(rèn)為林芝片麻巖穹窿群為“俯沖+碰撞復(fù)合型”片麻巖穹窿群。

      2.3.2 帕米爾空喀山片麻巖穹窿

      大量片麻巖穹窿發(fā)育在喜馬拉雅西構(gòu)造結(jié)的帕米爾山脈,暴露在中帕米爾和南帕米爾地體中的大量的片麻巖穹窿的變質(zhì)作用發(fā)生在漸新世-中新世(Schmidt et al.,2011),Robinson et al.(2012)認(rèn)為北帕米爾地體的空喀山片麻巖穹窿形成于早-中三疊世。

      圖15 北東帕米爾空喀山片麻巖穹窿三維構(gòu)造模式圖Fig.15 3D tectonic model of the Kongur gneiss dome at the NE Pamir

      空喀山片麻巖穹窿位于北帕米爾地體的東北部,青藏高原甜水海-松潘甘孜地體的西部,片麻巖穹窿呈NW-SE 向橢圓形展布,長寬之比為4∶1??湛ι狡閹r穹窿主要由核部的花崗閃長巖巖基、具有巖漿組構(gòu)的邊部花崗片麻巖和混合巖,以及幔部角閃巖-麻粒巖Barrovian 相變質(zhì)巖石組成(圖15)。空喀山片麻巖穹窿中的變質(zhì)巖系經(jīng)歷峰期變質(zhì)(P =4.7 ~7.4kbar 和T=686 ~730℃)和退變質(zhì)作用(P =2.6 ~5.1kbar 和T=555 ~631℃)過程,核部花崗閃長巖和幔部片麻巖的同位素年代學(xué)和鋯石Hf 同位素分析及CL 圖像資料表明,巖漿作用發(fā)生在ca.224 ~220 Ma,巖漿源主要來自中下地殼的再造??湛ι狡閹r穹窿經(jīng)歷了與古特提斯俯沖相關(guān)的巖漿作用和幾乎同時的中-高級變質(zhì)作用。來自空喀山西部的拆離斷層上盤片巖石榴石中的獨(dú)居石包體的定年為230 ~200Ma,代表上盤石榴石生長和峰期變質(zhì)發(fā)生的時代(Robinson et al.,2004)。因此,我們提出空喀山花崗巖基與中-高級變質(zhì)作用的形成具有同時性,在早三疊世時期,與金沙江洋盆巖石圈板片俯沖相關(guān)的活動陸緣的中-下地殼高溫巖漿弧環(huán)境導(dǎo)致深層巖漿和變質(zhì)事件的發(fā)生,在中下地殼形成以空喀山片麻巖穹窿為主體的古特提斯巖漿弧根;在晚三疊世-早侏羅世折返造山的伸展和減壓的環(huán)境下,片麻巖穹窿弧根開始上升。

      繼后,在中新世16Ma 開始,空喀山拆離系迅速啟動,根據(jù)空喀山片麻巖穹窿頂部長英質(zhì)片麻巖石榴石中的獨(dú)居石包體的Th-Pb 年齡為9.3Ma,Ar-Ar 黑云母6Ma 的冷卻年齡(Robinson et al.,2004);表明經(jīng)歷了與印度/ 亞洲碰撞在區(qū)域性的地殼加厚之后,位于中下地殼巖漿弧根的空喀山片麻巖穹窿快速上升,裸露地表,生成變質(zhì)核雜巖構(gòu)造。因此,空喀山片麻巖穹窿經(jīng)歷了金沙江古特提斯洋盆巖石圈板片向東(或北)俯沖產(chǎn)生的中下地殼巖漿弧根增生,和中新世以來印度/亞洲碰撞引起空喀山片麻巖穹窿快速上隆的變質(zhì)核雜巖機(jī)制制約,是典型的”俯沖+ 碰撞”復(fù)合型片麻巖穹窿。

      3 結(jié)語

      片麻巖穹窿是在折返造山過程中形成的穹窿狀構(gòu)造,它的成因機(jī)制探索已經(jīng)成為重塑各類造山過程的重要構(gòu)造元素。片麻巖穹窿是以核部無(或弱)巖漿組構(gòu)的花崗巖類和混合巖化巖石、邊部具有巖漿組構(gòu)的花崗片麻巖,幔部由來自地殼深部的高級片巖、片麻巖和其他類型變質(zhì)巖為特征的“構(gòu)造集合體”或“特殊構(gòu)造單元”,是巖漿(含混合巖化)、變質(zhì)和變形共同作用的產(chǎn)物,是不同造山過程中某些階段的重要標(biāo)志。通過分析全球典型片麻巖穹窿的巖石組合、構(gòu)造特征、形成機(jī)制和大地構(gòu)造背景,結(jié)合對中國大陸片麻巖穹窿(群)特征的研究和歸納,發(fā)現(xiàn)中國大陸顯生宙的片麻巖穹窿(群)從成因機(jī)制和構(gòu)造背景上可以劃分為“俯沖型”、“碰撞型”和“復(fù)合式”三種片麻巖穹窿(群)?!案_型”片麻巖穹窿(群)的形成與大洋巖石圈板片俯沖增生與繼后折返造山相關(guān),代表性例子如秦嶺片麻巖穹窿;“碰撞型”片麻巖穹窿(群)的形成與碰撞折返造山有關(guān),如北喜馬拉雅拉軌崗日片麻巖穹窿(群)和松潘甘孜雅江片麻巖穹窿(群);“復(fù)合式”片麻巖穹窿(群)的形成與俯沖和碰撞的疊合作用有關(guān),以東岡底斯林芝片麻巖穹窿(群)和帕米爾空喀山片麻巖穹窿為典型代表。東岡底斯林芝片麻巖穹窿代表來自下地殼同時發(fā)生的巖漿、變質(zhì)和變形作用的記錄,其最初的形成與雅魯藏布江新特提斯大洋巖石圈板片向北俯沖到拉薩地體之下有關(guān),并疊加了新特提斯洋關(guān)閉后陸-陸碰撞階段的多期巖漿事件。林芝片麻巖穹窿的出露,表明該地區(qū)經(jīng)歷了大幅度的抬升,與新特提斯洋俯沖有關(guān)的弧巖漿的根部已經(jīng)裸露。查明整個岡底斯地體中與俯沖增生和碰撞有關(guān)的片麻巖穹窿的形成背景,有利于認(rèn)識岡底斯巖漿弧的形成和演化過程,并揭示不同類型、不同期次巖漿帶與多金屬礦集區(qū)的形成、分布、出露和保存情況的聯(lián)系。

      致謝 王勤教授對文稿進(jìn)行認(rèn)真審閱,并提出了寶貴修改意見;與張澤明研究員進(jìn)行了有益的討論;張淼工程師為本文繪制部分圖件;在此一并表示感謝。

      Amato JM,Wright JE,Gans PB and Miller EL. 1994. Magmatically induced metamorphism and deformation in the Kigluaik gneiss dome,Seward Peninsula,Alaska. Tectonics,13:515 -527

      Amato JM,Heizler MT,Boullion AO,Sanders AE,Toro J,McLemore VT and Andronicos CL. 2011. Syntectonic 1.46Ga magmatism and rapid cooling of a gneiss dome in the southern Mazatzal Province:Burro Mountains,New Mexico. GSA Bulletin,123:1720 -1744

      Andresen A,Augland LE,Boghdady GY,Lundmark AM,Elnady OM,Hassan MA and Abu El-Rus MA. 2010. Structural constraints on the evolution of the Meatiq Gneiss Dome (Egypt),East-African Orogen.Journal of African Earth Sciences,57:413 -422

      Arenas R,Martínez Catalán JR,Sánchez Martínez S,Díaz García F,Abati J,F(xiàn)ernández-Suárez J,Andonaegui P and Gómez-Barreiro J.2007. Paleozoic ophiolites in the Variscan suture of Galicia(Northwest Spain):Distribution,characteristics and meaning. In:Hatcher Jr. RD,Carlson MP,McBride JH and Martínez Catalán JR(eds.). Four-D Evolution of Continental Crust. Geol. Soc. Am.Mem.,200:425 -444

      Arnold J,Sandiford M and Wetherley S. 1995. Metamorphic events in the eastern Arunta Inlier; Part 1, Metamorphic petrology.Precambrian Research,71:183 -205

      Ayarza P and Martínez Catalán JR. 2007. Potential field constraints on the deep structure of the Lugo gneiss dome (NW Spain).Tectonophysics,439:67 -87

      Beaumont C,Jamieson RA,Nguyen MH and Lee B. 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature,414:738 -742

      Buick IS and Holland TJB. 1989. The P-T-t path associated with crustal extension,Naxos,Cyclades,Greece. In:Daly JS,Cliff RA and Yardley BWD. (eds.). Evolution of Metamorphic Belts. Geological Society of London,Special Publication,43:365 -369

      Burg JP,Guiraud M,Chen GM and Li GC. 1984. Himalayan metamorphism and deformations in the North Himalayan Belt(southern Tibet,China). Earth and Planetary Science Letters,69:391 -400

      Burg JP,Kaus BJP and Podladchikov YY. 2004. Dome structures in collision orogens: Mechanical investigation of the gravity/compression interplay. Geological Society of America Special Paper,380:47 -66

      Brown RL,Journeay JM,Lane LS,Murphy DC and Rees CJ. 1986.Obduction,back-folding and piggyback thrusting in the metamorphic hinterland of the southeastern Canadian Cordillera. Journal of Structural Geology,8:255 -268

      Brun JP. 1980. The cluster-ridge pattern of mantled gneiss domes in eastern Finland:Evidence for large-scale gravitational instability in the Proterozoic crust. Earth and Planetary Science Letters,47:441-449

      Brun JP,Sokoutis D and Van Den Driessche J. 1994. Analogue modeling of detachment fault systems and core complexes. Geology,22:319-322

      Buck WR. 1991. Modes of continental lithospheric extension. Journal of Geophysical Research,96:20161 -20178

      Calvert A,Gans PB and Amato JM. 1999. Diapiric ascent and cooling of a sillimanite gneiss dome revealed by40Ar/39Ar thermochronology:The Kigluaik Mountains,Seward Peninsula,Alaska. In:Ring U et al. (eds.). Exhumation Processes:Normal Faulting,Ductile Flow,and Erosion. Geological Society of London,Special Publication,154:205 -232

      Cawood PA,Johnson MRW and Nemchin AA. 2007. Early Palaeozoic orogenesis along the Indian margin of Gondwana:Tectonic response to Gondwana assembly. Earth and Planetary Science Letters,255:70 -84

      Chardon D,Choukroune P and Jayananda M. 1998. Sinking of the Dharwar Basin (South India):Implications for Archaean tectonics.Precambrian Research,91:15 -39

      Chen Z,Liu Y,Hodges KV,Burchfiel BC,Royden LH and Deng C.1990. The Kangmardome:A metamorphic core complex in southern Xizang (Tibet). Science,250:1552 -1556

      Collins WJ,Van Kranendonk MJ and Teyssier C. 1998. Partial convective overturn of Archean crust in the East Pilbara Craton,western Australia:Driving mechanism and tectonic implications.Journal of Structural Geology,20:1405 -1424

      Crowley JL,Brown RL and Parrish RR. 2001. Diachronous deformation and a strain gradient beneath the Selkirk Allochthon,northern Monashee complex,southeastern Canadian Cordillera. Journal of Structural Geology,23:1103 -1121

      Cui JJ,Hu JM and Liu XC. 2009. Exhumation of high-pressure metamorphic terrane at the crustal levels in the Tongbai area,central China. Acta Petrologica Sinica,25(9):2165 -2176 (in Chinese with English abstract)

      Debon F,Le Fort P,Dautel D,Sonet J and Zimmermann JL. 1987.Granites of western Karakorum and northern Kohistan (Pakistan):A composite Mid-Cretaceous to Upper Cenozoic magmatism:Lithos,20:19 -40

      Denèle Y,Olivier P,Gleizes G and Barbey P. 2009. Decoupling between the middle and upper crust during transpression-related lateral flow:Variscan evolution of the Aston gneiss dome (Pyrenees,F(xiàn)rance). Tectonophysics,477:244 -261

      Duncan IJ. 1984. Structural evolution of the Thor-Odin gneiss dome.Tectonophysics,101:87 -130

      Edwards MA,Kidd WSF and Schneider DA. 2002. A guide to dome improvement,Lesson 1:Is your dome built on granite or gneiss?Geological Society of America Abstracts with Programs,34(6):109

      Escuder Viruete J,Indares A and Arenas R. 2000. P-T paths derived from garnet growth zoning in an extensional setting:An example from the Tormes Gneiss Dome (Iberian Massif,Spain). Journal of Petrology,41:1489 -1515

      Eskola PE. 1949. The problem of mantled gneiss domes. Quarterly Journal of the Geological Society of London,104:461 -476

      Fayon AK,Whitney DL and Teyssier C. 2004. Exhumation of orogenic crust:Diapiric ascent versus low-angle normal faulting. Geological Society of America Special Paper,380:129 -139

      Fisher GW and Olsen SN. 2004. The Baltimore gneiss domes of the Maryland Piedmont. Geological Society of America Special Paper,380:307 -320

      Fletcher RC. 1972. Application of a mathematical model to the emplacement of mantled gneiss domes. American Journal of Science,272:197 -216

      Fletcher RC and Hallet B. 2004. Initiation of gneiss domes by necking,density instability,and erosion. Geological Society of America Special Paper,380:79 -95

      Gao LE,Zeng LS and Xie KJ. 2011. Eocene high grade metamorphism and crustal anatexis in the North Himalaya Gneiss Domes,Southern Tibet. Chinese Science Bulletin,56:3078 -3090 (in Chinese)

      Gao LE,Zeng LS and Hou KJ. 2013. Episodic crustal anatexis and the formation of Paiku composite leucogranitic pluton in the Malashan gneiss dome,Southern Tibet. Chinese Science Bulletin,58:3546 -3563

      Gervais F,Nadeau L and Malo M. 2004. Migmatitic structures and solidstate diapirism in orthogneiss domes,eastern Grenville Province,Canada. Geological Society of America Special Paper,380:359-378

      Guo L, Zhang JJ and Zhang B. 2008. Structures, kinematics,thermochronology and tectonic evolution of the Ramba gneiss dome in the northern Himalaya. Progress in Natural Science,18:851 -860

      Gu PY,He SP,Li RS,Wang C,Shi C,Dong ZC,Wu JL and Wang Y.2013. Geochemical features and tectonic significance of granitic gneiss of Laguigangri metamorphic core complexes in southern Tibet.Acta Petrologica Sinica,29 (3):756 - 768 (in Chinese with English abstract)

      Harrison TM,Oscar ML and Marty G. 1997. New insight into the origin of two contrasting Himalayan granite belts. Geology,25:899 -902

      Jolivet L,F(xiàn)amin V,Mehl C,Parra T,Aubourg C,Hébert R and Philippot P. 2004. Strain localization during crustal-scale boudinage to form extensional metamorphic domes in the Aegean Sea.Geological Society of America Special Paper,380:185 -210

      King J,Harris N and Argles T. 2011. The contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet.Geol. Soc. Amer. Bull.,123:218 -239

      Kr?ner A,Zhang GW and Sun Y. 1993. Granulites in the Tongbai area,Qinling belt, China: Geochemistry, petrology, single zircon geochronology,and implications for the tectonic evolution of eastern Asia. Tectonics,12(1):245 -255

      Lagarde JL,Dallain C,Ledru P and Courrioux G. 1994. Strain pattern within the Variscan granite dome of Velay,F(xiàn)rench Massif Central.Journal of Structural Geology,16:839 -852

      Ledru P, Courrioux G, Dallain C, Lardeaux JM, Montel JM,Vanderhaeghe O and Vitel G. 2001. The Velay dome (French Massif Central):Melt generation and granite emplacement during orogenic evolution. Tectonophysics,342:207 -237

      Lee J,Hacker BR,Dinklage WS,Wang Y,Gans P,Calvert A,Wan J,Chen W,Blythe AE and McLelland W. 2000. Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constraints. Tectonics,19:872 -895

      Lee J,Hacker B and Wang Y. 2004. Evolution of North Himalayan gneiss domes:Structural and metamorphic studies in Mabja Dome,southern Tibet. Journal of Structural Geology,26:2297 -2316

      Lemennicier Y. 1996. Le complexe métamorphique du Sud Karakorum dans le secteur de Chogo Lungma (Balistan-Nord Karakorum)-Etude structurale,métamorphique,géochimique et radiochronologique.Ph.D. Dissertation. Grenoble,Université Joseph Fourier,1 -171

      Lister GS and Davis GA. 1989. The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region,USA. Journal of Structural Geology,11:65 -94

      Liu XC,Jahn BM,Hu J,Li SZ,Liu X and Song B. 2011. Metamorphic patterns and SHRIMP zircon ages of medium-to-high grade rocks from the Tongbei orogen, central China: Implications for multiple accretion/collision processes prior to terminal continental collision.Journal of Metamorphic Geology,29:979 -1002

      Mahéo G,Pêcher A,Guillot S,Rolland Y and Delacourt C. 2004.Exhumation of Neogene gneiss domes between oblique crustal boundaries in south Karakorum (northwest Himalaya,Pakistan).Geological Society of America Special Paper,380:141 -154

      Martínez Catalán JR,Arenas R,Díaz garcía F,Gómez-Barreiro J,Gónzalez Cuadra P,Abati J,Casti?eiras P,F(xiàn)ernández-Suárez J,Sánchez Martínez S,Andonaegui P,Gónzalez Clavijo E,Díez Montes A,Rubio Pascual FJ and Valle Aguado B. 2007. Space and time in the tectonic evolution of the northwestern Iberian Massif:Implications for the comprehension of the Variscan belt. In:Hatcher Jr. RD,Carlson MP,McBride JH and Martínez Catalán JR (eds.).Four-D Evolution of Continental Crust. Geol. Soc. Am. Mem.,200:403 -423

      Norlander BN,Whitney DL,Teyssier C and Vanderhaeghe O. 2002.Partial melting and decompression of the Thor-Odin dome,Shuswap metamorphic core complex,Canadian Cordillera. Lithos,61:103 -125

      Olivier Ph,Gleizes G and Paquette JL. 2004. Gneiss domes and granite emplacement in an obliquely convergent regime:New interpretation of the Variscan Agly Massif (Eastern Pyrenees,F(xiàn)rance). Geological Society of America Special Paper,380:1 -14

      Paterson SR,F(xiàn)owler Jr. TK,Schmidt KL,Yoshinobu AS,Yuan ES and Miller RB. 1998. Interpreting magmatic fabric patterns in plutons.Lithos,44:53 -82

      Pêcher A and Le Fort P. 1999. Late Miocene tectonic evolution of the Karakoram-Nanga Parbat contact zone (northern Pakistan). In:Macfarlane A,Sorkhabi RB and Quade J (eds.). Himalaya and Tibet:Mountain Roots to Mountain Tops. Boulder,Colorado:Geological Society of America Special Paper,328:145 -158

      Quigley MC,Yu LJ and Gregory C. 2008. U-Pb SHRIMP zircon geochronology and T-t-d history of the Kampa Dome,southern Tibet.Tectonophysics,446:97 -113

      Ramberg H. 1981. Gravity,Deformation,and the Earth’s Crust:In Theory,Experiments,and Geological Application. New York:Academic Press,1 -452

      Ramsay JG and Huber MI. 1987. The Techniques of Modern Structural Geology;Volume 2:Folds and Fractures:London:Academic Press,1 -462

      Reesor JE and Moore JM. 1971. Thor-Odin dome,Shuswap metamorphic complex,British Columbia. Geological Survey of Canada Bulletin,195:146

      Rey P. 2001. From continental thickening and divergent collapse to active continental rifting. In:Miller JA et al. (eds.). Continental Reactivation and Reworking. Geological Society of London,Special Publication,184:77 -88

      Robinson AC,Yin A,Manning CE,Harrison TM,Zhang SH and Wang XF. 2004. Tectonic evolution of the northeastern Pamir:Constraints from the northern portion of the Cenozoic Kongur Shan extensional system,western China. GSA Bulletin,116:953 -973

      Robinson AC,Ducea M and Lapen TJ. 2012. Detrital zircon and isotopic constraints on the crustal architecture and tectonic evolution of the northeastern Pamir. Tectonics,31:TC2016

      Rolland Y,Mahéo G,Guillot S and Pêcher A. 2001. Tectonometamorphic evolution of the Karakorum Metamorphic complex(Dassu-Askole area,NE Pakistan):Exhumation of mid-crustal HTMP gneisses in a convergent context. Journal of Metamorphic Geology,19:717 -737

      Sánchez Martínez S,Arenas R,Díaz García F,Martínez Catalán JR,Gómez-Barreiro J and Pearce JA. 2007. The Careón Ophiolite,NW Spain:Supra-subduction zone setting for the youngest Rheic Ocean floor. Geology,35:53 -56

      Sch?rer U,Xu R and Allegre C. 1986. U-(Th)-Pb systematics and ages of Himalayan leucogranites,South Tibet. Earth and Planetary Science Letters,77:35 -48

      Schmidt J,Hacker BR,Ratschbacher L,Stubner K,Stearns M,Kylander-Clark A,Cottle JM,Alexander A,Webb G,Gehrels G and Minaev V. 2011. Cenozoic deep crust in the Pamir. Earth and Planetary Science Letters,312:411 -421

      Schneider DA,Holm DK,O’Boyle C,Hamilton M and Jercinovic M.2004. Paleoproterozoic development of a gneiss dome corridor in the southern Lake Superior region,USA. Geological Society of America Special Paper,380:339 -357

      Siddoway CS,Richard SM,F(xiàn)anning CM and Luyendyk BP. 2004. Origin and emplacement of a Middle Cretaceous gneiss dome,F(xiàn)osdick Mountains,West Antarctica. Geological Society of America Special Paper,380:267 -294

      Soula JC. 1982. Characteristics and mode of emplacement of gneiss domes and plutonic domes in central-eastern Pyrenees. Journal of Structural Geology,4:313 -342

      Spear FS,Kohn MJ,Cheney JT and Florence F. 2002. Metamorphic,thermal,and tectonic evolution of central New England. Journal of Petrology,43:2097 -2120

      Stipska P,Schulmann K and Hock V. 2000. Complex metamorphic zonation of the Thaya dome:Result of buckling and gravitational collapse of an imbricated nappe sequence. In:Cosgrove JW and Ameen MS (eds.). Forced Folds and Fractures. Geological Society of London,Special Publication,169:197 -211

      Stübner K,Ratschbacher L and Weise C. 2013. The giant Shakhdara migmatitic gneiss dome,Pamir,India-Asia collision zone:2. Timing of dome formation. Tectonics,32:1404 -1431

      Teyssier C and Whitney D. 2002. Gneiss domes and orogeny. Geology,30:1139 -1142

      Tinkham DK and Marshak S. 2004. Precambrian dome-and-keel structure in the Penokean orogenic belt of northern Michigan, USA.Geological Society of America Special Paper,380:321 -338

      Tirel C,Brun JP and Burov E. 2004. Thermomechanical modeling of extensional gneiss domes. Geological Society of America Special Paper,380:67 -78

      Vanderhaeghe O,Teyssier C and Wysoczanski R. 1999. Structural and geochronological constraints on the role of partial melting during the formation of the Shuswap metamorphic core complex at the latitude of the Thor-Odin Dome,British Columbia. Canadian Journal of Earth Sciences,36:917 -943

      Vanderhaeghe O. 2004. Structural development of the Naxos migmatite dome. Geological Society of America Special Paper,380:211 -227 Vernon RH. 2000. Review of microstructural evidence of magmatic and solid-state flow. Electronic Geosciences,5:2

      Wang GC and Sang LK. 1996. A gigantic A-type antiform and its tectonic setting in Tongbai gneiss complex,eastern Tongbai orogeny,central China. Earth Science,21(3):291 -294 (in Chinese with English abstract)

      Wang H,Wu YB,Gao S,Liu XC,Gong HJ,Li QL,Li XH and Yuan HL. 2011a. Eclogite origin and timing in the North Qinling terrane,and their bearing on the amalgamation of the South and North China Blocks. Journal of Metamorphic Geology,29:1019 -1031

      Wang H,Wu YB,Gao S,Zhang HF,Liu XC,Gong HJ,Peng M,Wang J and Yuan HL. 2011b. Silurian granilite-facies metamorphism,and coeval metamorphism and crustal growth in Tongbai orogen,central China. Lithos,125:249 -271

      Wang T,Wang XX,Tian W,Zhang CL,Li WP and Li S. 2009. North Qinling Paleozoic granite associations and their variation in space and time:Implications for orogenic processes in the orogens of central China. Science in China (Series D),52:1359 -1384

      Whitney DL,Teyssier C and Vanderhaeghe OV. 2004. Gneiss domes and crustal flow. Geological Society of America Special Paper,380:1 -20

      Xiang H,Zhang L,Zhong ZQ,Santosh M,Zhou HW,Zhang HF,Zheng JP and Zheng S. 2012. Ultrahigh-temperature metamorphism and anticlockwise PTt path of Paleozoic granulites from North Qinling-Tongbai orogen,central China. Condwana Research,21:559 -576

      Xiang H,Zhong ZQ,Li Y,Qi M,Zhou HW,Zhang L,Zhang ZM and Santosh M. 2014. Sappirine-bearing granulites from the Tongbai orogen, China: Petrology, phase eguilibria, zircon U-Pb geochronology and implications for Paleozoic ultrahign temperature metamorphism. Lithos,208:446 -461

      Xu ZQ. 1988. The Formation of Eastern Qinling Orogen-Deformation,Evolution and Dynamics. Beijing:China Environmental Science Press,1 -193 (in Chinese)

      Xu ZQ,Hou LW,Wang ZX et al. 1992. The Orogeny of the Chinese Songpan-Ganze Orogen. Beijing:Geological Publishing House (in Chinese)

      Xu ZQ,Yang JS,Li HB,Zhang JX and Wu CL. 2007. The Orogeny Tibetan Plateau:The Accretion,Collision and Exhumation of Terranes. Beijing:Geological Publishing House (in Chinese)

      Xue F,Kroner A,Reischmann T and Lerch F. 1996. Paleozoic pre-and post-collision calcalkaline magmatism in the Qinling orogenic belt,Central China,as documented by zircon ages on granitoid rocks.Journal of the Geological Society,153:409 -417

      Yang JS,Xu ZQ,Pei XZ,Shi RD,Wu CL,Zhang JX,Li HB,Meng FC and Rong H. 2002. Discovery of diamond in North Qinling:Evidence for a giant UHPM belt across central China and recognition of Paleozoic and Mesozoic dual deep subduction between North China and Yangtze plates. Acta Geologica Sinica,76(4):484 -495 (in Chinese with English abstract)

      Yin A. 2004. Gneiss domes and gneiss dome systems. Geological Society of America Special Paper,380:1 -14

      You ZD,Han YJ,Suo ST,Chen NS and Zhong ZQ. 1993. Metamorphic history and tectonic evolution of the Qinling Complex,eastern Qinling Mountains,China. Journal of Metamorphic Geology,11(4):549 -560

      Yuan YM,Li DW,Zhang XH,Lu L and Li QL. 2003. Characteristics and geological meaning of metamorphic zonation of top Laguigangri metamorphic core complex,Tibet. Earth Science,28(6):690 -694 (in Chinese with English abstract)

      Zeng LS,Gao LE,Xie KJ and Zeng JL. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan gneiss domes:Melting thickened lower continental crust. Earth and Planetary Science Letters,303:251 -266

      Zhang GW et al. 1988. Formation and Evolution of the Qinling Mountains. Xi’an:Northwest University Press,1 - 192 (in Chinese)

      Zhang GW,Zhang BR and Yuan XC. 2001. The Qinling Orogeny and Continental Dynamics. Beijing:Science Press,1 - 855 (in Chinese)

      Zhang JJ,Yang XY,Qi GW and Wang DC. 2011. Geochronology of the Malashan dome and its application in formation of the Southern Tibet detachment system (STDS)and Northern Himalaya gneiss domes(NHGD). Acta Petrologica Sinica,27(12):3535 - 3544 (in Chinese with English abstract)

      Zhang JY,Liao QA,Li DW,Zhang XH and Yuan YM. 2003.Laguigangri leucogranites and its relation with Laguigangri metamorphic core complex in Sajia,South Tibet. Earth Sciences,28(6):695 -701 (in Chinese with English abstract)

      Zhang ZM,Zhao GC,Santosh M,Wang JL,Dong X and Shen K. 2010.Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith,southeastern Tibet:Evidence for Neo-Tethyan mid-ocean ridge subduction?Gondwana Research,17:615 -631

      Zhang ZM,Dong X,Xiang H,Liou JG and Santosh M. 2013. Building of the deep Gangdese arc,South Tibet:Paleocene plutonism and granulite-facies metamorphism. Journal of Petrology,54:2547-2580

      附中文參考文獻(xiàn)

      崔建軍,胡健民,劉曉春.2009.桐柏地區(qū)高壓變質(zhì)地體在地殼中的抬升機(jī)制.巖石學(xué)報,25(9):2165 -2176

      高利娥,曾令森,謝克家.2011.北喜馬拉雅片麻巖穹窿始新世高級變質(zhì)和深熔作用的厘定.科學(xué)通報,56:3078 -3090

      辜平陽,何世平,李榮社等.2013.藏南拉軌崗日變質(zhì)核雜巖核部花崗質(zhì)片麻巖的地球化學(xué)特征及構(gòu)造意義. 巖石學(xué)報,29(3):756-768

      王國燦,桑隆康.1996.桐柏造山帶東段結(jié)晶基底雜巖中的大型A 型背形及其構(gòu)造背景.地球科學(xué),21(3):291 -294

      許志琴. 1988. 東秦嶺復(fù)合山鏈的形成——變形、演化及板塊動力學(xué). 北京:中國環(huán)境科學(xué)出版社,1 -193

      許志琴,候立瑋,王宗秀等.1992.中國松潘-甘孜造山帶的造山過程.北京:地質(zhì)出版社

      許志琴,楊經(jīng)綏,李海兵,張建新,吳才來等.2007.造山的高原——青藏高原的地體拼合、碰撞造山及隆升機(jī)制. 北京:地質(zhì)出版社

      楊經(jīng)綏,許志琴,裴先治,史仁燈,吳才來,張建新,李海兵,孟繁聰,戎合. 2002. 秦嶺發(fā)現(xiàn)金剛石:橫貫中國中部巨型超高壓變質(zhì)帶新證據(jù)及古生代和中生代兩期深俯沖作用的識別. 地質(zhì)學(xué)報,76(4):484 -495

      袁晏明,李德威,張雄華等.2003.西藏拉軌崗日核雜巖蓋層變質(zhì)分帶特征及其地質(zhì)意義.地球科學(xué),28:690 -694

      張國偉等.1988.秦嶺造山帶形成及其演化.西安:西北大學(xué)出版社,1-192

      張國偉,張本仁,袁學(xué)誠等. 2001. 秦嶺造山帶與大陸動力學(xué). 北京:科學(xué)出版社,1 -855

      張金陽,廖群安,李德威等.2003.藏南薩迦拉軌崗日淡色花崗巖特征及與變質(zhì)核雜巖的關(guān)系. 地球科學(xué),28:675 -701

      張進(jìn)江,楊雄英,戚國偉,王德朝.2011. 馬拉山穹窿的活動時限及其在藏南拆離系-北喜馬拉雅片麻巖穹窿形成機(jī)制的應(yīng)用. 巖石學(xué)報,27:3535 -3544

      猜你喜歡
      核部組構(gòu)穹窿
      穹窿山真美
      四川盆地?zé)粲敖M微生物巖組構(gòu)元素富集特征及意義
      “嫦娥五號”采樣點(diǎn)周緣穹窿形貌特征及成因研究
      向家壩水電站壩基混凝土防滲墻研究及應(yīng)用
      屯蘭礦地質(zhì)構(gòu)造對鉆屑瓦斯解吸指標(biāo)的影響
      地質(zhì)模式約束的斷層破碎帶內(nèi)部結(jié)構(gòu)地震識別
      ——以東營凹陷樊162井區(qū)為例
      彭水廖家槽地區(qū)燈二段微生物碳酸鹽巖沉積建造
      山東化工(2020年7期)2020-05-19 08:51:54
      空間組構(gòu)與空間認(rèn)知
      世界建筑(2018年3期)2018-03-20 05:28:33
      經(jīng)陰道前穹窿 經(jīng)陰道后穹窿 陰道前后穹窿全打開三種入路行筋膜內(nèi)陰式子宮全切除術(shù)的比較
      雅魯藏布江結(jié)合帶東段仁布-曲松地層分區(qū)上三疊統(tǒng)朗杰學(xué)(巖)群層序及構(gòu)造樣式再認(rèn)識
      辽阳县| 岐山县| 台南市| 永丰县| 达尔| 龙州县| 通州市| 福州市| 内乡县| 铜梁县| 兴城市| 东海县| 木兰县| 长岛县| 缙云县| 泰顺县| 扬州市| 瑞金市| 海伦市| 东丽区| 合水县| 合江县| 红河县| 墨竹工卡县| 舒兰市| 阜城县| 久治县| 峨眉山市| 永昌县| 麦盖提县| 饶平县| 嫩江县| 刚察县| 宜阳县| 平定县| 永川市| 九江市| 元氏县| 吉首市| 任丘市| 洪湖市|