安 博
(1.渭南師范學(xué)院物理與電氣工程學(xué)院物理系,渭南 714099; 2.陜西省X射線檢測與應(yīng)用研究開發(fā)中心, 渭南 714099)
具有Eckart勢的Schr?dinger方程的任意l波解析解
安 博1, 2
(1.渭南師范學(xué)院物理與電氣工程學(xué)院物理系,渭南 714099; 2.陜西省X射線檢測與應(yīng)用研究開發(fā)中心, 渭南 714099)
Eckart勢; 完全量子化規(guī)則; Greene-Aldrich近似
由于精確解包含了幾乎所有的量子信息,所以其在量子計算中具有非常重要的作用,但是只有極少簡單的量子系統(tǒng)具有精確解.目前人們已經(jīng)發(fā)展了許多尋找精確解的有效方法,如:因式分解[1]、超對稱[2,3]、分離變量[4]和SWKB[5]等方法,解決了如P?schl-Teller勢[6]、雙環(huán)狀振子勢[7]、Makarov勢[8]、類Quesne環(huán)狀球諧振子勢[9]等物理模型.
Eckart勢作為量子力學(xué)中一個重要的指數(shù)型可解勢,首先于1930年被Eckart[9]提出.由于其在物理[10]和化學(xué)物理[11]方面的廣泛應(yīng)用,研究者探討了具有Eckart勢的Schr?dinger方程、Klien-Gordon方程和Dirac方程的基態(tài)解[12-14].但這些研究都被限制在方程的s波解.在上述研究基礎(chǔ)上,本文提出采用Greene-Aldrich法對離心項近似,使用完全量子化規(guī)則計算了具有離心項的Eckart勢的Schr?dinger方程l(l≠0)波解析解,并分別討論了基態(tài)和激發(fā)態(tài)下,勢能范圍參數(shù)λ和勢阱深度η對具有不同角動量量子數(shù)的能量本征值的影響以及能量本征值和徑向量子數(shù)n與角動量量子數(shù)l之間的關(guān)系.
一維Schr?dinger方程可表示為:
(1)
式(1)可以寫成一個非線性Riccati方程:
φ(x)2
(2)
(3)
(4)
上式第二項可表示為:
π
(5)
將其代入式(3)得到:
π=nπ
(6)
若在三維空間中式(6)可表示為:
π
(7)
方程(6)和(7)被稱作完全量子化規(guī)則[17-20].
三維空間中Eckart勢表示為[9]:
(8)
(9)
為簡化表達式,做以下變量替換:
V2=λ2δ,V1=λ2γ
(10)
式(9)可另寫為:
V(r)=V2y2+V1y
(11)
通過解方程Enl=V(r)得到兩個轉(zhuǎn)折點的關(guān)系:
(12)
將新變量代入基態(tài)非線性Riccati方程(2)得:(為簡單下面選取自然單位?2=M=1)
(13)
由于基態(tài)φ0(r)只有一個零點且無極點,則其一定是y的線性函數(shù),根據(jù)Sturm-Liouville定理[17],令φ0(r)=C1y+C2(C1>0),代入式(13)得:
(14)
波矢k(r)可表示為:
將其代入式(7)的第一個積分中,得:
(15)
用E0替代式(15)中的Enl,得:
(16)
根據(jù)完全量子化規(guī)則,將式(15)和(16)代入式(7),得:
(17)
其解為:
(18)
為進一步研究能譜性質(zhì),圖1(a)和(b)分別表示基態(tài)(n=0)和激發(fā)態(tài)(n=1)具有不同角動量量子數(shù)的能量本征值和勢能范圍參數(shù)λ之間的關(guān)系.可以看出,當(dāng)l=0時能量曲線被強烈束縛在一個λ相對較寬的范圍內(nèi),隨著l增大,能量的束縛范圍越來越小,尤其當(dāng)l=10時,能量被束縛在一個λ相對極小的范圍內(nèi),此時引力勢程較短.總言之,隨自旋量子數(shù)l的增大,能量被束縛的范圍變小,l導(dǎo)致能量對λ變化敏感,因此λ的選擇具有極小范圍.圖2(a)和(b)分別表示基態(tài)和激發(fā)態(tài)具有不同角動量量子數(shù)的能量本征值和勢阱深度η之間的關(guān)系.可以看出,隨著勢阱深度的增加,能量先増后減.圖3表示能量隨徑向量子數(shù)n和角動量量子數(shù)l的變化關(guān)系.可以看出,具有相同l時,能量隨n的增大而增大;具有相同n時,能量隨l增大而增大.
圖1 具有不同角動量量子數(shù)的能量本征值和λ之間的關(guān)系(σ=0.025,η=0.00005)(a) 基態(tài)(n=0)(b) 第一激發(fā)態(tài)(n=1)Fig. 1 The variations of energy eigenvalue for various values of l as a function of the λ (σ=0.025,η=0.00005)(a) ground state(n=0)(b) first excited state(n=1)
圖2 具有不同角動量量子數(shù)的能量本征值和勢阱深度η之間的關(guān)系(σ=η=0.025)(a) 基態(tài)(n=0)(b) 第一激發(fā)態(tài)(n=1)Fig. 2 The variations of energy eigenvalue for various values of l as a function of the η (σ=0.025,η=0.00005)(a) ground state(n=0)(b) first excited state(n=1)
圖3 能量本征值與n和l之間的關(guān)系Fig. 3 Relations of n and l with energy eigenvalue
本文采用完全量子化規(guī)則和Greene-Aldrich近似法研究了具有離心項的Eckart勢的Schr?dinger方程,得到其任意l波解析解.討論了勢能范圍參數(shù)和勢阱深度對Eckart勢基態(tài)和激發(fā)態(tài)能譜的影響,結(jié)果表明:(1) 隨l增大,能量被束縛的范圍變小,引力勢程減??;(2) 隨勢阱深度增加,能量先增后減;(3)n和l增大引起能量本征值增大.
[1] Arcos-Olalla R, Reyes M A, Rosu H C. An alternative factorization of the quantum harmonic oscillator and two-parameter family of self-adjoint operators [J].Phys.Lett. A, 2012, 376: 2860.
[2] Chen G. Bound states of relativistic particles in Rosen-Morse potential [J].ActaPhys.Sin., 2004, 53(3): 680(in Chinese) [陳剛. Rosen-Morse勢阱中相對論粒子的束縛態(tài)[J]. 物理學(xué)報, 2004, 53(3): 680]
[3] Zarrinkamar S, Rajabi A A, Hassanabadi H. Dirac equation for the harmonic scalar and vector potentials and linear plus coulomb-like tensor potential: the SUSY approach [J].AnnPhys., 2010, 325: 2522.
[4] Zhang J F, Xu C Z, He B G. The variable separation approach and study on solving the variable-coefficient nonlinear Schr?dinger equation [J].ActaPhys.Sin., 2004, 53(11): 3652 (in Chinese)[張解放, 許昌智, 何寶鋼. 變量分離法與變系數(shù)非線性薛定諤方程的求解探索 [J]. 物理學(xué)報, 2004, 53(11): 3652]
[5] Yin C, Cao Z Q, Shen Q S. Why SWKB approximation is exact for all SIPs [J].Ann.Phys., 2010, 325: 528.
[6] Jia C S, Chen T, Cui L G. Approximate analytical solutions of the Dirac equation with the generalized P?schl-Teller potential including the pseudo-centrifugal term [J].Phys.Lett. A, 2009, 373: 1621.
[7] Chen C Y, You Y, Wang X H. Exact solutions of the Schr?dinger equation with double ring-shaped oscillator [J].Phys.Lett. A, 2013, 377: 1521.
[8] Chen C Y, Liu C L, Lu F L. Exact solutions of Schr?dinger equation for the Makarov potential [J].Phys.Lett. A, 2010, 374: 1346.
[9] Zhang M C. Quesne-like ring-shaped spherical harmonic oscillator potential and pseudospin symmetry [J].ActaPhys.Sin., 2009, 58(2): 712 (in Chinese)[張民倉. 類Quesne環(huán)狀球諧振子勢場中贗自旋對稱性 [J]. 物理學(xué)報, 2009, 58(2): 712]
[9] Eckart C. The penetration of a potential barrier by electrons [J].Phys.Rev., 1930, 35(11): 1303.
[10] Cooper F, Khare A, Sukhatme U. Supersymmetry and quantum mechanics [J].Phys.Rep., 1995, 251: 267.
[11] Cimas A, Aschi M, Barrientos C. Computational study on the kinetics of the reaction of N(4S) with CH2F [J].Chem.Phys.Lett., 2003, 374(3): 594.
[12] Dong S H, Qiang W C, Sun G,etal. Analytical approximations to the l-wave solution of the Schr?dinger equation with the Eckart potential [J].J.Phys. A:Math.Theor., 2007, 40(34): 10535.
[13] Zhang M C, Huang-Fu G Q. L2-series solutions of the Schr?dinger equation with the Eckart potential [J].Phys.Scr., 2010, 82(6): 065012.
[15] Yi L Z, Diao Y F, Liu J Y,etal. Bound states of the Klein-Gordon equation with vector and scalar Rosen-Morse-type potentials [J].Phys.Lett. A, 2004, 333(3): 212.
[14] Zou X, Yi L Z, Jia C S. Bound states of the Dirac equation with vector and scalar Eckart potentials [J].Phys.Lett. A, 2005, 346(1): 54.
[15] Ma Z Q, Xu B W. Exact quantization rule and the invariant [J].ActaPhys.Sin., 2006, 55(4): 1571 (in Chinese) [馬中琪, 許伯威. 精確的量子化條件和不變量 [J]. 物理學(xué)報, 2006, 55(4): 1571]
[16] Gu X Y, Dong S H, Ma Z Q. Energy spectra for modified Rosen-Morse potential solved by the exact quantization rule [J].J.Phys. A:Math.Theor., 2009, 42(3): 035303.
[17] Qiang W C, Dong S H. Proper quantization rule [J].Europhys.Lett., 2010, 89: 10003.
[18] Serrano F A, Gu X Y, Dong S H. Qiang-Dong proper quantization rule and its applications to exactly solvable quantum systems [J].J.Math.Phys., 2010, 51(8): 082103.
[19] Sameer M I, Jamal A H. Quantization rule solution to the Hulthén potential in arbitrary dimension with a new approximate scheme for the centrifugal term [J].Phys.Scr., 2011, 83(2): 025002.
[20] Serrano F A, Dong S H. Proper quantization rule approach to three-dimensional quantum dots [J].Quant.Chem., 2013, 113: 2282.
[21] Zhang M C, Huang-Fu G Q. Analytical approximation to the l-wave solutions of the Eckart potential in the tridiagonal representation [J].Phys.Scr., 2012, 85(1): 015005.
Analytical solution to the arbitraryl-wave bound state
of the Schr?dinger equation for the Eckart potential
AN Bo1, 2
(1.Department of Physics, Weinan Normal University, Wei’nan 714099, China;2.Center of Ray Detection and Application of Shanxi, Wei’nan 714099, China)
The Schr?dinger equation including Eckart potential with centrifuge term was investigated using the proper quantization rule approach for any states. Setting the proper quantization rule and using Greene-Aldrich approximation, the energy spectra of Eckart potential can be determined from its ground state energy only. Finally, we discussed (1) the influences of the range of potentialηand the depth of potentialλon, respectively, the ground and first excited states for variousl, and (2) the relations of radial quantum numbernand angular quantum numberlwith energy eigenvalue.
Eckart potential; Proper quantization rule; Greene-Aldrich approximation
2014-07-27
國家自然科學(xué)基金青年科學(xué)基金(11304230);渭南師范學(xué)院特色學(xué)科建設(shè)項目(14TSXK06)
安博(1981—), 男,陜西省渭南市人,碩士,講師,從事量子多體理論研究.E-mail: mranbo@126.com
103969/j.issn.1000-0364.2015.08.021
O431.1
A
1000-0364(2015)08-0643-04