白小東,畢 陽*,李永才,王 毅,牛黎莉,王 婷,尚 琪
(甘肅農(nóng)業(yè)大學(xué)食品科學(xué)與工程學(xué)院,甘肅 蘭州 730070)
?
果蔬采后病害的潛伏侵染機(jī)理研究進(jìn)展
白小東,畢 陽*,李永才,王 毅,牛黎莉,王 婷,尚 琪
(甘肅農(nóng)業(yè)大學(xué)食品科學(xué)與工程學(xué)院,甘肅 蘭州 730070)
摘 要:潛伏侵染是引起果蔬采后病害的重要因素,病原菌侵染途徑多樣、侵染時(shí)期難以預(yù)測,采后處理不能完全控制果蔬潛伏侵染病害發(fā)生。潛伏侵染性病原菌附著胞的形成及分泌的致病因子如胞外酶、活性氧(reactive oxygen species,ROS)、pH因子和毒素是病原菌穿透寄主細(xì)胞的重要原因,同時(shí)寄主組織衰老防衛(wèi)能力降低也加速了病原菌在寄主細(xì)胞內(nèi)次生菌絲的形成和寄主病癥的出現(xiàn)。本文通過對果蔬采后病害的潛伏侵染機(jī)理的綜述,明確病原菌侵入寄主的機(jī)制及病原菌在寄主內(nèi)長期潛伏的原因,可以有針對性地防治采后病害,對尋找防治潛伏侵染新方法和提高采后病害的防治效率具有理論意義。
關(guān)鍵詞:潛伏侵染;采后病害;附著胞;發(fā)病機(jī)理
潛伏侵染是引起果蔬采后病害的重要因素,不僅造成巨大經(jīng)濟(jì)損失,而且對果蔬采后防腐構(gòu)成了潛在的威脅[1]。多種采后病害的發(fā)生與潛伏侵染有關(guān),主要包括熱帶及亞熱帶水果的主要病害,如柑橘和芒果蒂腐病、木瓜和香蕉炭疽病等[2-3];溫帶果品的仁果類中的蘋果和梨黑斑病和霉心病、核果類中 的桃褐腐病、漿果類中的葡萄灰霉病、瓜類中的甜瓜白霉病、茄果類中的辣椒果腐病以及地下根莖類中的馬鈴薯干腐病等[4-7]。
潛伏侵染大多發(fā)生于果蔬在田間的發(fā)育期,真菌和細(xì)菌均可引起果蔬潛伏侵染的發(fā)生,但以真菌最為常見。典型的潛伏侵染性真菌包括色二孢(Lasiodiplodia sp.)、擬莖點(diǎn)霉(Phomopsis sp.)、葡萄孢(Botrytis sp.)、刺盤孢(Colletotrichum sp.)、鏈格孢(Alternaria sp.)、鏈核盤菌(Monilinia sp.)、鐮刀菌(Fusarium sp.)等。病原物在果蔬生長期間侵入寄主體內(nèi)以后,由于寄主體內(nèi)抗病性物質(zhì)的存在而使其呈現(xiàn)某種潛伏狀態(tài),直到寄主成熟或采收以后,體內(nèi)抗病性物質(zhì)降低或消失,病原物才恢復(fù)活動(dòng),進(jìn)而導(dǎo)致癥狀的出現(xiàn)。潛伏侵染病原菌大多在果蔬未成熟時(shí)侵入果實(shí)組織,甚至在開花期就開始侵入潛伏數(shù)個(gè)月,直到果實(shí)成熟表現(xiàn)相應(yīng)病害癥狀。據(jù)報(bào)道[8],互隔交聯(lián)孢(Alternaria alternata)在芒果謝花期和著果期開始侵入,成熟期表現(xiàn)出蒂腐病癥;在花期侵入蘋果梨和甜瓜,在果實(shí)膨大期帶菌率最高;Fusarium sp.在甜瓜網(wǎng)紋形成期侵入后潛伏于甜瓜表皮網(wǎng)紋組織,直至采后引起病害[9-10];Jitareerat等[11]通過聚合酶鏈?zhǔn)椒磻?yīng)(polymerase chain reaction,PCR)方法在綠芒果中檢測到膠孢刺盤孢(Colletotrichum gloeosporioides)的潛伏侵染?;移咸焰撸˙otrytiscinerea)在葡萄果實(shí)發(fā)育整個(gè)過程中均能侵染果實(shí)組織,造成果實(shí)軟腐和脫落[12],不同潛伏侵染病原菌侵染時(shí)期呈現(xiàn)多樣性的特點(diǎn),對其侵染規(guī)律的確定有待進(jìn)一步研究。潛伏侵染的發(fā)生受多種因素調(diào)控,因此,若能系統(tǒng)研究病原物潛伏侵染機(jī)理對有效防治采后病害和減少采后損失具有十分重要的意義。
本文綜述具有潛伏侵染性病原物的侵染時(shí)期、過程及機(jī)理,以期為系統(tǒng)探究潛伏侵染的調(diào)控機(jī)制及控制采后潛伏侵染性病害的發(fā)生提供理論基礎(chǔ)。
1.1病原菌的侵入
潛伏侵染性真菌會(huì)形成附著胞或侵染菌絲等其他方式通過自然孔口、機(jī)械傷口及表皮組織直接侵入果蔬組織[13],但以形成附著胞的潛伏侵染方式為主。真菌分生孢子萌發(fā)頂端分泌黏性物質(zhì)(extracellular matrices,ECM)黏附在寄主表面分化形成芽管,芽管伸長頂端膨大形成附著胞;附著胞會(huì)產(chǎn)生侵染釘、分泌胞外酶及活性氧(reactive oxygen species,ROS)等小分子物質(zhì),促使其穿透表皮角質(zhì)層和細(xì)胞壁潛伏于寄主組織。溫嘉偉[14]對蔥紫斑病菌(Alternaria porri)的致病性實(shí)驗(yàn)發(fā)現(xiàn)其附著胞形成率與侵入率呈顯著正相關(guān)。顯然,胞外分泌物及附著胞的形成對潛伏侵染至關(guān)重要。
1.1.1 病原菌對寄主的識別
潛伏侵染的病原物在果實(shí)發(fā)育的不同階段侵入,首先分生孢子必須與寄主接觸,并且能夠黏附于寄主表面形成侵染結(jié)構(gòu)。病原菌通過附著胞或附著枝能感知寄主表皮組織的化學(xué)成分或特征[15-16],對其侵入寄主組織非常關(guān)鍵,其中病原物侵染的第一道屏障果皮角質(zhì)層組分對病原物孢子萌發(fā)和侵染結(jié)構(gòu)的形成具有調(diào)控作用。據(jù)研究報(bào)道[17],鱷梨果實(shí)表皮蠟質(zhì)組分中C24和長鏈醇能刺激C. gloeosporioides分生孢子的萌發(fā)和附著胞的形成,而其他大多數(shù)長鏈脂肪醇則對附著胞的形成產(chǎn)生抑制作用,研究發(fā)現(xiàn)梨果皮蠟質(zhì)及其在發(fā)育過程中的變化對A. alternata的孢子萌發(fā)和菌絲生長具有不同程度的抑制作用[18]。分生孢子在一定條件下萌發(fā)產(chǎn)生芽管形成附著胞,并且會(huì)分泌一些胞外黏性物質(zhì),如胞外酶、多糖、多元醇和糖蛋白等可促進(jìn)孢子對寄主的黏附識別。據(jù)報(bào)道[19],環(huán)腺苷磷酸(cyclic adenosine mono-phosphate,cAMP)、絲分裂原激活蛋白激酶(mitogen-activated protein kinases,MAPK)信號轉(zhuǎn)導(dǎo)途徑、NADPH氧化酶(NADPH oxidase)能調(diào)控真菌附著胞形成,作為侵入的基礎(chǔ)[20],并且附著胞對寄主的識別還受寄主表面識別蛋白基因、黑色素和甘油合成基因、細(xì)胞自噬基因、SNARE蛋白(soluble NSF attachment protein receptor proteins)等因子調(diào)控[21],但調(diào)控細(xì)節(jié)及相互關(guān)系尚未深入研究??傊?,附著胞的形成在真菌識別寄主及兩者互作過程中起著非常重要的作用。
1.1.2 機(jī)械壓力和胞外酶的產(chǎn)生
附著胞侵入寄主組織的主要因素是機(jī)械壓力[22]和胞外酶,但附著胞侵入寄主兩者的主導(dǎo)作用一直以來是爭論的焦點(diǎn)。黑色素和甘油是附著胞產(chǎn)生機(jī)械壓力的關(guān)鍵因子[23]。附著胞成熟的過程在細(xì)胞壁內(nèi)側(cè)形成阻止甘油等溶質(zhì)外滲的黑色素層,在沒有黑色素沉積的附著胞小孔處會(huì)產(chǎn)生侵入釘,溶質(zhì)吸收水分進(jìn)入細(xì)胞內(nèi)部,使附著胞產(chǎn)生極高的膨脹壓力,侵入釘依靠極高的膨脹壓力穿透寄主表皮細(xì)胞或組織[24]。通過熒光標(biāo)記法發(fā)現(xiàn)甘藍(lán)鏈格孢(Alternaria brassicicola)在侵染蕓苔屬植物時(shí)黑色素控制基因BRM2和AMR大量表達(dá),說明黑色素與鏈格孢菌侵入寄主相關(guān)[25];黑色素基因突變株和使用黑色素合成抑制劑導(dǎo)致附著胞不能積累高膨壓和形成侵入釘,喪失了穿透寄主表皮的能力[26]。
真菌產(chǎn)生的胞外酶可以降解寄主細(xì)胞壁,從寄主組織中獲取生長代謝所需的能量,包括角質(zhì)酶、纖維素酶、半纖維素酶、果膠酶、多酚氧化酶以及部分蛋白酶等[27]。在C. gloeosporioides侵染木瓜、桃褐腐病菌(Monilinia fructicola )侵入桃果實(shí)過程中多聚半乳糖醛酸酶(polygalacturonase,PG)及角質(zhì)酶基因大量表達(dá),說明病原菌產(chǎn)生的PG和角質(zhì)酶對其侵入起到了重要的促進(jìn)作用[28-30]。真菌胞外酶能破壞寄主細(xì)胞并干擾其正常生理代謝功能,在病原物攝取營養(yǎng)和消除寄主的機(jī)械屏障中起重要作用[31]。因此,可能附著胞產(chǎn)生的機(jī)械壓力與胞外酶在其侵入寄主組織中具有協(xié)同作用,共同導(dǎo)致了侵染釘對寄主的穿透。
1.1.3 ROS
ROS在病原物與寄主互作中扮演重要的角色。一般認(rèn)為,ROS是由寄主產(chǎn)生的,但有研究表明病原菌也可產(chǎn)生ROS,并且其含量與病原物的致病性相關(guān)[32],真菌NOX基因的大量表達(dá)促進(jìn)了ROS積累對病原物的致病性具有重要作用[33]。已發(fā)現(xiàn)B. cinerea在侵染中能在菌絲內(nèi)部和周圍積累ROS,并且ROS水平與其毒力呈正相關(guān)[34],其bcNOXA和bcNOXB基因突變株的致病性較低[35]。稻瘟病菌(Magnaporthe oryzae)的NOX1和NOX2基因敲除后造成了病原物嚴(yán)重的致病性缺陷,削弱其形成附著胞并侵入表皮角質(zhì)層的能力,人為增加突變株培養(yǎng)中ROS水平能恢復(fù)其致病能力[20];硫色鐮刀菌(Fusarium sulphureum)與馬鈴薯塊莖互作產(chǎn)生的ROS顯著加速寄主脂質(zhì)過氧化[36]。此外,病原菌產(chǎn)生的ROS也參與了自身侵染結(jié)構(gòu)的形成。據(jù)報(bào)道[37],A. alternata產(chǎn)生的ROS能促進(jìn)自身分生孢子的形成和附著胞對細(xì)胞壁的穿透性,桃花花瓣接種M. fructicola的孢子后,用對M. fructicola的孢子萌發(fā)沒有抑制效果的抗氧化劑抑制ROS后,侵染得到抑制或阻止[38]。綜上所述,NOX調(diào)控的ROS在潛伏侵染病原菌侵入寄主組織過程中發(fā)揮了重要作用,但寄主對病原物產(chǎn)生ROS的調(diào)控機(jī)制有待進(jìn)一步研究。
1.2寄主抗菌性
潛伏侵染性真菌穿透寄主細(xì)胞壁后在寄主表皮細(xì)胞形成初生菌絲,從寄主組織獲取維持自身生長代謝所需的營養(yǎng)物質(zhì);果實(shí)受到病原菌侵染后會(huì)引發(fā)寄主系統(tǒng)獲得性抗病性(systemic acquired resisrance,SAR),導(dǎo)致病程相關(guān)蛋白(pathogenesis related proteins,PR)基因表達(dá),PR-2和PR-3分別具有β-1,3-葡聚糖酶和幾丁質(zhì)酶活性,對植物抗病性具有重要作用;此外,預(yù)合成抗真菌物質(zhì)積累[18]、植保素的合成及啟動(dòng)防衛(wèi)反應(yīng)信號的級聯(lián)傳導(dǎo)[39],暫時(shí)限制真菌初生菌絲的生長和擴(kuò)展。
潛伏侵染性真菌穿透寄主細(xì)胞壁后在寄主表皮細(xì)胞形成初生菌絲,從寄主組織獲取維持自身生長代謝所需的營養(yǎng)物質(zhì);果實(shí)受到病原菌侵染后會(huì)引發(fā)一系列自身防御反應(yīng),如預(yù)合成抗真菌物質(zhì)積累;果實(shí)細(xì)胞壁是抵抗病原物侵入的第一道屏障,細(xì)胞壁組分在抑制病原菌侵入過程中發(fā)揮了重要作用,研究發(fā)現(xiàn)在芒果未成熟的果皮中苯二酚-5-十七碳-12-烯和間苯二酚-5-十五烷[40]、桃果皮中的酚酸對M. fructicola未成熟蘋果表皮的綠原酸[41]、鱷梨表皮的二烯類物質(zhì)[42]、柑橘表皮的單萜醛和檸檬醛[43]、梨表皮的鄰苯二甲酸酯類等[44]均可有效地抑制已侵入的病原物潛伏侵染的擴(kuò)展。此外,果蔬相關(guān)蛋白被激活,可通過苯丙烷途徑、莽草酸途徑以及肉桂酸途徑形成酚類物質(zhì)、木質(zhì)素前體如咖啡酸、β-香豆酸、阿魏酸和松柏醇等可直接毒殺病原物,抑制病原菌的生長繁殖產(chǎn)生,但隨著果實(shí)成熟,果實(shí)經(jīng)過復(fù)雜的生理變化,表皮組分變化及細(xì)胞壁軟化,它們的含量均隨果實(shí)的成熟而降低[45],如原果膠大量轉(zhuǎn)化為可溶性果膠,從而有利于病原物果膠酶的作用,促進(jìn)了病原菌的侵入。此外,在植物抗病過程中水楊酸(salicylic acid,SA)、茉莉酸(jasmonic acid,JA)及茉莉酸甲酯(methyl jasmonate,MeJA)、乙烯、寡聚糖、脫落酸、多胺、β-氨基丁酸(β-aminobutyric acid,BABA)及部分脂肪酸也可能起信號分子作用[46],但這些信號分子轉(zhuǎn)導(dǎo)途徑及參與的信號通路尚未清楚??傊呖咕镔|(zhì)及信號分子對病原物的侵染過程具有重要的調(diào)控作用,果實(shí)成熟度的增加及抗菌物質(zhì)的下降加速了病原菌菌絲在果實(shí)組織內(nèi)的擴(kuò)展和果實(shí)發(fā)病,但深入的調(diào)控機(jī)制尚有待進(jìn)一步研究。
1.3病原菌菌絲的擴(kuò)展
病原物在寄主細(xì)胞內(nèi)定殖,由于受寄主組織抗菌物質(zhì)的抑制,僅依靠形成初生菌絲獲取營養(yǎng)物質(zhì)來維持潛伏階段的自身代謝,隨著果實(shí)自身防衛(wèi)能力下降,病原物會(huì)分泌一些致病因子,如pH因子和毒素,既促進(jìn)了病原菌腐生菌絲的形成和擴(kuò)展,又導(dǎo)致果實(shí)自身組織酸化或堿化和細(xì)胞功能紊亂,甚至造成組織細(xì)胞死亡,從而使果實(shí)逐漸呈現(xiàn)特定病害癥狀。
1.3.1 pH因子
病原菌在侵染寄主過程中會(huì)通過分泌一些pH調(diào)節(jié)因子介導(dǎo)寄主環(huán)境pH值的改變,使寄主組織堿化或酸化,為胞外酶提供最適pH值和保持自身細(xì)胞內(nèi)一個(gè)穩(wěn)定的pH值,決定了病原菌成功殺死寄主細(xì)胞組織的能力,具有改變pH值能力的一些潛伏侵染性病原菌有Colletotrichum spp.、A. alternata、B. cinerea和尖孢鐮刀菌(Fusarium oxysporum)等;Colletotrichum sp.、F. oxysporum和A. alternata等分泌活性胺,B. cinerea等分泌排泄有機(jī)酸或H+等[47-50]。據(jù)報(bào)道[51-52],接種C. gloeosporioides的番茄分泌活性胺直接激活NOX導(dǎo)致產(chǎn)生大量活性ROS和寄主細(xì)胞程序化死亡(programmed cell death,PCD);活性胺可改變K+/H+濃度并伴隨Ca2+流入和Cl?流出,導(dǎo)致質(zhì)膜去極化,破壞寄主膜電位平衡。此外,B. cinerea分泌的草酸(oxalic acid,OA)可使寄主環(huán)境酸化和鈣離子螯合,抑制寄主細(xì)胞壁胼胝質(zhì)的積累[53]??芍猵H值在真菌致病過程中扮演重要的角色,果實(shí)腐敗癥狀的加速也與pH值之間有一定的聯(lián)系。
1.3.2 毒素
毒素是病原物產(chǎn)生的次生代謝產(chǎn)物,是病原物與植物間相互識別、相互作用過程中的產(chǎn)物,分為寄主選擇性毒素(host specific toxin,HST)和非寄主選擇性毒素(non-host specific toxin,NHST),其中HST只對產(chǎn)生該毒素的病原物感病寄主表現(xiàn)毒性,而對抗病寄主或非寄主植物不表現(xiàn)毒性,NHST與采后病害的發(fā)生密切相關(guān),對寄主的影響不表現(xiàn)選擇性。有研究認(rèn)為毒素能使線粒體超微結(jié)構(gòu)發(fā)生顯著的變化,如膜破壞、脊膨脹、空泡化、基質(zhì)電子密度降低、線粒體基質(zhì)及脊數(shù)減少以至消失等[54]。另外,毒素還可引起液泡、內(nèi)質(zhì)網(wǎng)、核糖體和細(xì)胞核的膜破裂和泡囊化。據(jù)報(bào)道[55],鐮刀菌代謝產(chǎn)生鐮孢酸(fusaric acid,F(xiàn)A)毒素使質(zhì)膜損傷。A. alternata毒素能破壞柑橘細(xì)胞中ROS清除系統(tǒng)中的過氧化物酶和抗壞血酸過氧化物酶系,從而導(dǎo)致ROS累積過量,進(jìn)而損傷細(xì)胞組織,最終表現(xiàn)出病害癥狀??傊?,病原菌毒素的作用位點(diǎn)多樣,主要是在寄主細(xì)胞質(zhì)膜、線粒體等細(xì)胞結(jié)構(gòu)上;毒素會(huì)破壞細(xì)胞的膜體系,嚴(yán)重影響植物的代謝過程及能量改變,對寄主蛋白、核酸、酶和水分等引起一系列不良反應(yīng),導(dǎo)致生理失調(diào),加速果實(shí)組織細(xì)胞衰老死亡,但具體功能尚未系統(tǒng)研究清楚。隨著基因組和蛋白質(zhì)組學(xué)技術(shù)的進(jìn)一步發(fā)展,參與調(diào)控其毒素生物合成的途徑和功能基因有待被鑒定和驗(yàn)證。
在潛伏侵染過程中,病原菌附著胞分泌的ECM與寄主的識別及對寄主表皮組織的穿透至關(guān)重要,在潛伏侵染防治中應(yīng)從附著胞ECM和侵入釘形成以及與病原物相關(guān)分子識別(pathogen-associated molecular pattern,PAMP)的機(jī)制進(jìn)行深入探究,阻止其對寄主的黏附和穿透,降低侵染率。此外,不同致病基因參與真菌附著胞的侵入和次生菌絲的形成,如pH致病基因的激活、NOX基因和毒素相關(guān)基因的表達(dá)加速了果實(shí)組織細(xì)胞的衰老死亡;隨著果實(shí)成熟,寄主抗真菌物質(zhì)的下降也加速了病原菌次生菌絲在果實(shí)組織內(nèi)的迅速擴(kuò)展,導(dǎo)致病癥的提前出現(xiàn)。隨著分子技術(shù)的發(fā)展,利用差減cDNA克隆、啟動(dòng)子探針文庫等技術(shù)找到并分析參與致病過程的基因和寄主對病原菌致病因子的響應(yīng)調(diào)控模式,明確哪些真菌致病因子促進(jìn)病原菌次生菌絲的形成是探究病原真菌潛伏侵染分子機(jī)制的關(guān)鍵。此外,MAPK信號轉(zhuǎn)導(dǎo)系統(tǒng)參與多種病原真菌的潛伏侵染,其中高滲甘油(high osmolarity glycerol,HOG)MAPK信號轉(zhuǎn)導(dǎo)途徑介導(dǎo)著真菌對高滲透壓環(huán)境的適應(yīng)性以及對寄主的侵入[56]。總之,應(yīng)廣泛地運(yùn)用基因轉(zhuǎn)錄組學(xué)、蛋白組學(xué)和代謝組學(xué),多種方法結(jié)合明晰調(diào)控病原菌在果實(shí)組織中潛伏侵染信號轉(zhuǎn)導(dǎo)過程的關(guān)鍵因素,有利于尋找延遲或控制潛伏侵染發(fā)生的新方法。
參考文獻(xiàn):
[1]張維一, 畢陽. 果蔬采后病害控制[M]. 北京: 中國農(nóng)業(yè)出版社, 1996.
[2]胡美姣, 高兆銀, 李敏, 等. 杧果果實(shí)潛伏侵染真菌種類研究[J]. 果樹學(xué)報(bào), 2012, 29(1): 105-110.
[3]鄧雨艷, 曾凱芳. 柑橘果實(shí)采后侵染性病害防治技術(shù)研究進(jìn)展[J].食品科技, 2008, 33(4): 211-214.
[4]ADASKAVEG J E, FORSTER H, THOMPSON D F. Identification and etiology of visible quiescent infections of Monilinia fructicola and Botrytis cinerea in sweet cherry fruit[J]. Plant Disease, 2000, 84(3): 328-333.
[5]GELL I, de CAL A, TORRES R, et al. Relationship between the incidence of latent infections caused by Monilinia spp. and the incidence of brown rot of peach fruit: factors affecting latent infection[J]. European Journal of Plant Pathology, 2008, 121(4): 487-498.
[6]羅永蘭, 張志元. 辣椒潛伏侵染菌與采后病害的關(guān)系[J]. 湖北農(nóng)業(yè)科學(xué), 2003(2): 79-81.
[7]YIN Yan, LI Yongcai, BI Yang, et al. Postharvest treatment with β-aminobutyric acid induces resistance against dry rot caused by Fusarium sulphureum in potato tuber[J]. Agricultural Sciences in China, 2010, 9(9): 1372-1380.
[8]JOHNSON G I, MEAD A J, COOKE A W, et al. Mango stem end rot pathogens infection levels between flowering and harvest[J]. Annals of Applied Biology, 1991, 119(3): 465-473.
[9]LI Yongcai, BI Yang, AN Lizhe. Occurrence and latent infection of Alternaria rot of Pingguoli pear (Pyrus bretchneideri Rehd cv Pingguoli) fruits in Gansu, China[J]. Journal of Phytopathology, 2007, 155: 56-60.
[10]葛永紅, 畢陽, 馬凌云. 黃河蜜甜瓜果實(shí)致病真菌潛伏侵染的時(shí)期與途徑[J]. 中國西瓜甜瓜, 2005(3): 1-3.
[11]JITAREERAT P, WONGS A C, SANGCHOTE S. Detection of quiescent infection of Colletotrichum gloeosporioides on green mango fruit by polymerase chain reaction[C]//Ⅳ International Conference on Managing Quality in Chains-the Integrated View on Fruits and Vegetables Quality 712(Vol 2), 2006: 927-936.
[12]許玲, 張晟瑜, 王奕文, 等. 灰霉菌(Botrytis cinerea)采后致病性研究[J].植物病理學(xué)報(bào), 2006, 36(1): 74-79.
[13]PRUSKY D. Pathogen quiescence in postharvest diseases[J]. Annual Review of Phytopathology, 1996, 34(1): 413-434.
[14]溫嘉偉. 蔥紫斑病重要流行環(huán)節(jié)及綜合防治技術(shù)的初步研究[D]. 長春: 吉林農(nóng)業(yè)大學(xué), 2007.
[15]HOCH H C, STAPLES R C, WHITEHEAD B, et al. Signaling for growth orientation and cell differentiation by surface topography in uromyces[J]. Science, 1987, 235: 1659-1662.
[16]LIU Wende, ZHOU Xiaoying, LI Guotian, et al. Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation[J]. PLoS Pathogens, 2011, 7(1): e1001261. doi: 10.1371/journal.ppat.1001261.
[17]KOLATTUKUDY P E, ROGERS L M, LI D, et al. Surface signaling in pathogenesis[J]. Proceedings of the National Academy of Sciences, 1995, 92(10): 4080-4087.
[18]LI Yongcai, YIN Yan, CHEN Songjiang, et al. Chemical composition of cuticular waxes during fruit development of Pingguoli pear and their potential role on early events of Alternaria alternata infection[J]. Functional Plant Biology, 2013, 41(3): 313-320.
[19]FRANCK W L, GOKCE E, OH Y, et al. Temporal analysis of the Magnaporthe oryzae proteome during conidial germination and cyclic AMP (cAMP)-mediated appressorium formation[J]. Molecular & Cellular Proteomics, 2013, 12(8): 2249-2265.
[20]EGAN M J, WANG Z Y, JONES M A, et al. Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease[J]. Proceedings of the National Academy of Sciences, 2007, 104(28): 11772-11777.
[21]彭陳, 陳洪亮, 張玉瓊, 等. 稻瘟菌附著胞形成和發(fā)育的研究進(jìn)展[J].微生物學(xué)通報(bào), 2011, 38(8): 1270-1277.
[22]KANKANALA P, CZYMMEK K, VALENT B. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus[J]. The Plant Cell Online, 2007, 19(2): 706-724.
[23]de JONG J C, McCORMACK B J, SMIMOFF N, et al. Glycerol generates turgor in rice blast[J]. Nature, 1997, 389: 244.
[24]MONEY N P. Biophysics: fungus punches its way[J]. Nature, 1999, 401: 332-333.
[25]CHO Y, SRIVASTAVA A, OHM R A, et al. Transcription factor Amr1 induces melanin biosynthesis and suppresses virulence in Alternaria brassicicola[J]. PLoS Pathogens, 2012, 8(10): e1002974. doi: 10.1371/journal.ppat.1002974.
[26]曹志艷, 賈慧, 朱顯明, 等. DHN黑色素與玉米大斑病菌附著胞膨壓形成的關(guān)系[J]. 中國農(nóng)業(yè)科學(xué), 2011, 44(5): 925-932.
[27]張樂. 煙草赤星病生物學(xué)特性研究及同工酶技術(shù)在鏈格孢分類中的應(yīng)用[D]. 合肥: 安徽農(nóng)業(yè)大學(xué), 2006.
[28]LIU Hui, LIU Fei, WEI Fangfang, et al. Purification and characterization of cutinase from Alternaria longipes[J]. 植物病理學(xué)報(bào), 2009, 39(6): 622-629.
[29]CHIU LAWRENCE C M, YOU B J, CHOU C M, et al. Redox status mediated regulation of gene expression and virulence in the brown rot pathogen Monilinia fructicola[J]. Plant Pathology, 2013, 62(4): 809-819.
[30]CHEN Zhenjia, FRANCO C F, BAPTISTA R P, et al. Purification and identification of cutinases from Colletotrichum kahawae and Colletotrichum gloeosporioides[J]. Applied Microbiology and Biotechnology, 2007, 73(6): 1306-1313.
[31]宗兆鋒, 康振生. 植物病理學(xué)原理[M]. 北京: 中國農(nóng)業(yè)出版社, 2002.
[32]SCHOUTEN A, TENBERGE K B, VERMEER J, et al. Functional analysis of an extracellular catalase of Botrytis cinerea[J]. Molecular Plant Pathology, 2002, 3(4): 227-238.
[33]SCOTT B, EATON C J. Role of reactive oxygen species in fungal cellular differentiations[J]. Current Opinion in Microbiology, 2008, 11(6): 488-493.
[34]GOVRIN E M, LEVINE A. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea[J]. Current Biology, 2000, 10(13): 751-757.
[35]SEGMULLER N, KOKKELINK L, GIESBERT S, et al. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea[J]. Mo lecular Plant-Microbe Interactions, 2008, 21(6): 808-819.
[36]BAO Gaihong, BI Yang, LI Yongcai, et al. Overproduction of reactive oxygen species involved in the pathogenicity of Fusarium in potato tubers[J]. Physiological and Molecular Plant Pathology, 2014, 86: 35-42.
[37]HYON G S, IKEDA K, HOSOGI N, et al. Inhibitory effects of antioxidant reagent in reactive oxygen species generation and penetration of appressoria of Alternaria alternata Japanese pear pathotype[J]. Phytopathology, 2010, 100(9): 840-847.
[38]LIU Jia, SUI Yuan, WISNIEWSKI M, et al. Review: utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit[J]. International Journal of Food Microbiology, 2013, 167(2): 153-160.
[39]BOLLER T. Induction of hydrolases as a defense reaction against pathogens[R/OL]//UCLA Symposia on Molecular and Cellular Biology, 1985: 22. http://openagricola.nal.usda.gov/Record/IND87010301.
[40]DROBY S, PRUSKY D, JACOBY B, et al. Presence of antifungal compounds in the peel of mango fruits and their relation to latent infections of Alternaria alternata[J]. Physiological and Molecular Plant Pathology, 1986, 29(2): 173-183.
[41]Phytochemical Group. PRIDHAM J B. Cox’s orange pippin apples with reference to infection by G. perennans[R]//Phenolics in Plants in Health and Disease. Proceedings of a Plant Phenolics Group Symposium Held at Bristol, April 1959. Oxford: Pergamon Press, 1960: 87-94.
[42]PRUSKY D. The use of antioxidants to delay the onset of anthracnose and stem end decay in avocado fruits after harvest[J]. Plant Disease, 1988, 72(5). doi: 10.1094/PD-72-0381.
[43]RODOV V, BEN Y S, FANG D Q, et al. Preformed antifungal compounds of lemon fruit: citral and its relation to disease resistance[J]. Journal of Agricultural and Food Chemistry, 1995, 43(4): 1057-1061.
[44]LI Yongcai, AN Lizhe, GE Yonghong, et al. Detection and isolation of preformed antifungal compounds from the peel of Pyrus bretschneideri Rehd. cv. Pingguoli at different stages of maturity[J]. Journal of Phytopathology, 2008, 156(2): 115-119.
[45]LEE M H, BOSTOCK R M. Induction, regulation, and role in pathogenesis of appressoria in Monilinia fructicola[J]. Phytopathology, 2006, 96(10): 1072-1080.
[46]KESSMANN H, STAUB T, HOFMANN C, et al. Induction of systemic acquired disease resistance in plants by chemicals[J]. Annual Review of Phytopathology, 1994, 32: 439-459.
[47]ALKAN N, FLUHR R, SHERMAN A, et al. Role of ammonia secretion and pH modulation on pathogenicity of Colletotrichum coccodes on tomato fruit[J]. Molecular Plant Microbe Interactions, 2008, 21(8): 1058-1066.
[48]ESHEL D, MIYARA I, AILING T, et al. pH regulates endoglucanase expression and virulence of Alternaria alternata in persimmon fruit[J]. Molecular Plant-Microbe Interactions, 2002, 15(8): 774-779.
[49]O’CONNELL R J, THON M R, HACQUARD S. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses[J]. Nature Genetics, 2012, 44(9): 1060-1065.
[50]MANTEAU S, ABOUNA S, LAMBERT B, et al. Differential regulation by ambient pH of putative virulence factor secretion by the phytopathogenic fungus Botrytis cinerea[J]. FEMS Microbiology Ecology, 2003, 43(3): 359-366.
[51]ALKAN N, FLUHR R, PRUSKY D. Ammonium secretion during Colletotrichum coccodes infection modulates salicylic and jasmonic acid pathways of ripe and unripe tomato fruit[J]. Molecular Plant-Microbe Interactions, 2012, 25(1): 85-96.
[52]NUMRNBERGER T, SCHEEL D. Signal transmission in the plant immune response[J]. Trends in Plant Science, 2001, 6(8): 372-379.
[53]WILLIAMS B, KABBAGE M, KIM H J, et al. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment[J]. PLoS Pathogens, 2011, 7(6): e1002107. doi: 10.1371/journal.ppat.1002107.
[54]李海燕, 肖淑琴, 劉惕若. 辣椒疫霉菌粗毒素對葉片組織超微結(jié)構(gòu)的影響[J]. 園藝學(xué)報(bào), 2005, 32(4): 713-715.
[55]韓珊, 朱天輝, 李芳蓮. 植物病原真菌毒素作用機(jī)理研究進(jìn)展[J]. 四川林業(yè)科技, 2009, 29(6): 26-30.
[56]MA Dongmei, LI Ruoyu. Current understanding of HOG-MAPK pathway in Aspergillus fumigatus[J]. Mycopathologia, 2013, 175(1/2): 13-23.
Mechanism of Latent Infection for Postharvest Diseases of Fruits and Vegetables
BAI Xiaodong, BI Yang*, LI Yongcai, WANG Yi, NIU Lili, WANG Ting, SHANG Qi
(College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China)
Abstract:Latent infection is an important factor for causing postharvest diseases because of dive rse pathogen infection pathways and unpredictable infection periods so that its occurrence cannot be controlled completely by postharvest handling. Its appressorium and secreting virulence factors, such as extracellular enzymes, reactive oxygen species (ROS), pH and toxins are important for penetrating host cells, while host tissue senescence also can accelerate secondary hyphae formation in host cells and occurrence of host diseases. The invasive pathogens and long-term potential of the host cells are reviewed clearly in this paper, and the targets for preventing the occurrence of postharvest diseases have theoretical significance to discover new ways of latent infection and improve the efficiency of postharvest disease prevention.
Key words:latent infection; postharvest diseases; appressorium; pathogenesis
doi:10.7506/spkx1002-6630-201507050
中圖分類號:TS201.3
文獻(xiàn)標(biāo)志碼:A
文章編號:1002-6630(2015)07-0278-05
*通信作者:畢陽(1962—),男,教授,博士,研究方向?yàn)椴珊笊飳W(xué)與技術(shù)。E-mail:biyang@gsau.edu.cn
作者簡介:白小東(1988—),男,碩士,研究方向?yàn)椴珊蠓栏c保鮮。E-mail:bxdstar@gmail.com
基金項(xiàng)目:西北特色水果貯運(yùn)保鮮技術(shù)集成與示范項(xiàng)目(201303075)
收稿日期:2014-06-15