王 寧(綜述) 文 平(審校)
(1大連醫(yī)科大學附屬大連市兒童醫(yī)院心臟中心 大連 116012;2第四軍醫(yī)大學生物醫(yī)學工程系 西安 710032)
心肌梗死相關微RNA的研究進展
王 寧1,2(綜述) 文 平1△(審校)
(1大連醫(yī)科大學附屬大連市兒童醫(yī)院心臟中心 大連 116012;2第四軍醫(yī)大學生物醫(yī)學工程系 西安 710032)
微RNA(microRNAs,miRs)是一類非編碼RNA,能夠調控基因組中大部分基因的表達。心肌梗死(myocardid infarction,MI)常伴隨基因表達譜的改變和相關信號通路的失調。miRs在MI中扮演重要角色,其對心肌細胞的存活及缺血后血管生成有著多方面的調控作用。MI后miRs表達升高或下降可能參與心臟整體功能的調節(jié)。本文總結了MI相關miRs的最新進展,并討論了miRs應用于MI治療中的前景和局限性。
微RNA; 心肌梗死; 纖維化; 血管生成
【Abstraet】 MicroRNAs(miRs)are noncoding RNAs that control a large fraction of the genome. Myocardial infarction(MI)is characterized by strongly altered gene expression,deregulation of underlying signaling pathways and crucial participation of several miRs.miRs plays an important role in MI,and have multiple effects on the survival of cardiomyocytes and post ischemic angiogenesis.After MI miRs induction or repression might regulate overall cardiac function.In this review,we summarize the current knowledge about several miRs after MI and discuss briefly the application and limitations of miRs in treating MI.
【Kcy words】 microRNA; myocardial infaction; fibrosis; angiogenesis
心肌梗死(myocardial infarction,MI)是冠狀動脈急性、持續(xù)性缺血缺氧所引起的心肌壞死,可進一步導致心臟重構而直接影響心臟的內部結構[1]。長期的心臟重構是造成心功能失代償?shù)闹匾?,但相關分子機制目前尚未完全明確[2]。心肌缺血可誘發(fā)心臟炎性應答和轉錄組學的改變,微RNA(micro RNAs,miRs)與MI之間的關聯(lián)日益成為心血管疾病研究的焦點[3]。據(jù)報道,心臟特異性敲除miRs合成酶Dicer可誘導失代償性心臟重構和心力衰竭,提示miRs的合成通路對于心臟功能有著極其重要的意義[4]。此外,miRs組裝過程中的核心因子Argonaute 2經(jīng)轉錄后修飾可增強低氧刺激后miRs的基因沉默效應[5]。多項研究表明,miRs在調控 MI后心臟纖維化[6]、血管生成[7]和心肌肥大[8]等病理生理過程中扮演重要角色,提示miRs表達的改變與 MI存在緊密關聯(lián)。因此,調控miRs為治療MI引起的心功能不全提供了新策略,這在心臟缺血預適應的保護機制中得到了證實[9]。本文將逐一介紹MI相關miRs的功能,并討論其在臨床治療MI的應用前景。
miR-1miR-1具有心肌細胞特異性,能夠抵抗新生大鼠胰島素樣生長因子1(insulin-like growth factor 1,IGF-1)缺陷誘導的心肌細胞肥大[10]。miR-1表達增高能夠抑制鈉鈣交換體1(sodiumcalcium exchanger 1,NCX1)的表達,后者在衰竭心臟中表達顯著增高[11]。內質網(wǎng)鈣離子-三磷酸腺苷(adenosine triphosphate,ATP)酶2a(sarco/ endoplasmic reticulum Ca2+-ATPase 2a,SERCA2a)活性降低是心力衰竭的重要特征[12]。由腺伴隨病毒9 (adeno-associated virus 9,AAV9)介導的SERCA2a能增加衰竭心臟中miR-1的表達,并逆轉心臟重構[11]。
值得注意的是,血漿miR-1水平升高對于MI后心力衰竭的發(fā)生有一定提示意義[13]。Shan等[14]報道,miR-1在MI后表達增高,可通過轉錄后抑制IGF-1來增強心肌細胞內的促凋亡通路。此外,miR-1具有致心律失常效應[15]。β受體阻滯劑普萘洛爾可有效抑制miR-1在缺血心肌內的表達,改善心臟傳導功能,從而保護缺血心?。?6]??傊琺iR-1 與MI相關的心力衰竭關系密切,雖可作為生物標志物和治療靶點,但其在心臟中扮演的角色積極與否仍待進一步研究。
miR-15據(jù)報道,miR-15在豬和小鼠MI模型梗死區(qū)和邊界區(qū)內表達增高,其內源性沉默能降低細胞應激水平。應用基于鎖核酸(locked nucleic acid,LNA)的miR療法能夠顯著抑制在體miR-15的表達,從而減小梗死面積。相關機制涉及其下游分子丙酮酸脫氫酶激酶同工酶4(pyruvate dehydrogenase lipoamide kinase isozyme 4 mitochondrial 4,PDK4)和血清/糖皮質激素調節(jié)激酶1(serum and glucocorticoid-regulated kinase 1,SGK1)參與的線粒體功能和心肌細胞凋亡[17]。此外,miR-15可抑制轉化生長因子-β(transforming growth factor-β,TGF-β)信號通路,從而調控心肌肥大和間質纖維化,促進心臟重構向心力衰竭轉變[18]。
miR-21研究表明,miR-21在衰竭心臟內表達增高,可促進成纖維細胞增殖[19]。梗死區(qū)內miR-21升高能夠特異性抑制其下游的磷酸酶-張力蛋白同系物(phosphatase and tensin homolog,PTEN),導致成纖維細胞的金屬蛋白酶2表達增高,進而激活成纖維細胞的生存信號通路,加劇梗死灶的纖維化重構[20]。通過抑制miR-21可以有效減輕MI后組織的炎性損傷[21],降低處于增殖期的成纖維細胞的數(shù)量,從而減輕心臟整體的纖維化水平并維持心功能[22]。雖然miR-21具有顯著的抗纖維化效果,但該效應未能在全身敲除miR-21的動物模型中得到證實[23]。該分歧可能是使用不同長度的miR-21拮抗劑所造成的,二十二聚體反義miR-21比八聚體反義miR-21的心臟保護效應更強[24]。
miR-24miR-24可影響心肌細胞和成纖維細胞的生物學特性,其在 MI后表達下降[25]。慢病毒介導的miR-24過表達能夠阻礙心肌細胞的促凋亡通路,抑制一系列成纖維細胞標志物,如Ⅰ型膠原蛋白、Ⅲ型膠原蛋白、纖連蛋白和α-平滑肌肌動蛋白(α-smooth muscle actin,α-SMA),從而減輕心肌損傷[25-26]。
然而,另有研究發(fā)現(xiàn)miR-24在低氧和缺血誘導的小鼠內皮細胞內表達升高[27]。miR-24過表達還可促進體外內皮細胞的凋亡,抑制發(fā)育期斑馬魚的血管生成。在小鼠MI模型中治療性拮抗miR-24可直接促進心臟內皮細胞的存活,從而改善心臟重構[27]。上述結果表明miR-24在心臟成纖維細胞、心肌細胞和內皮細胞中發(fā)揮多方面作用。
miR-29miR-29在成纖維細胞中也高度表達,并在MI后的心臟重構中扮演重要角色[28]。miR-29可抑制膠原蛋白、原纖維蛋白和彈性蛋白等一系列纖維化相關蛋白的表達,而MI后抑制miR-29能夠誘導細胞培養(yǎng)物和小鼠體內的膠原等細胞外基質蛋白的表達[29]。不僅如此,miR-29對其他臟器的纖維化進程也有抑制作用[30-31]。Port等[32]從信使RNA(messenger RNA,mRNA)和miRs水平上證實了miR-29在纖維化中的作用。值得注意的是,在心臟缺血再灌注損傷中,通過藥物抑制miR-29可減輕心肌細胞凋亡并發(fā)揮心臟保護作用[33]。因此,miR-29過表達有望成為治療MI相關纖維化的靶點,但其在 MI不同時相中對心臟表現(xiàn)出的不同效應應當慎重考慮。
miR-92amiR-92a過表達可阻斷內皮細胞的血管生成通路,繼而引發(fā)出芽能力降低等一系列血管生成缺陷,加重缺血組織的損傷[34],而全身給予miR-92a拮抗劑能夠阻斷內皮細胞血管生成通路的惡化[35]。抑制miR-92a可增加信號轉導分子7 (mothers against decapentaplegic homolog 7,SMAD7)的表達,從而減輕低氧/復氧誘導的心肌細胞凋亡[36]。此外,miR-17~92基因簇的其他成員也具有較強的抗血管生成特性,為調控缺血損傷后的血管生成提供了強勁工具。
miR-101miR-101包括miR-101a和miR-101b兩個異構體。大鼠冠狀動脈結扎4周后,梗死周邊區(qū)的miR-101表達下調。腺病毒介導的miR-101a過表達可降低c-Fos及其下游的TGF-β的水平,從而減輕MI后的間質纖維化并改善左心室順應性[37]。然而,Wu等[38]發(fā)現(xiàn)miR-101可通過誘導自噬來減輕低氧/復氧所致的H9c2心肌細胞凋亡。因此,我們仍需開展更多的研究去論證miR-101的表達在心臟疾病治療中需增強還是抑制。
miR-126miR-126具有內皮細胞特異性,其在正常血管發(fā)育以及維持MI后內皮細胞的正常功能和完整性中扮演重要角色[39]。miR-126在內皮細胞中表達降低會減弱血管生成通路的活性[40]。血管內皮生長因子(vascular endothelial growth factor,VEGF)和成纖維細胞生長因子等趨化因子在miR-126缺失時并不能發(fā)揮它們在MI后新生血管化當中的重要作用[41]。此外,富含于內皮細胞源性的凋亡小體miR-126可介導C-X-C模體趨化因子12(C-X-C motif chemokine 12,CXCL12)的生成從而發(fā)揮血管保護效應[41]。
miR-199研究表明,miR-199可抑制許多細胞周期的負性調控因子,包括Homer蛋白同系物1和唯同源域蛋白,其異位表達能夠增強新生大鼠心肌細胞的增殖能力[42]。此外,腺伴隨病毒9介導的miR-199過表達可誘導成年小鼠心肌細胞的增殖并刺激 MI后的心肌再生[42]。值得注意的是,轉錄因子Twist相關蛋白1(Twist-related protein 1,TWIST1)的下調能夠降低miR-199的表達,進而激活心臟中泛素-蛋白酶體系統(tǒng)的表達,并最終導致心力衰竭[43]。因此,miR-199在通過促進心肌細胞再生以治療 MI方面有一定研究價值,但其在心力衰竭終末狀態(tài)中所參與的分子機制仍待進一步研究。
miR-214與正常小鼠相比,miR-214敲除小鼠的缺血再灌注損傷更為嚴重。miR-214能抑制鈉鈣交換體1(sodium/calcium exchanger 1,NCX1),調節(jié)心肌細胞的鈣穩(wěn)態(tài),從而保護缺血心肌抵御鈣超載引發(fā)的細胞死亡[44]。miR-214還可降低PTEN的表達,從而減輕過氧化氫誘導的心肌細胞凋亡[45]。
Duan等[46]發(fā)現(xiàn)miR-214于心力衰竭后表達上調,miR-214過表達可通過與X盒結合蛋白1(X-box binding protein 1,XBP1)作用降低人臍靜脈內皮細胞的血管生成,其沉默可減輕異丙腎上腺素誘導的心功能障礙和血管生成損害。miR-214還能通過抑制zeste基因增強子同源物2(enhancer of zeste homolog 2,EZH2)促進心肌肥大。因此,miR-214在心臟中的作用是多方面的。
miR-378miR-378是主要表達于心肌細胞內的負性調控心肌肥厚的內源性因子[47],其在人衰竭的心臟和多種不同心肌肥大模型中的表達水平是降低的[48]。miR-378過表達可通過干擾活化T細胞核因子(nuclear factor of activated T cells,NFAT)在核內的積累與胎兒基因程序的表達,從而阻止心肌細胞的肥大,并防止壓力負荷誘導的小鼠心功能障礙[47]。Nagalingam等[48]報道,miR-378的抑制可通過旁分泌的方式誘導TGF-β的表達并促進小鼠心臟內成纖維細胞的分化,從而加劇血管緊張素Ⅱ誘導的心肌肥大和纖維化。
研究表明,miR-378能夠抑制caspase-3從而減少H9c2心肌細胞的凋亡[49]。然而,Knezevic等[50]發(fā)現(xiàn),過表達miR-378可作用于胰島素樣生長因子1受體(insulin-like growth factor 1 receptor,IGF1R)以降低蛋白激酶B(protein kinase B,Akt)信號通路活性,從而促進心肌細胞凋亡。另一方面,利用反義miR抑制miR-378能夠保護心肌細胞免受過氧化氫和缺氧復氧誘導的凋亡。這種分歧可能與不同研究所采用的模型及研究對象所處的生長階段不同有關,但以上研究提示miR-378可在多層面調控MI所涉及的病理生理機制。
結語目前,miRs在MI中的研究雖已取得很大進展,但miRs應用于臨床亦面臨諸多挑戰(zhàn)。許多可治療MI的靶miRs同時也參與癌癥等其他疾病進程。例如,抑制miR-34雖能促進心臟修復,但卻有誘導腫瘤形成的危險[51]。但MI后miR-34的短期抑制是否增加腫瘤發(fā)生的風險仍待進一步研究。值得注意的是,僅有少數(shù)miRs特異性表達于一種細胞類型,如miR-208僅表達于心肌細胞[52]。大多數(shù)miRs廣泛或普遍表達于多種不同組織細胞,這將導致全身應用miRs治療時會產(chǎn)生不同程度的脫靶效應,而規(guī)避脫靶效應的主要策略是實現(xiàn)miRs的組織或細胞特異性定位。一種方法是通過導管將反義miRs或對miRNA的成熟體設計并合成的小片段雙鏈miR(miR mimics)遞送至心臟,然而無論是通過順行還是逆行實施導管遞送,反義miRs或miR mimics在其他組織的效應均不能被完全阻止[36]。對于miR-24等具有不同血管和心臟效應的miRs甚至可能需要為其設計細胞特異性的遞送工具。例如,微球包被的miR-92a拮抗劑經(jīng)冠狀動脈內給藥便可靶向定位至毛細血管[53]。規(guī)避脫靶效應的另一種方法是采取能夠靶向作用于心肌細胞的腺伴隨病毒9[54],這在一定程度上能解決細胞特異性給藥的問題。此外,考慮到許多miRs之間具有協(xié)同作用,聯(lián)合應用反義miRs或miR mimics可實現(xiàn)最佳的治療效果。然而,這種組合療法有可能增加脫靶效應和不良反應,從而使臨床效果的調控復雜化。迄今為止,只有miR-15[17]和miR-92a[36]的治療性抑制在豬中研究過,大多數(shù)miRs在投入臨床試驗前依然需要在更大的動物模型中驗證效果并完成相應的毒理學、藥物代謝動力學以及藥效學測試。
總之,MI的診斷和治療是需謹慎對待的艱巨任務,miRs在調控MI后心肌細胞的存活與凋亡、血管生成、心肌肥大和心臟纖維化等病理生理過程中扮演重要角色。miRs療法在MI處理的常規(guī)手段之外提供了新的途徑,諸多miRs有望成為實現(xiàn)MI后心臟再生修復的治療靶點。目前,我們仍需開展更多的基礎研究和臨床試驗去驗證其可行性,最終將miRs療法發(fā)展成為診斷和治療MI的有效策略。
[1] Frangogiannis NG.The inflammatory response in myocardial injury,repair,and remodelling[J].Nat Rev Cardiol,2014,11(5):255-265.
[2] Braunwald E.The war against heart failure:the Lancet lecture[J].Lancet,2015,385(9970):812-824.
[3] Lee SH,Wolf PL,Escudero R,et al.Early expression of angiogenesis factors in acute myocardial ischemia and infarction[J].N Engl J Med,2000,342(9):626-633.
[4] da Costa Martins PA,Bourajjaj M,Gladka M,et al. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling[J]. Circulation,2008,118(15):1567-1576.
[5] Hale A,Lee C,Annis S,et al.An Argonaute 2 switch regulates circulating miR-210 to coordinate hypoxic adaptation across cells[J].Biochim Biophys Acta,2014,1843(11):2528-2542.
[6] Tao H,Yang JJ,Shi KH.Non-coding RNAs as direct and indirect modulators of epigenetic mechanism regulation of cardiac fibrosis[J].Expert Opin Ther Targets,2015,19 (5):707-716.
[7] Yang Q,Wang X,Cui J,et al.Bidirectional regulation of angiogenesis and miR-18a expression by PNSin the mouse model of tumor complicated by myocardial ischemia[J]. BMC Complement Altern Med,2014,14:183.
[8] Wu C,Dong S,Li Y.Effects of miRNA-455 on cardiac hypertrophy induced by pressure overload[J].Int J Mol Med,2015,35(4):893-900.
[9] Varga ZV,Zvara A,F(xiàn)arago N,et al.MicroRNAs associated with ischemia-reperfusion injury and cardioprotection by ischemic pre-and postconditioning:protectomiRs[J].Am J Physiol Heart Circ Physiol,2014,307(2):H216-227.
[10] Hua Y,Zhang Y,Ren J.IGF-1 deficiency resists cardiac hypertrophy and myocardial contractile dysfunction:role of micro RNA-1 and micro RNA-133a[J].J Cell Mol Med,2012,16(1):83-95.
[11] Kumarswamy R,Lyon AR,Volkmann I,et al.SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/Fox O3A-dependent pathway[J].Eur Heart J,2012,33(9):1067-1075.
[12] Bouyon S,Roussel V,F(xiàn)romes Y.SERCA2a gene therapy can improve symptomatic heart failure in deltasarcoglycan-deficient animals[J].Hum Gene Ther,2014,25(8):694-704.
[13] Zhang R,Niu H,Ban T,et al.Elevated plasma microRNA-1 predicts heart failure after acute myocardial infarction[J].Int J Cardiol,2013,166(1):259-260.
[14] Shan ZX,Lin QX,F(xiàn)u YH,et al.Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction [J].Biochem Biophys Res Commun,2009,381(4):597 -601.
[15] Chen Y,Wakili R,Xiao J,et al.Detailed characterization of microRNA changes in a canine heart failure model:Relationship to arrhythmogenic structural remodeling[J]. J Mol Cell Cardiol,2014,77:113-124.
[16] Lu Y,Zhang Y,Shan H,et al.MicroRNA-1 downregulation by propranolol in a rat model of myocardial infarction:a new mechanism for ischaemic cardioprotection[J].Cardiovasc Res,2009,84(3):434-441.
[17] Hullinger TG,Montgomery RL,Seto AG,et al.Inhibition of miR-15 protects against cardiac ischemic injury[J].Circ Res,2012,110(1):71-81.
[18] Tijsen AJ,van der Made I,van den Hoogenhof MM,et al.The microRNA-15 family inhibits the TGFbeta-pathway in the heart[J].Cardiovasc Res,2014,104(1):61-71.
[19] Thum T,Gross C,F(xiàn)iedler J,et al.MicroRNA-21 contributes to myocardial disease by stimulating MAPkinase signalling in fibroblasts[J].Nature,2008,456 (7224):980-984.
[20] Roy S,Khanna S,Hussain SR,et al.MicroRNA expression in response to murine myocardial infarction:miR-21 regulates fibroblast met alloprotease-2 via phosphatase and tensin homologue[J].Cardiovasc Res,2009,82(1):21-29.
[21] Toldo S,Das A,Mezzaroma E,et al.Induction of microRNA-21 with exogenous hydrogen sulfide attenuates myocardial ischemic and inflammatory injury in mice[J]. Circ Cardiovasc Genet,2014,7(3):311-320.
[22] Dong S,Ma W,Hao B,et al.microRNA-21 promotes cardiac fibrosis and development of heart failure with preserved left ventricular ejection fraction by upregulating Bcl-2[J].Int J Clin Exp Pathol,2014,7(2):565-574.
[23] Patrick DM,Montgomery RL,Qi X,et al.Stressdependent cardiac remodeling occurs in the absence of microRNA-21 in mice[J].J Clin Invest,2010,120(11):3912-3916.
[24] Thum T,Chau N,Bhat B,et al.Comparison of different miR-21 inhibitor chemistries in a cardiac disease model [J].J Clin Invest,2011,121(2):461-462;author reply 462-463.
[25] Wang J,Huang W,Xu R,et al.MicroRNA-24 regulates cardiac fibrosis after myocardial infarction[J].J Cell Mol Med,2012,16(9):2150-2160.
[26] Qian L,Van Laake LW,Huang Y,et al.miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes[J]. J Exp Med,2011,208(3):549-560.
[27] Fiedler J,Jazbutyte V,Kirchmaier BC,et al.MicroRNA-24 regulates vascularity after myocardial infarction[J]. Circulation,2011,124(6):720-730.
[28] Abonnenc M,Nabeebaccus AA,Mayr U,et al. Extracellular matrix secretion by cardiac fibroblasts:role of microRNA-29b and microRNA-30 c[J].Circ Res,2013,113(10):1138-1147.
[29] van Rooij E,Sutherland LB,Thatcher JE,et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis[J].Proc Natl Acad Sci U S A,2008,105(35):13027-13032.
[30] Yu JW,Duan WJ,Huang XR,et al.Micro RNA-29b inhibits peritoneal fibrosis in a mouse model of peritoneal dialysis[J].Lab Invest,2014,94(9):978-990.
[31] Cushing L,Kuang P,LüJ.The role of miR-29 in pulmonary fibrosis[J].Biochem Cell Biol,2015,93(2):109-118.
[32] Port JD,Walker LA,Polk J,et al.Temporal expression of miRNAs and mRNAs in a mouse model of myocardial infarction[J].Physiol Genomics,2011,43(19):1087-1095.
[33] Ye Y,Hu Z,Lin Y,et al.Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury [J].Cardiovasc Res,2010,87(3):535-544.
[34] Bonauer A,Carmona G,Iwasaki M,et al.MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice[J].Science,2009,324(5935):1710-1713.
[35] Doebele C,Bonauer A,F(xiàn)ischer A,et al.Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells[J].Blood,2010,115 (23):4944-4950.
[36] Zhang B,Zhou M,Li C,et al.MicroRNA-92a inhibition attenuates hypoxia/reoxygenation-induced myocardiocyte apoptosis by targeting Smad7[J].PLoS One,2014,9 (6):e100298.
[37] Pan Z,Sun X,Shan H,et al.MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/ transforming growth factor-beta1 pathway[J]. Circulation,2012,126(7):840-850.
[38] Wu D,Jiang H,Chen S,et al.Inhibition of microRNA-101 attenuates hypoxia/reoxygenationinduced apoptosis through induction of autophagy in H9c2 cardiomyocytes [J].Mol Med Rep,2015,11(5):3988-3994.
[39] van Solingen C,Bijkerk R,de Boer HC,et al.The role of microRNA-126 in vascular homeostasis[J].Curr Vasc Pharmacol,2015,13(3):341-351.
[40] Harris TA,Yamakuchi M,Kondo M,et al.Ets-1 and Ets-2 regulate the expression of microRNA-126 in endothelial cells[J].Arterioscler Thromb Vasc Biol,2010,30(10):1990-1997.
[41] Zernecke A,Bidzhekov K,Noels H,et al.Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection[J].Sci Signal,2009,2 (100):ra81.
[42] Wang J,Martin JF.Macro advances in microRNAs and myocardial regeneration[J].Curr Opin Cardiol,2014,29 (3):207-213.
[43] Baumgarten A,Bang C,Tschirner A,et al.TWIST1 regulates the activity of ubiquitin proteasome system via the miR-199/214 cluster in human end-stage dilated cardiomyopathy[J].Int J Cardiol,2013,168(2):1447 -1452.
[44] Aurora AB,Mahmoud AI,Luo X,et al.MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca(2)(+)overload and cell death[J].J Clin Invest,2012,122(4):1222-1232.
[45] Lv G,Shao S,Dong H,et al.MicroRNA-214 protects cardiac myocytes against H2O2-induced injury[J].J Cell Biochem,2014,115(1):93-101.
[46] Duan Q,Yang L,Gong W,et al.MicroRNA-214 is upregulated in heart failure patients and suppresses XBP1-mediated endothelial cells angiogenesis[J].J Cell Physiol,2015,230(8):1964-1973.
[47] Nagalingam RS,Sundaresan NR,Gupta MP,et al.A cardiac-enriched microRNA,miR-378,blocks cardiac hypertrophy by targeting Ras signaling[J].J Biol Chem,2013,288(16):11216-11232.
[48] Nagalingam RS,Sundaresan NR,Noor M,et al.Deficiency of cardiomyocyte-specific microRNA-378 contributes to the development of cardiac fibrosis involving a transforming growth factor beta(TGFbeta1)-dependent paracrine mechanism[J].J Biol Chem,2014,289(39):27199-27214.
[49] Fang J,Song XW,Tian J,et al.Overexpression of microRNA-378 attenuates ischemia-induced apoptosis by inhibiting caspase-3 expression in cardiac myocytes[J]. Apoptosis,2012,17(4):410-423.
[50] Knezevic I,Patel A,Sundaresan NR,et al.A novel cardiomyocyte-enriched microRNA,miR-378,targets insulin-like growth factor 1 receptor:implications in postnatal cardiac remodeling and cell survival[J].J Biol Chem,2012,287(16):12913-12926.
[51] Hermeking H.The miR-34 family in cancer and apoptosis [J].Cell Death Differ,2010,17(2):193-199.
[52] Ji X,Takahashi R,Hiura Y,et al.Plasma miR-208 as a biomarker of myocardial injury[J].Clin Chem,2009,55 (11):1944-1949.
[53] Bellera N,Barba I,Rodriguez-Sinovas A,et al.Single intracoronary injection of encapsulated antagomir-92a promotes angiogenesis and prevents adverse infarct remodeling[J].J Am Heart Assoc,2014,3(5):e000946.
[54] Bish LT,Morine K,Sleeper MM,et al.Adeno-associated virus(AAV)serotype 9 provides global cardiac gene transfer superior to AAV1,AAV6,AAV7,and AAV8 in the mouse and rat[J].Hum Gene Ther,2008,19(12):1359-1368.
Progrcss of mieroRNAs rclatcd to myoeardial infaretion
WANG Ning1,2,WEN Ping1△
(1Department of Cardiovascular Surgery,Dalian Children's Hospital,Dalian Medical University,Dalian 116012,Liaoning Province,China;2Department of Biomedical Engineering,F(xiàn)ourth Military Medical University,Xi'an 710032,Shaanxi Province,China)
R 542.2+2
B
10.3969/j.issn.1672-8467.2015.06.018
2015-04-16;編輯:王蔚)
國家自然科學基金(81102687)
△Corresponding author E-mail:13504115999@163.com
上海市科學技術委員會資助項目(12JC1402100)
△Correspondingauthor E-mail:zhoulent@126.com
*This work was supportcd by thc National Natural Seicnec Foundation of China(81102687).