何曉龍 段朝陽
1 上海體育學(xué)院運(yùn)動(dòng)健身科技省部共建教育部重點(diǎn)實(shí)驗(yàn)室(上海200438)
2 同濟(jì)大學(xué)附屬楊浦醫(yī)院康復(fù)醫(yī)學(xué)科
近年來, 建成環(huán)境與體力活動(dòng)關(guān)系的研究引起了廣大學(xué)者的興趣, 尤其是在青少年體質(zhì)研究方面取得了一系列的成果。當(dāng)前,該領(lǐng)域的研究方法可分為定性研究與定量研究。 隨著地理信息系統(tǒng)(geographic information system,GIS)技術(shù)在眾多領(lǐng)域的推廣,應(yīng)用GIS技術(shù)定量測(cè)量建成環(huán)境指標(biāo)體系的方法也得到了有效的發(fā)展,是該領(lǐng)域定量研究的一種趨勢(shì)。但無論是采用定性或定量的研究方法, 一般都以建成環(huán)境的測(cè)量方式為依據(jù)[1-3]。然而,要測(cè)量影響青少年體力活動(dòng)的建成環(huán)境, 一個(gè)重要的前提就是需要知道哪些區(qū)域內(nèi)的建成環(huán)境要素會(huì)對(duì)青少年的體力活動(dòng)產(chǎn)生影響,因?yàn)榕c個(gè)體體力活動(dòng)直接相關(guān)的建成環(huán)境并非整個(gè)城市空間, 而是與其日常生活緊密相關(guān)的特定區(qū)域, 如住所、工作地點(diǎn)和通勤區(qū)間的周邊建成環(huán)境等。 該區(qū)域,即被稱作緩沖區(qū)(buffer),是特定的空間對(duì)象或集合的鄰域, 可以說是地理空間目標(biāo)的一種影響范圍或服務(wù)范圍[4,5]。
目前在建成環(huán)境影響青少年體力活動(dòng)的研究中,緩沖區(qū)的建立主要通過GIS技術(shù)以受試者的家庭住址(社區(qū))和(或)學(xué)校為中心建立一定距離、不同形狀的區(qū)域,代表環(huán)境暴露。 然而在所設(shè)定的一系列距離中,與青少年體力活動(dòng)敏感性最強(qiáng)的距離才是研究建成環(huán)境的“適宜緩沖區(qū)距離”,這對(duì)于該區(qū)域內(nèi)建成環(huán)境狀況的認(rèn)識(shí)、制定干預(yù)措施具有重要意義。國(guó)外在該方面的研究正處于一個(gè)快速上升的階段, 而國(guó)內(nèi)還面臨著一片空白。 因此,本文通過對(duì)國(guó)外使用GIS定量測(cè)量建成環(huán)境的適宜緩沖區(qū)距離進(jìn)行歸納與討論, 旨在為國(guó)內(nèi)日后的研究提供參考。
西方發(fā)達(dá)國(guó)家對(duì)建成環(huán)境與青少年體力活動(dòng)的研究一直占據(jù)著領(lǐng)先地位,因此本文從Medline、Embase、Pubmed、SportsDiscus和Web of Science等外文數(shù)據(jù)庫中進(jìn)行檢索,以“Built Environment”、“Physical activity”、“youth”、“adolescent”、“children”、“Physical Activity”、“Measurement”、 “Geographic Information System”、“GIS”、 “Global Positioning System”、 “GPS”、“Quantitative”、“buffer”、“radius”、“proximity”、“circular buffer”、“network buffer”、“street-based buffer”和“l(fā)inebased buffer”等為關(guān)鍵詞進(jìn)行組合檢索,檢索時(shí)間定為1990年1月至2014年6月, 并采用追溯的方法以保證文獻(xiàn)齊全。 結(jié)果搜索到67篇文獻(xiàn),經(jīng)過排除,保留有效文獻(xiàn)23篇。
早期的建成環(huán)境暴露是以預(yù)先設(shè)定(pre-defined)的地理邊界,如行政單位、縣區(qū)(counties)、人口普查區(qū)域(census tracts)和郵政編碼(ZIP codes)等來定義的[6-13]。這種假設(shè)的活動(dòng)空間操作固然簡(jiǎn)便, 但也存在著各種弊端。隨著社會(huì)的發(fā)展,一個(gè)人的流動(dòng)(包括體力活動(dòng))較為頻繁,不再局限于一個(gè)特定的行政區(qū)內(nèi)部,尤其對(duì)于生活在行政區(qū)域邊界的個(gè)體, 可能花更多的時(shí)間在臨近的行政單位里[13,14];此外,選擇行政區(qū)域容易導(dǎo)致可塑性面積單元問題 (modifiable areal unit problem,MAUP)。因此,行政單位不能真實(shí)反映青少年日常體力活動(dòng)所發(fā)生的區(qū)域[15,16], 容易導(dǎo)致錯(cuò)誤的環(huán)境暴露(exposure misclassification)[14]。
隨著GIS技術(shù)的應(yīng)用,緩沖區(qū)的創(chuàng)建也得到了長(zhǎng)足的發(fā)展,其更能代表青少年的日?;顒?dòng)環(huán)境,開啟了公共衛(wèi)生領(lǐng)域研究的新紀(jì)元[17]。 目前,依靠GIS技術(shù)可創(chuàng)建三種不同形狀的緩沖區(qū),分別為圓形緩沖區(qū)(circular buffer)、 路網(wǎng)緩沖區(qū) (network buffer) 和線形緩沖區(qū)(line-based network buffer/liner buffer)等(見圖1)。圓形緩沖區(qū), 又叫作crow flies、straight line buffers和airline buffers等[18],通常是以學(xué)校或家庭住址為中心就給定的歐式距離(euclidean distance)為半徑描繪的圓形區(qū)域[19,20],操作較為簡(jiǎn)便。 路網(wǎng)緩沖區(qū)又被稱作不規(guī)則多邊形緩沖區(qū)(irregular polygon network),是由目標(biāo)位置依據(jù)街道向外延伸一定距離, 用線將終點(diǎn)的道路網(wǎng)絡(luò)連接,創(chuàng)建一個(gè)目標(biāo)點(diǎn)周圍不規(guī)則形狀的緩沖區(qū),它所捕獲的是一個(gè)人基于道路前往目的地的真正可及性。線形緩沖區(qū)是沿著要素(如道路、河流等)兩側(cè)以及端點(diǎn)向外輻射一定距離的緩沖區(qū)域[4,5]。
圖1 GIS技術(shù)所創(chuàng)建的三種緩沖區(qū)示意圖(引自Boruff等[13])
盡管研究已經(jīng)表明利用GIS技術(shù)定量測(cè)量的建成環(huán)境緩沖區(qū)比行政單位更為準(zhǔn)確, 但在具體的研究中到底采取什么類型的緩沖區(qū)(圓形緩沖區(qū)、路網(wǎng)緩沖區(qū)還是線形緩沖區(qū)) 以及相同類型的緩沖區(qū)所需的適宜緩沖區(qū)距離目前還沒有統(tǒng)一的標(biāo)準(zhǔn)[21],這阻礙了該領(lǐng)域相同研究的重復(fù)與比較[22]。 通過對(duì)文獻(xiàn)分析發(fā)現(xiàn)(見表1),圓形緩沖區(qū)的使用頻率最高,路網(wǎng)緩沖區(qū)次之,線形緩沖區(qū)最少。 在圓形緩沖區(qū)里,400 m~1600 m(0.25 mile~1 mile)是較為尋常的距離,少數(shù)研究采用了2000 m甚至8.05 km的緩沖區(qū)距離; 在路網(wǎng)緩沖區(qū)里,半徑的區(qū)間為200 m~1600 m, 1200 m(0.75 mile)較為普遍;在建成環(huán)境與青少年體力活動(dòng)的研究里,線形緩沖區(qū)的文獻(xiàn)尚且不多,僅有1篇,選用的緩沖區(qū)距離為1.6 km(1 mile)。
科學(xué)合理的環(huán)境暴露是建成環(huán)境與青少年體力活動(dòng)研究的首要前提。緩沖區(qū)的建立,一方面強(qiáng)調(diào)了與個(gè)體密切相關(guān)的建成環(huán)境, 將那些距離個(gè)體生活空間較遠(yuǎn)的空間元素排除在外;另一方面,使不同區(qū)域的研究具備了重復(fù)與比較的可能[22]。 然而目前在緩沖區(qū)類型的選取以及適宜緩沖區(qū)距離測(cè)量方面的知識(shí)還依然很欠缺[41],導(dǎo)致不同研究的結(jié)果不一致[1,42]。
圓形緩沖區(qū)是以某個(gè)中心點(diǎn)和特定距離建立的圓形區(qū)域,代表青少年的潛在活動(dòng)范圍,并非所有該區(qū)域內(nèi)的建成環(huán)境特征都會(huì)吸引青少年體力活動(dòng)的參與。一些自然狀況如鐵路、 水域和連通性交叉的道路等顯然不是青少年日常體力活動(dòng)所參與的場(chǎng)所。同時(shí),圓形緩沖區(qū)不考慮街道的布局狀況。 因此圓形緩沖區(qū)會(huì)“高估”了青少年的體力活動(dòng)環(huán)境。 然而,由于其操作相對(duì)簡(jiǎn)便,是應(yīng)用較多的一種緩沖區(qū)方法,有文獻(xiàn)指出,在使用緩沖區(qū)的研究中,圓形占到了73%[43]。 多邊形緩沖區(qū)與線形緩沖區(qū)都是以線(街道、路網(wǎng))為基本要素。前者以特定的距離沿街道延伸, 并同時(shí)向道路兩側(cè)旁開一定的寬度, 然后將距離的終點(diǎn)用線連接后圍成一個(gè)不規(guī)則的多邊形區(qū)域, 代表的是一個(gè)人沿著街網(wǎng)所能到達(dá)的潛在區(qū)域;后者的做法與多邊形緩沖區(qū)相近,區(qū)別在于緩沖區(qū)半徑的長(zhǎng)度不固定, 一直向周圍沿著連通性較好的街道延伸, 且在各個(gè)道路的終點(diǎn)處并不用線連接,結(jié)果是一個(gè)更加不規(guī)則的圖形(見圖1)。 人們的空間步行足跡受到路網(wǎng)的影響,由此可見,直線緩沖區(qū)所代表的是一個(gè)青少年實(shí)際所能到達(dá)的范圍, 這個(gè)區(qū)域內(nèi)的建成環(huán)境特征對(duì)于體力活動(dòng)的影響顯然要大于前兩種緩沖區(qū)。 這三種類型的緩沖區(qū)還面臨著地理區(qū)域研究的差異問題。Oliver等[42](2007)指出,在街道連通性較為密集的城區(qū)與街道連通性較為稀疏的郊區(qū)(農(nóng)村)相比,圓形緩沖區(qū)與路網(wǎng)緩沖區(qū)所能代表的真實(shí)環(huán)境暴露區(qū)域差別不大, 然而在街道連通性較為稀疏的郊區(qū), 圓形緩沖區(qū)的實(shí)際用處卻比其他兩種緩沖區(qū)要小,此時(shí)就更適宜采用路網(wǎng)緩沖區(qū)與直線緩沖區(qū)。
另外, 緩沖區(qū)的采用也會(huì)隨著體力活動(dòng)的類型的差別而改變。比如,一個(gè)人的步行與目的地的可及性以及街道的連通性較為關(guān)聯(lián), 因此線形緩沖區(qū)對(duì)于步行研究來說也許更能夠代表一個(gè)人的空間環(huán)境暴露[13,42]。
縱觀文獻(xiàn), 在相同的緩沖區(qū)里使用的緩沖區(qū)距離也存在較大的差異。 例如, 在使用圓形緩沖區(qū)的研究中,有的使用了較大的半徑[23,25,26,31],也有的使用了較小的半徑[30,32,33]。 較大或較小的緩沖區(qū)半徑哪一個(gè)更能夠代表青少年的體力活動(dòng)環(huán)境目前還沒有統(tǒng)一的定論。Gordon-Larsen[44]和Sallis[45]認(rèn)為,5 km的范圍內(nèi)對(duì)研究成年人的體力活動(dòng)較為適合,然而對(duì)于青少年而言,緩沖區(qū)的范圍越小越適合, 主要是因?yàn)樾》秶鷥?nèi)其受交通影響較小,其他學(xué)者也提出了相同的看法[37,46-48]。 然而也有研究認(rèn)為,緩沖區(qū)的半徑越大,青少年日常所能接觸到的體力活動(dòng)設(shè)施 (或者有利于體力活動(dòng)開展的建成環(huán)境特征)的機(jī)會(huì)就越大[49]。 Nelson[50]通過敏感性分析(sensitivity analyses)確定了適合青少年體力活動(dòng)研究的緩沖區(qū)尺度較大,為3 km。
同時(shí), 很多緩沖區(qū)的半徑是依據(jù)社區(qū)的定義來選擇的。 比如,Colabianchi等[51]經(jīng)研究得出適宜青少年女生的社區(qū)適宜步行的時(shí)間為14.7±8.7 min, 約等于15 min,相當(dāng)于0.75 mile(1200 m),并為很多研究所引用。也有研究認(rèn)為半徑為1600 m(1 mile)更能代表社區(qū)的定義,約為20 min的步行[52,53]。
除了常用的幾種緩沖區(qū)半徑外, 還有學(xué)者以家庭周圍(社區(qū))或?qū)W校為中心建立不同的緩沖區(qū)半徑,采用敏感性分析, 找出與青少年體力活動(dòng)較為密切聯(lián)系的距離來代表更科學(xué)的建成環(huán)境暴露。 Boone-Heinonen等[26]分析了17659名青少年的中高強(qiáng)度體力活動(dòng)(MVPA)數(shù)據(jù)發(fā)現(xiàn),不同緩沖區(qū)規(guī)模——1 km、3 km、5 km和8.05 km緩沖區(qū)半徑內(nèi)的體力活動(dòng)設(shè)施數(shù)量與街道連通性與青少年的MVPA有關(guān)。 其中,3km以內(nèi)的體力活動(dòng)設(shè)施數(shù)量、1 km內(nèi)的交叉口密度與其MVPA最有一致性的聯(lián)系。 van Loon等(2014)[33]在366名青少年的家庭周圍分別創(chuàng)建了半徑為200 m、400 m、800 m和1600 m(1 mile)的路網(wǎng)緩沖區(qū)定義社區(qū)范圍,來檢測(cè)與8~11歲青少年的MVPA最為關(guān)聯(lián)的社區(qū)建成環(huán)境特征。 結(jié)果發(fā)現(xiàn),在設(shè)定的幾個(gè)半徑模型里,最大的緩沖區(qū)距離(1600 m) 與青少年的體力活動(dòng)的聯(lián)系較為緊密。由此看來,利用多重緩沖區(qū)尺寸對(duì)青少年的體力活動(dòng)進(jìn)行敏感性分析對(duì)于適宜緩沖區(qū)距離的確定有著重要意義[54]。
盡管敏感性分析可能是較為科學(xué)的方法,但不同緩沖區(qū)半徑的選擇仍然依靠作者主觀的隨意選擇性[55],對(duì)于客觀反映建成環(huán)境與體力活動(dòng)的相互關(guān)系來說,仍然不是最佳選擇。 有研究指出,青少年的體力活動(dòng)會(huì)隨著建成環(huán)境特征的改變而改變[56-58],因此詳盡的體力活動(dòng)背景信息能為研究者提供更完整的環(huán)境暴露評(píng)估[59-61]。而環(huán)境暴露對(duì)體力活動(dòng)的最大影響因素在于體力活動(dòng)開展的地點(diǎn)與時(shí)間[62],基于此點(diǎn),GPS已逐漸被引用到該領(lǐng)域的研究當(dāng)中, 被認(rèn)為是一種較為有效的工具[63]。
GPS由定位衛(wèi)星、地面監(jiān)控系統(tǒng)和定位接收器三個(gè)部分組成。 定位原理即根據(jù)高速運(yùn)動(dòng)的衛(wèi)星瞬間位置作為已知的起算數(shù)據(jù),采用空間距離后方交匯的方法,確定待測(cè)點(diǎn)的位置。它不僅提供三維坐標(biāo),還顯示精確的時(shí)空和速度數(shù)據(jù),因此可用來測(cè)量體力活動(dòng)環(huán)境[64]。
Maddison等[65]同時(shí)采用GIS、GPS和加速度計(jì)對(duì)12~17歲高中學(xué)生的4天體力活動(dòng)模式進(jìn)行了研究,結(jié)果發(fā)現(xiàn), 周一到周五體力活動(dòng)主要發(fā)生在學(xué)校周邊1 km的緩沖區(qū)內(nèi)或家庭周圍150 m的范圍內(nèi),每天的中等強(qiáng)度體力活動(dòng)(MPA)平均為74 ± 36 min,高強(qiáng)度體力活動(dòng)(VPA)為7.5 ± 8 min,周六和周日青少年的體力活動(dòng)與上學(xué)日截然不同,主要發(fā)生在家庭周圍的戶外環(huán)境。這樣,基于GPS的體力活動(dòng)追蹤對(duì)于客觀反映建成環(huán)境與體力活動(dòng)之間的相互關(guān)系更為科學(xué), 被認(rèn)為是環(huán)境暴露研究的一大進(jìn)步[66],也是該領(lǐng)域以后的研究方向與熱點(diǎn)。
基于GIS定量測(cè)量建成環(huán)境的三種緩沖區(qū)比傳統(tǒng)的行政單位更加準(zhǔn)確,且各有側(cè)重點(diǎn)。目前統(tǒng)一的適宜緩沖區(qū)距離仍未得到廣泛共識(shí)。 通過設(shè)置多重緩沖區(qū)尺寸進(jìn)行敏感性分析得出的緩沖區(qū)距離較為科學(xué)。 在將來的研究中,側(cè)重GPS的使用,將更能反映青少年日常體力活動(dòng)與建成環(huán)境之間的相互聯(lián)系。
[1] Brownson RC,Hoehner CM,Day K,et al. Measuring the built environment for physical activity:state of the science. Am J Prev Med,2009,36(4 Suppl): S99-S123.
[2] Stark S,Hollingsworth HH,Morgan KA,et al. Development of a measure of receptivity of the physical environment.Disability Rehab,2007,29(2):123-137.
[3] Kirtland KA,Porter DE,Addy CL,et al. Environmental measures of physical activity supports:perception versus reality. Am J Prev Med,2003,24(4):323-331.
[4] 王法輝. 基于GIS的數(shù)量方法與應(yīng)用[M].北京:商務(wù)印書館,2009:47-50.
[5] 鄔倫,劉瑜,張晶. 地理信息系統(tǒng)-原理、方法和應(yīng)用[M].科學(xué)出版社,北京,2012:3-31.
[6] Mujahid MS,Diez Roux AV,Shen M,et al. Relation between neighborhood environments and obesity in the multi-ethnic study of atherosclerosis. Am J Epidemiol,2008,167:1349-1357.
[7] Lopez RP. Neighborhood risk factors for obesity. Obesity,2007,15(8):2111-2119.
[8] Joshu CE,Boehmer TK,Brownson RC,et al. Personal,neighbourhood and urban factors associated with obesity in the United States. J Epidemiol Community Health,2008,62(3):202-208.
[9] James P,Troped PJ,Hart JE,et al. Urban sprawl,physical activity,and body mass index: nurses' health study and nurses' health study II. Am J Public Health,2013,103:369-375.
[10] Ewing R,Brownson RC,Berrigan D. Relationship between urban sprawl and weight of United States youth. Am J Prev Med,2006,31(6):464-474.
[11] Kwan MP. From place -based to people -based exposure measures. Social Science & Medicine,2009,69:1311-1313.
[12] Boone JE,Gordon-Larsen P,James D,et al.Validation of a GIS facilities database: quantification and implications of error. Ann Epidemiol,2008,18(5):371-377.
[13] Boruff BJ,Nathan A,Nijenstein S.Using GPS technology to(re) -examine operational definitions of 'neighbourhood' in place-based health research. Int J Health Geogr,2012,11:22.
[14] Duncan DT,Piras G,Dunn EC,et al.The built environment and depressive symptoms among urban youth: A spatial regression study. Spat Spatiotemporal Epidemiol,2013,5:11-25.
[15] Vallée J,Cadot E,Grillo F,et al. The combined effects of activity space and neighbourhood of residence on participation in preventive health-care activities: the case of cervical screening in the Paris metropolitan area. Health Place,2010,16(5):838-852.
[16] Matthews SA. The salience of neighborhood: some lessons from sociology. Am J Prev Med,2008,34(3):257-259.
[17] Charreire H,Casey R,Salze P,et al. Measuring the food environment using geographical information systems:A methodological review. Public Health Nutr,2010,13 (11):1773-1785.
[18] Forsyth A,Van Riper D,Larson N,et al.Creating a replicable,valid cross -platform buffering technique: The sausage network buffer for measuring food and physical activity built environments. Int J Health Geogr,2012,11:14.
[19] Rutt CD,Coleman KJ. Examining the relationships among built environment,physical activity,and body mass index in El Paso,TX. Prev Med,2005,40(6):831-841.
[20] Nelson MC,Gordon-Larsen P,Song Y,et al. Built and social environments associations with adolescent overweight and activity. Am J Prev Med,2006,31(2):109-117.
[21] Leal C,Chaix B. The influence of geographic life environments on cardiometabolic risk factors: a systematic review,a methodological assessment and a research agenda.Obes Rev,2011 ,12(3):217-230.
[22] Dunton GF,Kaplan J,Wolch J,et al.Physical environmental correlates of childhood obesity: a systematic review.Obes Rev,2009,10(4):393-402.
[23] Jago R,Baranowski T,Baranowski JC. Observed,GIS,and self-reported environmental features and adolescent physical activity.Am J Health Promot,2006,20(6):422-428.
[24] Pate RR,Colabianchi N,Porter D,et al. Physical activity and neighborhood resources in high school girls. Am J Prev Med,2008,34(5):413-419.
[25] Timperio A,Jeffery RW,Crawford D,et al. Neighbourhood physical activity environments and adiposity in children and mothers: a three-year longitudinal study. Int J Behav Nutr Phys Act,2010,19(7):18.
[26] Boone -Heinonen J,Popkin BM,Song Y,et al. What neighborhood area captures built environment features related to adolescent physical activity? Health Place,2010,16(6):1280-1286.
[27] Wolch J,Jerrett M,Reynolds K,et al. Childhood obesity and proximity to urban parks and recreational resources: a longitudinal cohort study.Health Place,2011,17(1):207-214.
[28] Trilk JL,Ward DS,Dowda M,et al. Do physical activity facilities near schools affect physical activity in high school girls? Health Place,2011,17(2):651-657.
[29] Gropp KM,Pickett W,Janssen I.Multi-level examination of correlates of active transportation to school among youth living within 1 mile of their school. Int J Behav Nutr Phys Act,2012,16(9):124.
[30] Lovasi GS,Schwartz-Soicher O,Quinn JW,et al. Neighborhood safety and green space as predictors of obesity among preschool children from low-income families in New York City. Prev Med,2013,57(3):189-193.
[31] Carvera A,Panter JR,Jones AP,et al. Independent mobility on the journey to school: A joint cross -sectional and prospective exploration of social and physical environmental influences. J Trans Health, 2014,1(1):25-32.
[32] Prins RG,Ball K,Timperio A,et al. Associations between availability of facilities within three different neighbourhood buffer sizes and objectively assessed physical activity in adolescents. Health Place,2011,17(6):1228-1234.
[33] van Loon J,F(xiàn)rank LD,Nettlefold L,et al. Youth physical activity and the neighbourhood environment: examining correlates and the role of neighbourhood definition. Soc Sci Med,2014,104:107-115.
[34] Colabianchi N,Coulton CJ,Hibbert JD,et al. Adolescent selfdefined neighborhoods and activity spaces: spatial overlap and relations to physical activity and obesity.Health Place,2014,27:22-29.
[35] Cradock AL,Melly SJ,Allen JG,et al. Youth destinations associated with objective measures of physical activity in adolescents.J Adolesc Health,2009,45(3 Suppl):S91-98.
[36] Norman JG,Nutter SK,Ryan S,et al. Community design and access to recreational facilities as correlates of adolescent physical activity and body-mass index. J Phys Act Health,2006,3(Suppl 1), S118-S128.
[37] Scott MM,Evenson KR,Cohen DA,et al. Comparing perceived and objectively measured access to recreational facilities as predictors of physical activity in adolescent girls.J Urban Health,2007 ,84(3):346-359.
[38] Frank LD,Engelke P,Schmid TL.Obesity relationships with community design,physical activity,and time spent in cars.Am J Prev Med,2004,27(2):87-96.
[39] Tucker P,Irwin JD,Gilliland J,et al. Environmental influences on physical activity levels in youth. Health Place,2009,15(1):357-363.
[40] McDonald K,Hearst M,F(xiàn)arbakhsh K,et al. Adolescent physical activity and the built environment: a latent class analysis approach. Health Place,2012,18(2):191-198.
[41] Diez Roux AV. Estimating neighborhood health effects: the challenges of causal inference in a complex world. Soc Sci Med,2004,58(10):1953-1960.
[42] Oliver LN,Schuurman N,Hall AW. Comparing circular and network buffers to examine the influence of land use on walking for leisure and errands. Int J Health Geogr,2007,20(6):41.
[43] Auchincloss AH,Gebreab SY,Mair C,et al. A review of spatial methods in epidemiology,2000 -2010. Annu Rev Public Health,2012,33:107-122.
[44] Gordon-Larsen P,Nelson M,Page P,et al. Inequality in the built environment underlies key health disparities. Pediatrics,2006,117(2):417-424.
[45] Sallis J,Hovell M,CRHofstetter,et al. Distance between homes and exercise facilities related to frequency of exercise among San Diego residents. Public Health Rep,1990,105(2):179-185.
[46] Jago R,Baranowski T,Harris M.Relationships between GIS environmental features and adolescent male physical activity:GIS coding differences.J Phys Act Health,2006,3 (3) : 230-242.
[47] Cohen DA,Ashwood JS,Scott MM,et al. Public parks and physical activity among adolescent girls. Pediatrics,2006,118(5):e1381-e1389.
[48] Boone -Heinonen J,Popkin BM,Song Y,et al. What neighborhood area captures built environment features related to adolescent physical activity? Health Place 201,16 (6):1280-1286.
[49] Prins RG,Ball K,Timperio A,et al.Associations between availability of facilities within three different neighbourhood buffer sizes and objectively assessed physical activity in adolescents. Health Place,2011,17(6):1228-1234.
[50] Nelson MC,Gordon-Larsen P,Song Y,et al. Built and Social Environments: Associations with Adolescent Overweight and Activity. Am J Pre Med,2006,31(2):109-117.
[51] Colabianchi N,Dowda M,Pfeiffer KA,et al. Towards an understanding of salient neighborhood boundaries: adolescent reports of an easy walking distance and convenient driving distance. Int J Behav Nutr Phys Activity,2007,4:66.
[52] Dengel DR,Hearst MO,Harmon JH,et al. Does the built environment relate to the metabolic syndrome in adolescents?Health Place,2009,15(4):946-951.
[53] Timperio A,Salmon J,Telford A,et al. Perceptions about the local neighborhood and walking and cycling among children.Prev Med,2004,38(1):39-47.
[54] Emch M,Ali M,Park JK,et al. Relationship between neighbourhood level killed oral cholera vaccine coverage and protective efficacy: evidence for herd immunity. Int J Epidemiol,2006,35(4):1044-1050.
[55] Rainham DG,Bates CJ,Blanchard CM,et al.Spatial classification of youth physical activity patterns.Am J Prev Med,2012,42(5):e87-96.
[56] Casey R,Oppert JM,Weber C,et al.Determinants of childhood obesity: What can we learn from built environment studies? Food Qual Prefer,2014,31:164-172.
[57] Cummins S,Curtis S,Diez-Roux AV,et al. Understanding and representing 'place' in health research: a relational approach. Soc Sci Med,2007,65(9):1825-1838.
[58] van Loon J,F(xiàn)rank LD,Nettlefold L,et al.Youth physical activity and the neighbourhood environment: Examining correlates and the role of neighbourhood definition. Soc Sci Med,2014,104:107-115.
[59] Kestens Y,Lebel A,Daniel M,et al. Using experienced activity spaces to measure foodscape exposure. Health Place 2010,16(6):1094-1103.
[60] Setton E,Marshall JD,Brauer M,et al. The impact of daily mobility on exposure to traffic-related air pollution and health effect estimates. J Expo Sci Environ Epidemiol,2010,21(1):42-48.
[61] Perchoux C,Chaix B,Cummins S,et al. Conceptualization and measurement of environmental exposure in epidemiology:Accounting for activity space related to daily mobility. Health Place,2013,21:86-93.
[62] Kwan MP,Peterson RD,Browning CR,et al. Reconceptualizing sociogeographic context for the study of drug use,abuse,and addiction. Berlin:Springer,Thomas YF,Richardson D,Cheung I (Eds.),Geography and drug addiction (2008):437-446.
[63] Maddison R,Ni Mhurchu C. Global positioning system: a new opportunity in physical activity measurement. Int J Behav Nutr Phys Act,2009,6: 73.
[64] Shoval N. Tracking technologies and urban analysis. Cities,2008,25,21-28.
[65] Maddison R,Jiang Y,Vander Hoorn S,et al. Describing patterns of physical activity in adolescents using global positioning systems and accelerometry. Pediatr Exerc Sci,2010,22(3):392-407.
[66] Chaix B,Me′ line J,Duncan S,et al. GPS tracking in neighborhood and health studies: A step forward for environmental exposure assessment, a step backward for causal inference?.Health Place,2013,21:46-51.