• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      腫瘤微環(huán)境對(duì)骨肉瘤發(fā)生發(fā)展的影響

      2015-03-21 00:44:30韓修國(guó)湯亭亭
      國(guó)際骨科學(xué)雜志 2015年3期
      關(guān)鍵詞:骨組織骨細(xì)胞纖維細(xì)胞

      韓修國(guó) 湯亭亭

      骨肉瘤是臨床上最常見(jiàn)的骨組織惡性腫瘤,好發(fā)于四肢長(zhǎng)骨干骺端,由于骨肉瘤極易發(fā)生轉(zhuǎn)移,且治療手段有限,因此預(yù)后極差[1-3]。骨肉瘤的腫瘤微環(huán)境在其進(jìn)展中發(fā)揮重要作用。以往對(duì)于骨肉瘤的研究主要集中于腫瘤細(xì)胞自身分子生物學(xué)變化,而忽視了由眾多非腫瘤細(xì)胞組成的微環(huán)境在腫瘤發(fā)生中的作用。近年來(lái)越來(lái)越多的研究[4-8]表明,腫瘤微環(huán)境在腫瘤發(fā)生發(fā)展及轉(zhuǎn)移中扮演重要角色。

      正常情況下骨組織是骨的結(jié)構(gòu)主體,由不同細(xì)胞及細(xì)胞外基質(zhì)構(gòu)成,細(xì)胞外基質(zhì)中有大量骨鹽沉積,這使得骨組織成為人體最堅(jiān)硬的組織之一。而在骨肉瘤發(fā)生發(fā)展過(guò)程中,正常骨皮質(zhì)遭破壞,骨肉瘤細(xì)胞不斷侵蝕、破壞正常骨組織,導(dǎo)致骨組織中各種細(xì)胞特性發(fā)生明顯改變,此時(shí)的骨肉瘤腫瘤微環(huán)境組成包括大量活化的成纖維細(xì)胞、新生血管、浸潤(rùn)的免疫細(xì)胞及細(xì)胞外基質(zhì)成分。骨肉瘤細(xì)胞通過(guò)分泌大量生長(zhǎng)因子如轉(zhuǎn)化生長(zhǎng)因子-β(TGF-β)[9]、血管內(nèi) 皮 生 長(zhǎng) 因 子 (VEGF)[10-11]、基 質(zhì) 金 屬 蛋 白 酶(MMP)[12]等促進(jìn)成纖維細(xì)胞增生、血管生成及炎性細(xì)胞浸潤(rùn)。而這些組分又能通過(guò)旁分泌反饋途徑刺激骨肉瘤細(xì)胞增殖,增強(qiáng)其轉(zhuǎn)移和侵襲能力。

      1 腫瘤微環(huán)境中的主要細(xì)胞成分

      1.1 間充質(zhì)干細(xì)胞

      近年研究發(fā)現(xiàn),間充質(zhì)干細(xì)胞(MSC)能促進(jìn)腫瘤生長(zhǎng),并在腫瘤基質(zhì)形成中發(fā)揮重要作用[13],而MSC也是骨肉瘤腫瘤微環(huán)境中的主要細(xì)胞之一。研究[14-15]發(fā)現(xiàn),MSC可通過(guò)分泌白細(xì)胞介素(IL)-6激活骨肉瘤細(xì)胞內(nèi)的信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子3(STAT3)信號(hào)轉(zhuǎn)導(dǎo)通路,從而促進(jìn)其增殖和轉(zhuǎn)移。骨肉瘤細(xì)胞也可通過(guò)TGF-β信號(hào)轉(zhuǎn)導(dǎo)通路維持MSC的未分化特性,從而使其分泌更多腫瘤生長(zhǎng)形成所需的細(xì)胞因子如IL-6、VEGF等[16]。有研究比較正常骨髓中的MSC與骨肉瘤組織中的MSC,發(fā)現(xiàn)兩者細(xì)胞表面標(biāo)志相似,但對(duì)酪氨酸激酶抑制劑(TKI)的反應(yīng)卻不相同,骨肉瘤組織中的 MSC對(duì)TKI的反應(yīng)更為敏感。鑒于MSC對(duì)骨肉瘤轉(zhuǎn)移的重要作用,有必要探究與酪氨酸激酶相關(guān)的信號(hào)分子表達(dá)變化,從而發(fā)現(xiàn)抑制骨肉瘤轉(zhuǎn)移的新靶點(diǎn)[17]。Mohseny等[18]研究發(fā)現(xiàn),CDKN2基因非整倍體化和缺失可使MSC轉(zhuǎn)化為骨肉瘤細(xì)胞,表明骨肉瘤細(xì)胞可能來(lái)源于骨髓間充質(zhì)干細(xì)胞(BMSC)。Karnoub等[19]對(duì)乳腺癌原位腫瘤模型注射MSC,結(jié)果顯示促進(jìn)了乳腺癌轉(zhuǎn)移。而經(jīng)IL-2處理后的脂肪來(lái)源間充質(zhì)干細(xì)胞(ADSC)可明顯促進(jìn)黑色素瘤細(xì)胞增殖[20]。

      1.2 破骨細(xì)胞

      破骨細(xì)胞在正常骨組織中數(shù)量很少,散布于骨組織表面,是一種巨大的多核細(xì)胞,一般認(rèn)為它是由單核細(xì)胞融合而成。破骨細(xì)胞具有很強(qiáng)的溶骨、吞噬和消化能力,在骨組織內(nèi)破骨細(xì)胞與成骨細(xì)胞相輔相成,共同參與骨的生長(zhǎng)和改建[21-22]。研究表明,破骨細(xì)胞在骨肉瘤腫瘤微環(huán)境中發(fā)揮重要作用。由于破骨細(xì)胞有較強(qiáng)的溶骨作用,在骨肉瘤溶骨性破壞中破骨細(xì)胞數(shù)量較其在正常骨組織明顯增多,抑制破骨細(xì)胞增殖可明顯減少骨肉瘤造成的骨破壞[23-24]。但也有研究[25]發(fā)現(xiàn),在骨肉瘤早期用唑來(lái)膦酸抑制破骨細(xì)胞增殖卻促進(jìn)了骨肉瘤轉(zhuǎn)移。因此,破骨細(xì)胞在骨肉瘤腫瘤微環(huán)境中的具體作用機(jī)制有待深入探討。

      1.3 免疫細(xì)胞

      在骨肉瘤組織中可見(jiàn)到大量免疫細(xì)胞浸潤(rùn),但這些免疫細(xì)胞并未發(fā)揮應(yīng)有的免疫監(jiān)測(cè)作用。骨肉瘤細(xì)胞能通過(guò)對(duì)自身表面抗原修飾及改變周?chē)h(huán)境來(lái)逃避機(jī)體免疫識(shí)別與攻擊,達(dá)到免疫逃逸的目的。在骨肉瘤腫瘤微環(huán)境中,自然殺傷(NK)細(xì)胞和巨噬細(xì)胞是主要的免疫細(xì)胞,兩者具有極為重要的作用。

      Tarek等[26]研究報(bào)道,NK細(xì)胞可通過(guò)識(shí)別骨肉瘤細(xì)胞表面標(biāo)志物來(lái)識(shí)別骨肉瘤細(xì)胞,隨后釋放大量細(xì)胞因子來(lái)誘導(dǎo)靶細(xì)胞裂解。Guma等[27]研究發(fā)現(xiàn),IL-2能通過(guò)促進(jìn)NK細(xì)胞增殖來(lái)提高裸鼠骨肉瘤肺轉(zhuǎn)移生存率。因此,促進(jìn)NK細(xì)胞增殖或分泌細(xì)胞因子可抑制骨肉瘤發(fā)展。

      腫瘤相關(guān)巨噬細(xì)胞(TAM)是在腫瘤中浸潤(rùn)的巨噬細(xì)胞。體外實(shí)驗(yàn)研究[28]證實(shí),TAM對(duì)骨肉瘤具有殺傷作用。然而從骨肉瘤的發(fā)展過(guò)程來(lái)看,TAM的殺傷作用并不明顯。TAM是個(gè)多效應(yīng)細(xì)胞,在腫瘤微環(huán)境影響下,它很可能為骨肉瘤細(xì)胞建立穩(wěn)定的生存環(huán)境,如清理壞死腫瘤細(xì)胞并建立新的血運(yùn)、抑制其他免疫細(xì)胞功能、分泌促腫瘤生長(zhǎng)因子、溶解基質(zhì)等,因此也有研究指出抑制TAM能抑制骨肉瘤發(fā)生發(fā)展[29]。TAM對(duì)骨肉瘤的作用尚需進(jìn)一步研究來(lái)證實(shí)。

      1.4 成纖維細(xì)胞

      成纖維細(xì)胞也是腫瘤基質(zhì)中最主要的細(xì)胞之一,但腫瘤基質(zhì)中的成纖維細(xì)胞卻是一種“被激活的成纖維細(xì)胞”[30],被稱(chēng)為腫瘤相關(guān)成纖維細(xì)胞(CAF)。與正常成纖維細(xì)胞相比,CAF中高表達(dá)平滑肌細(xì)胞的表面標(biāo)志,因此又稱(chēng)為肌成纖維細(xì)胞[31]。目前猜測(cè)CAF由正常成纖維細(xì)胞突變、內(nèi)皮細(xì)胞或MSC轉(zhuǎn)化而來(lái),但學(xué)者們對(duì)其具體來(lái)源觀點(diǎn)尚不一致。CAF可促進(jìn)腫瘤生長(zhǎng)、血管化、產(chǎn)生炎癥及轉(zhuǎn)移[32]。它可通過(guò)分泌基質(zhì)細(xì)胞衍生因子(SDF)-1α和 MMP-1來(lái)影響腫瘤細(xì)胞的遷移;通過(guò)激活TGF-β和血小板衍化生長(zhǎng)因子C(PDGF-C)信號(hào)轉(zhuǎn)導(dǎo)通路來(lái)影響腫瘤細(xì)胞生長(zhǎng)。David等[33]研究發(fā)現(xiàn),成纖維細(xì)胞與骨肉瘤細(xì)胞共培養(yǎng)后,與炎癥相關(guān)的IL-6、粒細(xì)胞集落刺激因子(G-CSF)和粒細(xì)胞巨噬細(xì)胞集落刺激因子(GM-CSF)等水平明顯升高,因此認(rèn)為成纖維細(xì)胞可促進(jìn)骨肉瘤形成過(guò)程的炎癥反應(yīng)。

      2 新生血管

      在骨肉瘤發(fā)生過(guò)程中,骨肉瘤組織快速生長(zhǎng)使其處于缺氧、營(yíng)養(yǎng)匱乏的狀態(tài),這就要求血管新生以滿足其生長(zhǎng)需要。腫瘤組織血管生成需要腫瘤細(xì)胞或基質(zhì)細(xì)胞分泌刺激因子,引起內(nèi)皮細(xì)胞增殖及基底膜和細(xì)胞外基質(zhì)降解,然后內(nèi)皮細(xì)胞遷移、重構(gòu),以出芽方式形成新的毛細(xì)血管。VEGF是腫瘤血管生成中最重要的因子,它在許多骨肉瘤細(xì)胞系中高表達(dá)。Tzeng等[34]研究表明,IL-6可通過(guò)激活骨肉瘤細(xì)胞中的凋亡信號(hào)調(diào)節(jié)激酶1(ASK-1)/p38/激活蛋白-1(AP-1)表達(dá)來(lái)激活 VEGF,促進(jìn)腫瘤血管生成。另有研究[35]表明,CCL5/CCR5軸也可促進(jìn)VEGF誘導(dǎo)的血管生成。實(shí)際上,在腫瘤缺氧的情況下,CCL5/CCR5軸不但能夠誘導(dǎo)血管生成,還可以誘導(dǎo)高侵襲腫瘤細(xì)胞亞型生成[36],在此過(guò)程中低氧誘導(dǎo)因子(HIF)起了關(guān)鍵作用。與正常血管相比,腫瘤新生血管十分異常,其組織混亂、層次感缺乏,這是由于在腫瘤組織中營(yíng)養(yǎng)分布不均勻造成的。因此,抗血管生成治療可使腫瘤血管生成正?;?,并提高腫瘤的化療敏感性[37]。

      巨噬細(xì)胞在骨肉瘤腫瘤微環(huán)境的血管生成中發(fā)揮重要作用。近年研究發(fā)現(xiàn),在IL-34作用下巨噬細(xì)胞可聚集并使血管生成加速[38],而IL-8也有異曲同工之處,這在非小細(xì)胞肺癌中尤為明顯[39]。在骨肉瘤中何種細(xì)胞因子與巨噬細(xì)胞關(guān)系最為密切,尚需進(jìn)一步探討。

      3 骨肉瘤腫瘤微環(huán)境靶向治療

      隨著對(duì)骨肉瘤腫瘤微環(huán)境認(rèn)識(shí)的加深,學(xué)者們認(rèn)識(shí)到靶向腫瘤微環(huán)境可能是骨肉瘤治療的新方向。目前針對(duì)骨肉瘤腫瘤微環(huán)境的靶向治療方法主要有靶向MSC介導(dǎo)的基因[40]、通過(guò)靶向抑制破骨細(xì)胞分化來(lái)抑制骨肉瘤造成的骨破壞[23,41-42]及靶向血管生成等。MSC介導(dǎo)的基因靶向治療是基于MSC對(duì)腫瘤組織的趨向性,使基因修飾的MSC作為投送藥物的細(xì)胞載體。破骨細(xì)胞在骨肉瘤形成過(guò)程中的作用仍具有爭(zhēng)議,但研究[43]證實(shí)靶向作用于破骨細(xì)胞形成過(guò)程中的巨噬細(xì)胞集落刺激因子(M-CSF)和 核 因 子-κ B 受 體 活 化 因 子 配 體(RANKL)可抑制骨肉瘤所造成的骨破壞。雙膦酸鹽類(lèi)藥物可通過(guò)抑制破骨細(xì)胞分化和功能來(lái)抑制骨丟失。有研究顯示,這些藥物靶向作用于骨肉瘤細(xì)胞同樣具有抑制腫瘤生長(zhǎng)作用,且能增強(qiáng)骨肉瘤對(duì)化療藥物的敏感性[44-45],同時(shí)還能抑制骨肉瘤血管生成[46]。但這類(lèi)藥物能否用于骨肉瘤的臨床治療還存在爭(zhēng)議。貝伐單抗作為血管生成靶向治療中的VEGF抗體目前正處于二期臨床研究,其與化療藥物同時(shí)治療肺癌已通過(guò)臨床驗(yàn)證[47],但是否能用于骨肉瘤的臨床治療還有待更多研究。值得一提的是,趨化因子受體家族成員CXCR4與VEGF關(guān)系十分密切,可能可成為抑制腫瘤血管生成的靶點(diǎn)[48]。HIF-1α是腫瘤血管生成的關(guān)鍵因子,在低氧條件下 HIF-1α能增加 VEGF表達(dá)[49],因此其為潛在靶點(diǎn)毋庸置疑。此外,過(guò)表達(dá)STAT3與腫瘤進(jìn)展密切相關(guān),STAT3抑制劑CDDD-Me能明顯抑制骨肉瘤細(xì)胞增殖且誘導(dǎo)細(xì)胞凋亡[50],新的STAT3抑制劑LLL12能直接抑制骨肉瘤腫瘤模型中的血管生成[51]。因此,STAT3可能是骨肉瘤血管靶向治療的新靶點(diǎn)。除STAT3外,雷帕霉素靶蛋白(mTOR)抑制劑FIM-A可抑制骨肉瘤細(xì)胞增殖并減少 VEGF和 HIF-1α的分泌[52]。

      綜上所述,腫瘤微環(huán)境可能在骨肉瘤發(fā)生發(fā)展中發(fā)揮重要作用。對(duì)骨肉瘤腫瘤微環(huán)境的深入研究將為骨肉瘤早期診斷及有效治療帶來(lái)希望。腫瘤微環(huán)境靶向治療在體外實(shí)驗(yàn)和動(dòng)物實(shí)驗(yàn)上已顯示出了有效作用,但還缺乏確切的臨床資料來(lái)支持。這些靶向治療在抗骨破壞及抗血管生成的同時(shí),是否會(huì)對(duì)機(jī)體正常組織造成影響和產(chǎn)生不良反應(yīng),仍有待深入研究。

      [1] Both J,Krijgsman O,Bras J,et al.Focal chromosomal copy number aberrations identify CMTM8 and GPR177 as new candidate driver genes inosteosarcoma[J].PLoS One,2014,9(12):e115835.

      [2] Allison DC,Carney SC,Ahlmann ER,et al.A meta-analysis of osteosarcoma outcomes in the modern medical era[J].Sarcoma,2012,2012:704872.

      [3] Mohseny AB,Xiao W,Carvalho R,et al.An osteosarcoma zebrafish model implicates Mmp-19 and Ets-1 as well as reduced host immune response in angiogenesis and migration[J].J Pathol,2012,227(2):245-253.

      [4] Jin F,Qu X,F(xiàn)an Q,et al.Regulation of prostate cancer cell migration toward bone marrow stromal cell-conditioned medium by Wnt5a signaling[J].Mol Med Rep,2013,8(5):1486-1492.

      [5] Buddingh EP,Kuijjer ML,Duim RA,et al.Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma:a rationale for treatment with macrophage activating agents[J].Clin Cancer Res,2011,17(8):2110-2119.

      [6] Arndt CA,Koshkina NV,Inwards CY,et al.Inhaled granulocyte-macrophage colony stimulating factor for first pulmonary recurrence of osteosarcoma:effects on disease-free survival and immunomodulation. A report from the Children’s Oncology Group[J].Clin Cancer Res,2010,16(15):4024-4030.

      [7] Almeida EA,Ilic D, Han Q,et al. Matrix survival signaling:from fibronectin via focal adhesion kinase to c-Jun NH(2)-terminal kinase[J].J Cell Biol,2000,149(3):741-754.

      [8] Yu L,Liu S,Guo W,et al.hTERT promoter activity identifies osteosarcoma cells with increased EMT characteristics[J].Oncol Lett,2014,7(1):239-244.

      [9] Xu S,Yang S,Sun G,et al.Transforming growth factor-beta polymorphisms and serum level in the development of osteosarcoma[J].DNA Cell Biol,2014,33(11):802-806.

      [10] Hiratsuka S,Nakamura K,Iwai S,et al.MMP9 induction by vascular endothelial growth factor receptor-1is involved in lung-specific metastasis[J].Cancer Cell,2002,2(4):289-300.

      [11] Mei J,Zhu X,Wang Z,et al.VEGFR,RET,and RAF/MEK/ERK pathway take part in the inhibition of osteosarcoma MG63 cells with sorafenib treatment[J].Cell Biochem Biophys,2014,69(1):151-156.

      [12] Wang J,Shi Q,Yuan TX,et al.Matrix metalloproteinase 9(MMP-9)in osteosarcoma:review and meta-analysis[J].Clin Chim Acta,2014,433:225-231.

      [13] Barcellos-de-Souza P,Gori V,Bambi F,et al.Tumor microenvironment:bone marrow-mesenchymal stem cells as key players[J].Biochim Biophys Acta,2013,1836(2):321-335.

      [14] Bian ZY,F(xiàn)an QM,Li G,et al.Human mesenchymal stem cells promote growth of osteosarcoma:involvement of interleukin-6in the interaction between human mesenchymal stem cells and Saos-2[J].Cancer Sci,2010,101(12):2554-2560.

      [15] Tu B,Du L,F(xiàn)an QM,et al.STAT3 activation by IL-6from mesenchymal stem cells promotes the proliferation and metastasis of osteosarcoma[J].Cancer Lett,2012,325(1):80-88.

      [16] Tu B,Peng ZX,F(xiàn)an QM,et al.Osteosarcoma cells promote the production of pro-tumor cytokines in mesenchymal stem cells by inhibiting their osteogenic differentiation through the TGF-β/Smad2/3 pathway[J].Exp Cell Res,2014,320(1):164-173.

      [17] Brune JC,Tormin A,Johansson MC,et al.Mesenchymal stromal cells from primary osteosarcoma are non-malignant and strikingly similar to their bone marrow counterparts[J].Int J Cancer,2011,129(2):319-330.

      [18] Mohseny AB,Szuhai K,Romeo S,et al.Osteosarcoma originates from mesenchymal stem cells in consequence of aneuploidization and genomic loss of Cdkn2[J].J Pathol,2009,219(3):294-305.

      [19] Karnoub AE,Dash AB,Vo AP,et al.Mesenchymal stem cells within tumour stroma promote breast cancer metastasis[J].Nature,2007,449(7162):557-563.

      [20] Bahrambeigi V,Ahmadi N,Salehi R,et al.Genetically modified murine adipose-derived mesenchymal stem cells producing interleukin-2 favor B16F10 melanoma cell proliferation[J].Immunol Invest,2015,44(3):216-236.

      [21] Ikeda K,Takeshita S.Factors and mechanisms involved in the coupling from bone resorption to formation:how osteoclasts talk to osteoblasts[J].J Bone Metab,2014,21(3):163-167.

      [22] O’Neill SC,Queally JM,Devitt BM,et al.The role of osteoblasts in peri-prosthetic osteolysis[J].Bone Joint J,2013,95B(8):1022-1026.

      [23] Ohba T,Cole HA,Cates JM,et al.Bisphosphonates inhibit osteosarcoma-mediated osteolysis via attenuation of tumor expression of MCP-1 and RANKL[J].J Bone Miner Res,2014,29(6):1431-1445.

      [24] Lamoureux F, Picarda G, Garrigue-Antar L,et al.Glycosaminoglycans as potential regulators of osteoprotegerin therapeutic activity in osteosarcoma[J].Cancer Res,2009,69(2):526-536.

      [25] Endo-Munoz L,Cumming A,Rickwood D,et al.Loss of osteoclasts contributes to development of osteosarcoma pulmonary metastases[J].Cancer Res,2010,70(18):7063-7072.

      [26] Tarek N,Lee DA.Natural killer cells for osteosarcoma[J].Adv Exp Med Biol,2014,804:341-353.

      [27] Guma SR,Lee DA,Ling Y,et al.Aerosol interleukin-2 induces natural killer cell proliferation in the lung and combination therapy improves the survival of mice with osteosarcoma lung metastasis[J].Pediatr Blood Cancer,2014,61(8):1362-1368.

      [28] Pahl JH, Kwappenberg KM, Varypataki EM,et al.Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-γ[J].J Exp Clin Cancer Res,2014,33:27.

      [29] Xiao Q,Zhang X,Wu Y,et al.Inhibition of macrophage polarization prohibits growth of human osteosarcoma[J].Tumour Biol,2014,35(8):7611-7616.

      [30] Kalluri R,Zeisberg M.Fibroblasts in cancer[J].Nat Rev Cancer,2006,6(5):392-401.

      [31] Lazard D,Sastre X,F(xiàn)rid MG,et al.Expression of smooth muscle-specific proteins in myoepithelium and stromal myofibroblasts of normal and malignant human breast tissue[J].Proc Natl Acad Sci USA,1993,90(3):999-1003.

      [32] Madar S, Goldstein I, Rotter V.Cancer associated fibroblasts:more than meets the eye[J].Trends Mol Med,2013,19(8):447-453.

      [33] David MS,Kelly E,Zoellner H.Opposite cytokine synthesis by fibroblasts in contact co-culture with osteosarcoma cells compared with transwell co-cultures[J].Cytokine,2013,62(1):48-51.

      [34] Tzeng HE,Tsai CH,Chang ZL,et al.Interleukin-6induces vascular endothelial growth factor expression and promotes angiogenesis through apoptosis signal-regulating kinase 1 in human osteosarcoma[J].Biochem Pharmacol,2013,85(4):531-540.

      [35] Wang SW,Liu SC,Sun HL,et al.CCL5/CCR5 axis induces vascular endothelial growth factor-mediated tumor angiogenesis in human osteosarcoma microenvironment[J].Carcinogenesis,2015,36(1):104-114.

      [36] Sullivan R,Graham C.Hypoxia-driven selection of the metastatic phenotype[J].Cancer Metastasis Rev,2007,26(2):319-331.

      [37] Jain RK.Normalization of tumor vasculature:an emerging concept in antiangiogenic therapy[J].Science,2005,307(5706):58-62.

      [38] Segaliny AI,Mohamadi A,Dizier B,et al.Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment[J].Int J Cancer,2014,[Epub ahead of print].

      [39] Chen JJ,Yao PL,Yuan A,et al.Up-regulation of tumor interleukin-8 expression by infiltrating macrophages:its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer[J].Clin Cancer Res,2003,9(2):729-737.

      [40] 曲戈,馬軍,秦建軍.靶向腫瘤及其微環(huán)境:間充質(zhì)干細(xì)胞介導(dǎo)的基因靶向治療策略[J].腫瘤,2013,33(5):465-472.

      [41] Kim SH,Moon SH.Osteoclast differentiation inhibitors:a patent review (2008-2012)[J].Expert Opin Ther Pat,2013,23(12):1591-1610.

      [42] Rousseau J,Escriou V,Lamoureux F,et al.Formulated siRNAs targeting Rankl prevent osteolysis and enhance chemotherapeutic response in osteosarcoma models[J].J Bone Miner Res,2011,26(10):2452-2462.

      [43] Dougall WC,Glaccum M,Charrier K,et al.RANK is essential for osteoclast and lymph node development[J].Genes Dev,1999,13(18):2412-2424.

      [44] Lamoureux F,Baud’huin M,Ory B,et al.Clusterin inhibition using OGX-011 synergistically enhances zoledronic acid activity in osteosarcoma[J].Oncotarget,2014,5(17):7805-7819.

      [45] Heymann D,Ory B,Blanchard F,et al.Enhanced tumor regression and tissue repair when zoledronic acid is combined with ifosfamide in rat osteosarcoma[J].Bone,2005,37(1):74-86.

      [46] Ohba T,Cates JM,Cole HA,et al.Pleiotropic effects of bisphosphonates on osteosarcoma[J].Bone,2014,63:110-120.

      [47] Ohyanagi F,Yanagitani N,Kudo K,et al.PhaseⅡstudy of docetaxel-plus-bevacizumab combination therapy in patients previously treated for advanced non-squamous non-small cell lung cancer[J].Anticancer Res,2014,34(9):5153-5158.

      [48] Lin F,Zheng SE,Shen Z,et al.Relationships between levels of CXCR4 and VEGF and blood-borne metastasis and survival in patients with osteosarcoma[J].Med Oncol,2011,28(2):649-653.

      [49] Wu Q,Yang SH,Wang RY,et al.Effect of silencing HIF-1alpha by RNA interference on expression of vascular endothelial growth factor in osteosarcoma cell line SaOS-2 under hypoxia[J].Ai Zheng,2005,24(5):531-535.

      [50] Ryu K,Choy E,Yang C,et al.Activation of signal transducer and activator of transcription3(Stat3)pathway in osteosarcoma cells and overexpression of phosphorylated-Stat3 correlates with poor prognosis[J].J Orthop Res,2010,28(7):971-978.

      [51] Bid HK,Oswald D,Li C,et al.Anti-angiogenic activity of a small molecule STAT3 inhibitor LLL12[J].PLoS One,2012,7(4):e35513.

      [52] Liu WN,Lin JH,Cheng YR,et al.FIM-A,aphosphorus-containing sirolimus, inhibits the angiogenesis and proliferation of osteosarcomas[J].Oncol Res,2013,20(7):319-326.

      猜你喜歡
      骨組織骨細(xì)胞纖維細(xì)胞
      機(jī)械應(yīng)力下骨細(xì)胞行為變化的研究進(jìn)展
      調(diào)節(jié)破骨細(xì)胞功能的相關(guān)信號(hào)分子的研究進(jìn)展
      Tiger17促進(jìn)口腔黏膜成纖維細(xì)胞的增殖和遷移
      滇南小耳豬膽道成纖維細(xì)胞的培養(yǎng)鑒定
      硅+鋅+蠶絲 印度研制出促進(jìn)骨組織生成的新型材料
      山東陶瓷(2019年2期)2019-02-17 13:08:24
      骨細(xì)胞在正畸牙移動(dòng)骨重塑中作用的研究進(jìn)展
      鈦夾板應(yīng)用于美學(xué)區(qū)引導(dǎo)骨組織再生1例
      胃癌組織中成纖維細(xì)胞生長(zhǎng)因子19和成纖維細(xì)胞生長(zhǎng)因子受體4的表達(dá)及臨床意義
      長(zhǎng)期應(yīng)用糖皮質(zhì)激素對(duì)大鼠骨組織中HMGB1、RAGE、OPG和RANKL表達(dá)的影響
      兩種制備大鼠胚胎成纖維細(xì)胞的方法比較
      新和县| 宁陵县| 贵德县| 金山区| 天长市| 宕昌县| 淳安县| 全椒县| 新乡县| 宁波市| 灌南县| 竹溪县| 贡嘎县| 凤城市| 徐水县| 上虞市| 长沙市| 汨罗市| 安宁市| 靖远县| 新绛县| 虹口区| 东丰县| 灯塔市| 阿荣旗| 柏乡县| 锡林浩特市| 宁德市| 潮安县| 宜春市| 讷河市| 太谷县| 城步| 灵台县| 长宁区| 深泽县| 雅安市| 德清县| 嘉峪关市| 集贤县| 利津县|