張麗娟
(內(nèi)蒙古化工職業(yè)學(xué)院計算機(jī)與信息工程系,內(nèi)蒙古 呼和浩特 010070)
雙樹復(fù)小波變換域礦區(qū)遙感圖像自適應(yīng)濾波
張麗娟
(內(nèi)蒙古化工職業(yè)學(xué)院計算機(jī)與信息工程系,內(nèi)蒙古 呼和浩特 010070)
礦區(qū)遙感圖像因受成像環(huán)境、成像器件固有缺陷等因素的影響容易出現(xiàn)不同程度的失真,為此,結(jié)合雙樹復(fù)小波變換(Dual-tree complex wavelet transform,DTCWT)多尺度圖像分析的優(yōu)良特性,提出了一種礦區(qū)遙感圖像自適應(yīng)濾波算法。首先對獲取的視覺效果不佳的遙感圖像進(jìn)行直方圖均衡化處理,使得增強后的圖像灰度分布較為合理,提高圖像的對比度;然后對增強后的圖像進(jìn)行雙樹復(fù)小波變換,對獲得的高頻分解系數(shù)采用改進(jìn)的多級中值濾波算法進(jìn)行處理;最后,將低頻分解系數(shù)與濾波后的高頻分解系數(shù)進(jìn)行逆雙樹復(fù)小波變換。其中改進(jìn)的多級中值濾波算法相對于經(jīng)典多級中值濾波算法進(jìn)行了2點改進(jìn):①將原有的4個方向濾波窗口擴(kuò)展為7個,更有利于保持圖像中信息的多方向特性;②對新增設(shè)的3個濾波窗口分別進(jìn)行加權(quán)中值濾波,將上述7個濾波窗口的濾波值采用一種基于圖像灰度值相關(guān)性的判別方法進(jìn)行處理,剔除與待濾波像素點相關(guān)性不強的濾波值,將剩余的濾波值計算均值輸出;MATLAB平臺試驗結(jié)果表明:新算法的總體性能相對于經(jīng)典多級中值濾波、中值濾波、雙邊濾波等算法而言,優(yōu)勢較為明顯。
礦區(qū)遙感圖像 雙樹復(fù)小波變換 直方圖均衡化 多級中值濾波算法 改進(jìn)多級中值濾波算法
遙感技術(shù)作為一種快速、連續(xù)、客觀的獲取地表各類信息的技術(shù),近年來在礦區(qū)開采監(jiān)測[1-2]、礦區(qū)資源環(huán)境調(diào)查[3-5]、開采沉陷監(jiān)測[6-8]、地質(zhì)找礦[9-11]等方面得到了廣泛應(yīng)用。在實際應(yīng)用中,各遙感平臺所獲取的圖像時常受到成像設(shè)備固有缺陷、成像環(huán)境以及復(fù)雜的礦區(qū)地表信息的影響,導(dǎo)致獲取的各類圖像中不可避免地混入噪聲,影響了對礦區(qū)各類信息的真實表達(dá),因而需要對獲取的礦區(qū)各類遙感圖像采用適當(dāng)?shù)姆椒ㄟM(jìn)行預(yù)處理,以排除圖像中噪聲的干擾并提高圖像的整體視覺效果,盡可能提高基于遙感圖像信息源的礦區(qū)各類信息判讀與分析結(jié)果的可靠性。針對失真的遙感圖像,大量學(xué)者進(jìn)行了一些列研究工作,思路主要有:①圖像融合。楊森林等[12]將分塊壓縮感知方法應(yīng)用于遙感圖像融合研究,通過對遙感圖像采用分塊壓縮感知方法進(jìn)行壓縮采樣,并采用線性加權(quán)策略進(jìn)行圖像融合,在此基礎(chǔ)上采用迭代閾值投影算法實現(xiàn)融合圖像的重構(gòu),圖像融合效果較佳;段昶等[13]將剪切波變換與主成分分析相結(jié)合實現(xiàn)對遙感圖像融合處理,效果優(yōu)于離散小波變換等圖像融合方法。②圖像增強。王靜靜等[14]通過對遙感圖像進(jìn)行多尺度剪切波變換,對低頻分解系數(shù)進(jìn)行多尺度Retinex增強,對高頻分量進(jìn)行噪聲抑制,在此基礎(chǔ)上實現(xiàn)分解系數(shù)重構(gòu)并進(jìn)行模糊對比度拉伸,提高了遙感圖像的整體視覺效果;阿依古力·吾布力等[15]將剪切波變換與反銳化掩膜算法相結(jié)合實現(xiàn)遙感圖像對比度的提升,試驗表明該算法有助于增強圖像的細(xì)節(jié)信息。③圖像去噪。仲偉波等[16]詳細(xì)分析了遙感圖像噪聲來源,認(rèn)為電荷耦合器件(Charged coupled device,CCD)噪聲是主要的噪聲類型,并采用脈沖耦合神經(jīng)網(wǎng)絡(luò)(Pulse coupled neural network,PCNN)方法去除噪聲,取得了較好效果;徐冬等[17]將主成分分析方法與復(fù)小波變換相結(jié)合,充分利用復(fù)小波變換的多尺度特性,實現(xiàn)了高光譜遙感圖像噪聲的有效去除。
上述各研究思路各有側(cè)重:①圖像融合需要同地區(qū)的不同成像時間的多幅圖像,由于礦區(qū)開采的持續(xù),相關(guān)開采信息正不斷發(fā)生變化,要獲得同一目標(biāo)地物的不同成像時間的圖像,難度較大;②圖像增強盡管能夠?qū)崿F(xiàn)遙感圖像對比度的拉伸,但忽視了對圖像中各類噪聲的去除;③圖像去噪盡管能夠最大限度濾除圖像中的噪聲,但在去噪過程中忽視了對圖像細(xì)節(jié)信息的保護(hù),容易導(dǎo)致去噪后圖像的大量細(xì)節(jié)信息丟失。為此,本研究提出了一種基于雙樹復(fù)小波變換的礦區(qū)遙感圖像自適應(yīng)濾波算法,該算法首先對圖像進(jìn)行直方圖均衡化[18]處理,然后對圖像進(jìn)行多尺度雙樹復(fù)小波變換域自適應(yīng)濾波。
1.1 雙樹復(fù)小波變換
二維離散小波變換(Discrete wavelet transform,DWT)能夠?qū)D像進(jìn)行多方向分解,即分解成水平、垂直、對角等方向分布的細(xì)節(jié)信息,但由于遙感圖像細(xì)節(jié)信息較多,對其進(jìn)行分析時,僅分成上述3個方向描述細(xì)節(jié)信息是無法滿足需要的。在此基礎(chǔ)上發(fā)展而來的雙樹復(fù)小波變換(DTCWT)[19]通過采用2棵小波樹(Tree A和Tree B)分別生成小波分解系數(shù)的實部和虛部,能夠更好地描述遙感圖像的方向性信息,基本原理如圖1所示。
圖1 雙樹復(fù)小波變換原理Fig.1 Basic principle of dual-treecomplex wavelet transform
圖1中H0,H1分別為Tree A的低通濾波器和高通濾波器;G0,G1分別為Tree B的低通濾波器和高通濾波器;↓2表示隔點取樣計算;通過每級雙樹復(fù)小波變換,獲得2個低頻分解系數(shù)(A1、A2)和6個不同方向的高頻分解系數(shù)(D1、D2、D3、D4、D5、D6)。
1.2 加權(quán)改進(jìn)多級中值濾波
1.2.1 經(jīng)典多級中值濾波
中值濾波作為非線性濾波的代表,通過鄰域像素點灰度值取中值的思路來去除圖像中的噪聲點,算法實現(xiàn)較為簡便,對于去除圖像中的顆粒噪聲點有一定的效果。制約其性能提高的關(guān)鍵因素有:①濾波模板尺寸固定,一般來說,圖像中的信息分布具有隨機(jī)性,有的區(qū)域信息分布較多,有的區(qū)域信息分布較少,中值濾波算法在去噪過程中,無法根據(jù)圖像局部區(qū)域信息分布的疏密程度自適應(yīng)調(diào)整濾波窗口尺寸,最終的濾波效果被大打折扣;②無法充分顧及圖像像素點間的相關(guān)性,當(dāng)濾波窗口尺寸較大時,位于圖像中某一位置的噪聲點的濾波結(jié)果可能被距其“較遠(yuǎn)”的像素點灰度值替代,如果該噪聲點位于圖像中某一信息的輪廓上,經(jīng)過如此處理,勢必導(dǎo)致濾波后圖像中該點所承載的輪廓信息“消失”,即圖像出現(xiàn)失真現(xiàn)象。
為了克服中值濾波算法的缺陷,多級中值濾波算法[20]被提出,該算法以圖像中某一噪聲點為中心,首先分別設(shè)計多個尺寸較小的長條狀濾波窗口來進(jìn)行中值濾波,通過將濾波過程限制在一個個較小的區(qū)域內(nèi),來充分顧及圖像像素點間的相關(guān)性;然后將各窗口的濾波結(jié)果進(jìn)行適當(dāng)融合,將結(jié)果賦值給噪聲點,完成去噪工作[6]。假定位于圖像中(i,j)處的像素點為噪聲點,其灰度值為f(i,j),圖像尺寸為2N+1(N為正整數(shù)),于是多級中值濾波算法的各濾波窗口可定義為
(1)式中,w1(i,j),w2(i,j),w3(i,j),w4(i,j)分別為水平、垂直、對角(45°或135°)方向的濾波窗口。
若令N=3,則式(1)定義的各濾波窗口可如圖2所示。
圖2 多級中值濾波窗口Fig.2 Window of the mul-stage median filtering algorithm 采用該算法進(jìn)行濾波時,首先計算各窗口的濾波值
(2)
式中,f1(i,j),f2(i,j),f3(i,j),f4(i,j)分別為w1(i,j),w2(i,j),w3(i,j),w4(i,j)的濾波結(jié)果;median{·}定義為取中值計算方式。
然后對得到的濾波結(jié)果求均值
(3)
式中,f′(i,j)即為噪聲點的濾波結(jié)果。
1.2.2 算法改進(jìn)策略
多級中值濾波算法相對于中值濾波算法而言,性能有了一定程度的提升,但各濾波窗口盡管能從多個方向?qū)崿F(xiàn)對噪聲點的高效濾波,卻在噪聲點鄰域范圍仍然有相當(dāng)一部分像素點未被充分利用,即最終的濾波效果仍然有一定的提升空間。為此,本研究對該算法進(jìn)行了改進(jìn),提出了一種加權(quán)改進(jìn)多級中值濾波算法。該算法的基本思路:①在圖2中已有的4個方向濾波窗口的基礎(chǔ)上,增加3個尺寸分別為3×3,5×5,7×7的矩形濾波窗口;②針對①中7個窗口獲得濾波值,提出了一種基于圖像灰度值相關(guān)性的判別方法,剔除其中相關(guān)性較差的濾波值,將剩余濾波值求均值,賦值給噪聲點。根據(jù)上述思路,加權(quán)改進(jìn)后的多級中值濾波算法窗口如圖3所示。
圖3 加權(quán)改進(jìn)多級中值濾波窗口Fig.3 Window of the weighted improvedmulti-stage median filtering algorithm
于是,圖3中7個窗口的濾波結(jié)果可表示為
(4)
式中,median_weight{·}定義為在w5(i,j),w6(i,j),w7(i,j)等3個矩形窗口中進(jìn)行加權(quán)中值濾波,權(quán)值為各窗口中的各像素點與位于(i,j)處噪聲點的距離的平方的倒數(shù)。
由式(4)可知,圖像經(jīng)過加權(quán)改進(jìn)多級中值濾波算法處理后將得到7個濾波值,即得到集合
(5)
為了進(jìn)一步從集合Q中提取出相關(guān)性較強的濾波值,首先,將集合Q中各數(shù)值進(jìn)行大小排序,取其中間值fmed(i,j),并記錄其所在的序號x′,此時x′=4。將集合Q中各相鄰數(shù)值兩兩相減并取絕對值,得到如下集合:
(6)
將集合H中落入?yún)^(qū)間(0,40]內(nèi)的最小值記為下限t1,將集合H中落入?yún)^(qū)間(40,255]內(nèi)數(shù)值中的最小值記為上限t2。將集合H中落入?yún)^(qū)間[t1,t2]外的數(shù)值所對應(yīng)集合Q中的數(shù)值予以剔除,并計算集合Q中剩余數(shù)值的均值并賦值給位于圖像中(i,j)處的噪聲點。
采用一幅采集于山東省濟(jì)寧市某煤礦的“Qucikbrid”衛(wèi)星遙感圖像作為測試圖像,對其分別疊加密度為10%,20%,30%的顆粒噪聲形成3幅不同模糊程度的噪聲圖像,采用中值濾波、多級中值濾波、雙邊濾波以及本研究算法對其進(jìn)行去噪試驗,部分試驗結(jié)果如圖4所示。采用圖像質(zhì)量評價的經(jīng)典算子——峰值信噪比(Peaksignalnoisetoratio,PSNR)[18]以及歸一化均方差(Normalizedmeansquareerror,NMSE)[21]對上述各算法的試驗結(jié)果進(jìn)行評價,結(jié)果如表1所示。
圖4 算法試驗結(jié)果對比Fig.4 Comparison of the experimental results of algorithms表1 算法性能評價結(jié)果Table 1 Evaluation results of the performance of algorithms
噪聲密度/%PSNR/dB中值濾波多級中值濾波雙邊濾波本研究算法NMSE中值濾波多級中值濾波雙邊濾波本研究算法1023.32524.48825.88927.5720.4670.3200.2160.0852021.00423.09823.01726.7030.5450.4820.4980.1263018.78319.32219.67124.3390.6790.6010.5750.237
由圖4、表1可知:本研究算法處理后的圖像(圖4(f))中“開采塌陷區(qū)”、“水體”邊緣的清晰度明顯高于中值濾波、多級中值濾波、雙邊濾波等算法處理后的圖像(圖4(c)、圖4(d)、圖4(e));對于疊加了密度為30/%的顆粒噪聲的遙感圖像進(jìn)行濾波,中值濾波、多級中值濾波、雙邊濾波等算法的PSNR值均低于20 dB,NMSE值均高于0.5,這說明,上述3類算法對于該模糊程度的遙感圖像的濾波效果不理想;對于不同模糊程度的遙感圖像的濾波處理,本研究算法的PSNR值明顯高于其余3類算法,NMSE值明顯低于其余3類算法。據(jù)此可認(rèn)為,本研究算法對于遙感圖像的濾波處理具有一定的效果,其性能優(yōu)于其余3類算法。
針對礦區(qū)遙感失真圖像,結(jié)合雙樹復(fù)小波變換,提出了一種礦區(qū)遙感圖像自適應(yīng)濾波算法。該算法對經(jīng)過直方圖均衡化增強后的遙感圖像進(jìn)行多尺度雙樹復(fù)小波變換,對高頻分解系數(shù)采用改進(jìn)加權(quán)多級中值濾波算法處理,將低頻分解系數(shù)與濾波后的高頻分解系數(shù)進(jìn)行重構(gòu),得到濾波后的圖像。試驗結(jié)果表明,該算法對于礦區(qū)遙感失真圖像的處理效果優(yōu)于經(jīng)典多級中值濾波算法,相對于已有的同類型算法(中值濾波、雙邊濾波)而言,也具有一定的優(yōu)勢。
[1] 王志華,何國金,張兆明.福建省羅源縣石材礦開采區(qū)高分遙感十年變化監(jiān)測[J].遙感信息,2014,29(6):41-46. Wang Zhihua,He Guojin,Zhang Zhaoming.Ten years change monitoring on stone mining areas in Luoyuan County of Fujian Province based on high resolution satellite imagery[J].Remote Sensing Information,2014,29(6):41-46.
[2] 譚振華,洪友堂,孫啟凱,等.遙感圖像在復(fù)雜地形下礦山監(jiān)測中的應(yīng)用研究——以云南安寧礦區(qū)為例[J].山東國土資源,2012,28(4):50-54. Tan Zhenhua,Hong Youtang,Sun Qika,et al.Application of remote sensing images in mine monitoring in complex terrain:setting Anning mining area as an example[J].Shandong Land and Resources,2012,28(4):50-54.
[3] 安士凱,李召龍,胡志勝,等.高潛水位礦區(qū)生態(tài)系統(tǒng)演變趨勢研究——以淮南潘謝礦區(qū)為例[J].中國礦業(yè),2015,24(1):40-44. An Shikai,Li Zhaolong,Hu Zhisheng,et al.Study on the change trend of mine area ecosystem with high ground-water level:a case study of Huainan Panxie mine[J].China Mining Magazine,2015,24(1):40-44.
[4] 楊 敏,徐冬寅,喬彥軍,等.SPOT5遙感圖像數(shù)據(jù)在礦山地質(zhì)環(huán)境調(diào)查中的應(yīng)用研究[J].黃金,2010,31(1):51-55. Yang Min,Xu Dongyin,Qiao Yanjun,et al.Application of SPOT5 remote sensing data on mining geological environment investigation[J].Gold,2010,31(1):51-55.
[5] 蘇一鳴,崔艷梅,詹雅婷,等.資源一號02C衛(wèi)星影像在宜溧1∶5萬礦山開發(fā)遙感調(diào)查中的應(yīng)用研究[J].地質(zhì)學(xué)刊,2015,39(1):127-132. Sun Yiming,Cui Yanmei,Zhan Yating,et al.Application of CEERS-02C satellite images in mine exploitation in Yingxing-Liyang Area at a scale of 1∶50 000[J].Journal of Geology,2015,39(1):127-132.
[6] 陳炳乾,鄧喀中,范洪冬.基于D-InSAR技術(shù)和SVR算法的開采沉陷監(jiān)測與預(yù)計[J].中國礦業(yè)大學(xué)學(xué)報,2014,43(5):880-886. Chen Bingqian,Deng Kazhong,Fan Hongdong.Combing D-InSAR and SVR for monitoring and prediction of mining subsidence[J].Journal of China University of Mining and Technology,2014,43(5):880-886.
[7] 楊俊凱,陳炳乾,鄧喀中,等.基于D-InSAR與概率積分法的開采沉陷監(jiān)測與預(yù)計[J].金屬礦山,2015(4):195-200. Yang Junkai,Chen Bingqian,Deng Kazhong,et al.Monitoring and prediction of mining subsidence based on D-InSAR and probability integral model[J].Metal Mine,2015(4):195-200.
[8] 楊俊凱,范洪冬,趙偉潁,等.基于D-InSAR技術(shù)與灰色Verhulst模型的礦區(qū)沉降監(jiān)測與預(yù)計[J].金屬礦山,2015(3):143-147. Yang Junkai,Fan Hongdong,Zhao Weiying,et al.Monitoring and prediction of mining subsidence based on D-InSAR and gray Verhulst model[J].Metal Mine,2015(3):143-147.
[9] 付麗華,李名松,王永軍,等.西藏瑪那國地區(qū)遙感找礦預(yù)測[J].礦產(chǎn)勘查,2015(2):171-177. Fu Lihua,Li Mingsong,Wang Yongjun,et al.Prospecting prediction by remote sensing approach in Managuo Area,Tibet[J].Mineral Exploration,2015(2):171-177.
[10] 黃 爽,陳圣波,查逢麗,等.南美典型鐵礦床遙感找礦模型研究[J].世界地質(zhì),2014,33(4):946-951. Huang Shuang,Chen Shengbo,Zha Fengli,et al.Research on remote sensing ore-prospecting model for iron deposit in South America[J].Global Geology,2014,33(4):946-951.
[11] 徐云峰,唐菊興,鄭文寶,等.扎西康鋅多金屬礦床外圍遙感找礦預(yù)測[J].金屬礦山,2014(2):91-95. Xu Yunfeng,Tang Juxing,Zheng Wenbao,et al.Remote sensing prospecting prediction of the peripheral in Zhaxikang Zn-polymetallic deposit[J].Metal Mine,2014(2):91-95.
[12] 楊森林,萬國賓,高靜懷.基于分塊壓縮感知的遙感圖像融合[J].計算機(jī)應(yīng)用研究,2015,32(1):316-320. Yang Senlin,Wan Guobin,Gao Jinghuai.Compressive fusion for remote-sensing images by block compressed sensing[J].Application Research of Computers,2015,32(1):316-320.
[13] 段 昶,汪學(xué)剛,王 帥,等.基于雙樹緊支剪切波變換的遙感圖像融合[J].電子科技大學(xué)學(xué)報,2015,44(1):43-49. Duan Chang,Wang Xuegang,Wang Shuai,et al.Remote image fusion based on dual tree compactly supported Shearlet transform[J].Journal of University of Electronic Science and Technology of China,2015,44(1):43-49.
[14] 王靜靜,賈振紅,覃錫忠,等.基于Shearlet變換和多尺度Retinex的遙感圖像增強算法[J].計算機(jī)應(yīng)用,2015,35(1):202-205. Wang Jingjing,Jia Zhenhong,Qin Xizhong,et al.Remote sensing image enhancement algorithm based on Shearlet transform and multi-scale Retinex[J].Journal of Computer Applications,2015,35(1):202-205.
[15] 阿依古力·吾布力,賈振紅,覃錫忠,等.基于剪切波變換的反銳化掩膜遙感圖像增強[J].計算機(jī)工程與設(shè)計,2015,36(4):987-990. Ayiguli Wubuli,Jia Zhenhong,Qin Xizhong,et al.Remote sensing image enhancement based on Shearlet transform and unsharp masking[J].Computer Engineering and Design,2015,36(4):987-990.
[16] 仲偉波,寧書年,金聲震,等.遙感成像噪聲分析及基于PCNN的濾除方法[J].煤炭學(xué)報,2004,29(4):418-421. Zhong Weibo,Ning Shunian,Jin Shengzhen,et al.Imaging noise analysis and a filter based on PCNN[J].Journal of China Coal Society,2004,29(4):418-421.
[17] 徐 冬,孫 蕾,羅建書.結(jié)合NAPCA和復(fù)小波變換的高光譜遙感圖像去噪[J].紅外與激光工程,2015,44(1):327-334. Xu Dong,Sun Lei,Luo Jianshu.Denoising of hyperspectral remote sensing imagery by using NAPCA and complex wavelet transform[J].Infrared and Laser Engineering,2015,44(1):327-334.
[18] 王小兵,姚雪晴,邱銀國,等.一種新型煤礦視頻監(jiān)控圖像濾波算法[J].工礦自動化,2014,40(11):76-80. Wang Xiaobing,Yao Xueqing,Qiu Yinguo,et al.A new filtering algorithm for video monitoring image of coal mine[J].Industry and Automation,2014,40(11):76-80.
[19] 吳一全,宋 昱.基于雙樹復(fù)小波域HMT模型的煤燃燒火焰圖像去噪[J].華南理工大學(xué)學(xué)報:自然科學(xué)版,2014,42(1):59-64. Wu Yiquan Song Yu.Denoising of coal combustion flam images based on HMT model in dual-tree complex wavelet domain[J].Journal of South China University of Technology:Natural Science Edition,2014,42(1):59-64.
[20] 孫 喆,江微娜.模糊嵌套多級中值濾波聯(lián)合能量比法初至?xí)r間自動拾取在明業(yè)煤礦三維地震處理中的應(yīng)用[J].礦業(yè)安全與環(huán)保,2015,42(2):61-63. Sun Zhe,Jiang Weina.Application of automatic picking of first arrival time of fuzzy nesting multi-level median filter based on combined energy ratio method in 3D seismic processing in Mingye coal mine[J].Mining Safety & Environmental Protection,2015,42(2):61-63.
[21] 杜麗美.幾種常見的圖像去噪算法研究[J].山西大同大學(xué)學(xué)報:自然科學(xué)版,2012,28(5):7-9. Du Limei.Research on several image denoising algorithms[J].Journal of Shanxi Datong University:Natural Science Edition,2012,28(5):7-9.
(責(zé)任編輯 王小兵)
Adaptive Filtering of the Remote Sensing Image of Mining Areain Dual-tree Complex Wavelet Transform Domain
Zhang lijuan
(DepartmentofComputerandInformationEngineering,InnerMongoliaVocationalCollegeofChemicalEngineering,Hohhot010070,China)
Remote sensing image is easily influenced by the factors such as imaging environment,the inherent defects of imaging device during the process of imagining,the phenomenon of distortion with different degrees of the remote sensing image is appeared.Combing with the excellent characteristics of multi-scale image analysis of dual-tree complex wavelet transform(DTCWT),a adaptive filtering algorithm of remote sensing image is proposed.Firsly,the obtained remote sensing image with poor visual effect is processed by histogram equalization algorithm to improve the image contrast;then,the enhanced remote sensing image is conduct dual-tree complex wavelet transform,the low-frequency coefficients and high-frequency coefficients are obtained,the low-frequency coefficient is remained unchanged,the high-frequency coefficients are filtered by the improved multi-stage median filtering algorithm,the classical multi-stage median filtering algorithm is improved as follows:①the four direction filtering windows of the classical multi-stage median filtering algorithm are extended to seven direction filtering windows,which is more advantages to keep the multiple directions characteristics of the information in remote sensing image;②the new added three filtering windows are denoised by weighted median filtering algorithm,the filtering values of the above seven filtering windows are processed by a discriminant method based on image gray value relevance so as to eliminate the filtering values with poor correlation to the filtering values of the pixels points,the average value of the rest of the filtering values is regarded as the filtered value;finally,the low-frequency coefficient and the filtered high-frequency coefficients are conducted inverse dual-tree complex wavelet transform.The experimental results based on MATLAB software show that:the algorithm proposed in this paper maintain the integrity of the detail information of the remote sensing image of mining area during the process of filtering,the performance the algorithm has a certain degree of ascension related to the classical multi-stage median filtering algorithm,besides that,the performance of the algorithm has obvious advantages to the algorithms of median filtering and bilateral filtering
Remote sensing image of mining area,Dual-tree complex wavelet transform,Histogram equalization,Multi-tage median filtering algorithm,Improved multi-stage median filtering algorithm
2015-08-04
張麗娟(1981—),女, 講師,碩士。
TD672
A
1001-1250(2015)-11-113-06