• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal tracking control for automatic transmission shift process

    2015-04-22 02:33:16WANGuoqiang萬(wàn)國(guó)強(qiáng)LIKeqiang李克強(qiáng)PEILing裴玲HUANGYing黃英ZHANGFujun張付軍
    關(guān)鍵詞:黃英主要參數(shù)萬(wàn)國(guó)

    WAN Guo-qiang(萬(wàn)國(guó)強(qiáng)), LI Ke-qiang(李克強(qiáng)), PEI Ling(裴玲),HUANG Ying(黃英),, ZHANG Fu-jun(張付軍)

    (1.State Key Laboratory of Automotive Safety and Energy,Tsinghua University, Beijing 100084, China;2.Laboratory for Integrated Power System Technology, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Optimal tracking control for automatic transmission shift process

    WAN Guo-qiang(萬(wàn)國(guó)強(qiáng))1, LI Ke-qiang(李克強(qiáng))1, PEI Ling(裴玲)2,HUANG Ying(黃英), ZHANG Fu-jun(張付軍)2

    (1.State Key Laboratory of Automotive Safety and Energy,Tsinghua University, Beijing 100084, China;2.Laboratory for Integrated Power System Technology, Beijing Institute of Technology, Beijing 100081, China)

    In order to improve the shift quality, a linear quadratic optimal tracking control algorithm for automatic transmission shift process is proposed. The dynamic equations of the shift process are derived using a Lagrange method. And a powertrain model is built in the Matlab/Simulink and verified by the measurements. Considering the shift jerk and friction loss during the shift process, the tracking trajectories of the turbine speed and output shaft speed are defined. Furthermore, the linear quadratic optimal tracking control performance index is proposed. Based on the Pontryagin’s minimum principle, the optimal control law of the shift process is presented. Finally, the simulation study of the 1-2 upshift process under different load conditions is carried out with the powertrain model. The simulation results demonstrate that the shift jerk and friction loss can be significantly reduced by applying the proposed optimal tracking control method.

    powertrain; automatic transmission; shift process; optimal tracking control

    Drivability and fuel economy arecontinuously emphasized during the development of automatic transmission[1-2]. The clutch-to-clutch shift control technology is the key enabler for a compact, light mass and low cost automatic transmission design, especially when the transmission has an extended number of speeds.

    To improve the shift quality, a number of researches have focused on the clutch-to-clutch shift control technologies. D. Cho developed a clutch-to-clutch shift controller based on the sliding mode control[3]. To compensate for the effects of the life cycle and build-to-build variations, K. Hebbale and C. Kao presented a model reference adaptive controller[4]. T. Minowa et al. proposed anH∞controller to restrain the torque fluctuation when shift characteristics change occurs[5]. To minimize the performance measure, A. Haj-Fraj and F. Pfeiffer presented a model-based optimal control approach using a dynamic programming method[6]. To overcome the unmodeled dynamics or the variations of system characteristics, J. O. Hahn et al. proposed a self-learning algorithm for the inertia phase[7]. S. Watechagit and K. Srinivasan presented a model-based sliding mode observer to provide on-line estimates of the clutch pressures[8]. To enable a precise pressure-based control and avoid the chattering effect, Xingyong Song and Zongxuan Sun designed a sliding-mode controller[9]. Using the concept of input-to-state stability, Bingzhao Gao et al. presented a clutch pressure observer to improve the estimation accuracy during the torque phase[10].

    To minimize the jerk and friction loss of shift process, a linear quadratic optimal tracking control method is proposed in this paper. The paper is organized as follows. A powertrain model is built and verified in Section 1. In Section 2, the optimal tracking control for automatic transmission shift process is proposed. Section 3 shows the simulation results. Conclusions are drawn in section 4.

    1 Powertrain model

    A powertrain system with automatic transmission consists of four components: engine, torque converter, planetary gearbox and output train, as shown in Fig.1. To analyze the shift process, the powertrain system can be simplified as a lumped mass multi-degree of freedom system. Each component of the powertrain can be considered as a rigid multibody subsystem. The rigid bodies are connected with each other by ideal rigid joints, clutches and force elements.

    CL—the lockup clutch; C1-C5—the clutch/brake; P1, P2, P3—the planetary gear set

    1.1 Engine

    For investigation of the shift process, the high-frequency vibrations of the engine can be neglected. Therefore, the engine can be modeled as a rotating rigid body. The indicated torque of engine can be described by the following equation

    Tin=mfHuηi

    (1)

    whereTinis the indicated torque of engine;mfis the fuel delivery per cycle;Huis the low heating value of diesel;ηiis the indicated thermal efficiency.

    The effective torque of engine can be described as

    Te=Tin-Tf

    (2)

    whereTeis the effective torque of engine;Tfis the friction torque of engine.

    The equation of motion of the engine crankshaft can be written as

    (3)

    where Ieisthemomentofinertiaofcrankshaft;ωeis the engine angular velocity;Tpis the pump torque.

    1.2 Torque converter

    The pump torque and turbine torque can be obtained by

    (4)

    Tt=kTp

    (5)

    whereλis the pump torque coefficient;ρis the fluid density;gis the acceleration of gravity;Dis the equivalent diameter of torque converter;neis the engine speed;Ttis the turbine torque;kis the torque ratio of torque converter.

    1.3 Planetary gearbox

    The planetary gearbox consists of three planetary gear sets, two clutches and three brakes as shown in Fig.1. By the engagement of the clutches/brakes in various combinations, the planetary sets act singly or together to provide five forward ranges, neutral, and reverse. In the paper, the gear upshift from the first to the second gear will be considered. C1 and C5 engage to attain the first gear. During the 1-2 shift process, solenoid A energizes and exhausts clutch C5. Solenoid B energizes and engages clutch C4. C1 and C4 engage to attain the second gear. Solenoid A and solenoid B are pressures proportional to current solenoids. Varying currents to these solenoids changes the applied pressures to specific clutches. The currents of the solenoids are controlled by the powertrain control module.

    Clutch C1 keeps engagement during the 1-2 shift process. To analyze the 1-2 shift process, the planetary gearbox can be further simplified as shown in Fig.2.

    Fig.2 Simplified planetary gearbox diagram

    1.3.1 Kinematics analysis

    According to the motion property equation of planetary gear train, the following equations are obtained

    (ki+1)ωPCi=ωSi+kiωRi(i=1,2,3)

    (6)

    (7)

    where kisthegearratiobetweentheringgearandsungear; iistheserialnumberoftheplanetaryset;ωPCis the planet carrier angular velocity;ωSis the sun gear angular velocity;ωRis the ring gear angular velocity;ωPis planet pinion angular velocity.

    Choosing the turbine angular velocityωtand the output shaft angular velocityωoas variables, according to Eqs.(6)(7),we obtain

    (8)

    1.3.2 Dynamic analysis based on the Lagrange method

    In the paper, the Lagrange method was applied for the dynamic analysis of the 1-2 upshift process. The input shaft angleφtand output shaft angleφoare chosen as the generalized coordinates, that isq1=φt,q2=φo.

    The virtual work of the system in terms of the virtual displacements is

    ∑δW=Tiδφt+TC4δφR2-TC5δφR3-Toδφo

    (9)

    where δWis the virtual work of the system;Tiis the input torque of gearbox;TC4is the friction torque of clutch C4;TC5is the friction torque of clutch C5;Tois the output torque of gearbox;φR2is the angle of R2;φR3is the angle of R3.

    The generalized forcesQ1,Q2are defined as

    (10)

    (11)

    Lagrangian functionLis defined as

    L=K-V

    (12)

    whereKis the total kinetic energy of the system;Vis the total potential energy of the system.

    Each planetary set has four pinions. In this case, there is no potential energy change due to the rotation of the pinions around the sun. Thus,V=0.

    The kinetic energy of the system is

    (13)

    where IS2S3isthemomentofinertiaofS2,S3andtheconnectedshafts; IR2isthemomentofinertiaofR2andtheconnectedshaft; IPC2R3isthemomentofinertiaofPC2,R3andtheconnectedshafts;IPC3isthemomentofinertiaofPC3andtheconnectedshafts; IP2andIP3aretheequivalentmomentofinertiaofP2andP3.

    Lagrange’sequationforthesystemis

    (14)

    (15)

    Theequationofmotionoftheturbineshaftcanbedescribedas

    (16)

    whereIttheequivalentmomentofinertiaofturbineshaft.

    NotethatclutchC4andclutchC5arebrakes,theirpassivefrictionplatesarefixed.ωR2andωR3are the relative speed of clutch C4 and C5, respectively. In this paper, the clutch C4 is taken as an example to demonstrate the torque characteristics of the wet clutch.

    WhenωR2≠0, the clutch C4 slips. The friction torque is calculated as

    TC4=-sgn(ωR2)μkApzrep

    (17)

    whereμkis the dynamic friction coefficient;Apis the area of piston surface;zis the number of friction surfaces;reis the equivalent friction radius;pis the clutch pressure.

    Thedynamic friction coefficientμkis specified as a tabulated discrete function of the relative angular speedωR2.

    μk=0.063 1+0.050 4exp (-0.033ωR2)

    (18)

    WhenωR2=0, the clutch C4 sticks. The static friction torque can be calculated as

    TC4=μsApzrep

    (19)

    whereμsis the static friction coefficient.

    1.4 Output train

    The equation of motion of the wheels can be indicated as

    (20)

    where Iwisthemomentofinertiaofthewheels;ωwis the wheel angular velocity;iois the transmission ratio of the rear differential;Tois the output torque of gearbox;Twis the output torque of wheels.

    TL=(Froll+Fwind+Fincl)r

    (21)

    whereFrollis the rolling force;Fwindis the wind force;Finclis the inclination force;ris wheel radius.

    The equation of motion of the output train with the vehicle mass can be written as

    (22)

    where misvehiclemass.

    Thewheelangularvelocityandoutputshaftangularvelocityhasthefollowingrelation

    ωo=ioωw

    (23)

    1.5 Model verification

    To develop and investigate the optimal tracking control for the shift process of automatic transmission, the powertrain system is built in the Matlab/Simulink. A two-stage, torque phase and inertia phase, control strategy is used during the 1-2 shift process. In the torque phase the open-loop control of the clutch pressure was applied[9], while in the inertia phase the feedback control based on the predetermined target turbine speed was adopted. The comparison between simulations performed with the presented model and the measurements carried out on the test bench during the 1-2 shift process under different load conditions shows a very good agreement, as shown in Fig.3 and Fig.4. Therefore the powertrain model can be used to develop a model-based optimal tracking control for the shift process. Moreover, the simulation results of the two-stage control will be regarded as the reference in the following section.

    MRI試驗(yàn)主要參數(shù):重復(fù)時(shí)間TR=1000 ms;矩陣256×256;信號(hào)接收帶寬SW=40 kHz;采樣次數(shù)NS=4;根據(jù)CPMG序列測(cè)得的T2值,選擇回波時(shí)間TE=1 ms進(jìn)行成像,采集數(shù)據(jù),同時(shí),通過(guò)調(diào)整MSE序列中的選層梯度、相位編碼梯度和頻率編碼梯度,獲取樣品側(cè)視成像數(shù)據(jù)[11]。

    Fig.3 Comparison of simulations and measurements, TL=750 N·m

    Fig.4 Comparison of simulations and measurements, TL=1 500 N·m

    2 Optimal tracking control for shift process

    In order to minimize the shift jerk and friction loss, an optimal tracking control algorithm is developed for the inertia phase during the shift process. The control strategy during the torque phase still uses the open-loop control of clutch pressure.

    2.1 State space representation

    It should be noted that the clutch C4 slips during the inertia phase, while the clutch C5 is supposed to be disengaged andTC5is set to zero[11]. Therefore, the dynamic equations of planetary gearbox can be written as

    (24)

    According to Eqs. (16) (20) (22)-(24), the equations of motion of the gearbox during the inertia phase can be concluded as

    (25)

    The dynamics of the 1-2 shift process can be described byωtandωo. Then the state vector is defined as

    (26)

    Introducing the control vector consisting of the turbine torque TtandthefrictiontorqueofclutchC4 TC4

    (27)

    Theequationsofmotionofthepowertrainmodelcanbeformulatedas

    (28)

    (29)

    Therefore,thefollowingstatespaceequationcanbeobtained

    (30)

    In order to eliminate theinfluence of disturbanceΓ, assuming that

    (31)

    (32)

    uo=-B-1Γ

    (33)

    then the system can be written as

    (34)

    2.2 Problem formulation

    The shift jerk is a general index for evaluating the shift comfort. The shift jerk is defined as the derivative of the longitudinal acceleration with respect to time.

    (35)

    where jistheshiftjerk; aisthelongitudinalacceleration.

    Eq.(35)showsthattheshiftjerkcanbeminimizedaslongasthevalueofωois fixed or variable in a fixed rate. In this paper, the tracking trajectory of the output shaft angular velocityz1is set as

    (36)

    whereωo0is the initial value of the output speed in the inertia phase;aois the desired vehicle acceleration.

    The friction loss is defined as the work done by the relative slip of the driving and driven friction plates during clutch engaging process.

    (37)

    where WC4isthefrictionlossofclutchC4.

    Thetrackingtrajectoryoftheoutputshaftangularvelocityhasbeendetermined.Therefore,thecontrolproblemtominimizethefrictionlosscanbetransformedintoaturbinespeedtrackingcontrolproblem.Alargenumberofresearchesshowthatafeedbackcontroloftheturbinespeedcansignificantlyimprovetheshiftquality.Generally,thedesiredturbinespeedissettovaryinafixedrate[10].Thereby,thetrackingtrajectoryoftheturbinespeedangularvelocityz2issetas

    z2(t)=ωt0-αt0t

    (38)

    whereωt0is the initial value of the turbine speed in the inertia phase;αt0is the desired turbine angular acceleration.

    The expected output z(t) is defined as

    (39)

    In the paper, the control objection of the optimal tracking control is to ensure that y(t) can accurately track z(t) with the minimal control energy consumption. The performance index of the optimal tracking control during the shift process is formulated as

    (40)

    where Q and R are the weight matrices.

    The shift quality control problem has been transformed to a linear quadratic optimal tracking control problem, that is

    (41)

    2.3 Optimal tracking control law

    The linear quadratic optimal tracking control problem is solved by the Pontryagin’s minimum principle[12]. The optimal control law is obtained

    (42)

    P(t) satisfies the matrix differential Riccati equation

    (43)

    In the paper, an integrated powertrain control is proposed to achieve the optimal control law. The engine is controlled by the turbine torque closed loop control based on the PID algorithm. Meanwhile, the transmission is controlled by the clutch pressure open loop control according to Eqs.(17)(19).

    3 Results

    In the following, some results achieved by applying the proposed optimal tracking control law to the verified powertrain simulation model are presented. The reference control is the same one used to verify the simulation model.

    Fig.5 shows the shift jerk and friction loss in the case that the load torque is 750 N·m. With the reference control, the maximum positive jerk is 28 m/s3and the maximum negative jerk is -14 m/s3. Additionally, the friction loss is 4 300 J. As expected, by applying the optimal tracking control, the maximum positive jerk and negative jerk are reduced to 23 m/s3and -8 m/s3, respectively. Furthermore, the friction loss is reduced to 3 300 J.

    Fig.5 Results of TL=750 N·m

    Fig.6 shows the results for the case that the load torque is 1 500 N·m. By the application of the reference control, the maximum positive jerk is 25 m/s3and the maximum negative jerk is -12 m/s3. Additionally, the friction loss is 6400J. While, applying the optimal tracking control algorithm, the maximum positive jerk and negative jerk are only 15 m/s3and -9 m/s3, which apparently improve the shifting comfort. Furthermore, the friction loss is reduced to 5 300 J, which improves the life expectancy of the friction discs.

    The results demonstrate that the shift jerk and friction loss can be significantly reduced by applying the proposed optimal tracking control algorithm. Moreover, the proposed control approach is found to be robust under different load cases.

    Fig.6 Results of TL=1 500 N·m

    4 Conclusions

    An optimal tracking control algorithm of the shift process for the vehicle with automatic transmissions was proposed in this paper. Based on the dynamic analysis of the shift process using the Lagrange method, a mechanical model of the powertrain system is developed and verified. Considering the shift jerk and friction loss during the shift process, the turbine speed and output shaft speed tracking trajectories are defined. Then the shift quality control problem has been transformed to a linear quadratic optimal tracking control problem. The problem has been solved by the Pontryagin’s minimum principle.

    The optimal control law of the shift process derived in this paper consists of both a feedforward and a feedback portion. The feedforward control is to match the load torque. Meanwhile, the feedback control is to ensure that the system can accurately track the target trajectories.

    The simulation study of the 1-2 upshift process under different load conditionsis carried out based on the verified powertrain model. The simulation results show that the shift jerk and friction loss can be significantly reduced by application of the proposed optimal tracking control.

    [1] Sun Z, Hebbale K. Challenges and opportunities in automotive transmission control[C]// Proceedings of the 2005 American Control Conference, Portland, Oregon, USA, 2005: 3284-3289.

    [2] Greiner J, Grumbach M. Automatic transmission systems beyond 2020: challenges and competition[C]// SAE 2013 World Congress & Exhibition, Detroit, Michigan, USA, 2013: 2013-01-1273.

    [3] Cho D. Nonlinear control method for automotive powertrain system[D]. Massachusetts: Massachusetts Institute of Technology, 1987.

    [4] Hebbale K, Kao C. Adaptive control of shifts in automatic transmissions[C]// Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, California, USA, 1995: 171-182.

    [5] Minowa T, Ochi T, Kuroiwa H, et al. Smooth gear shift control technology for clutch-to-clutch shifting[C]// International Congress and Exposition, Detroit, Michigan, USA, 1999: 1999-01-1051.

    [6] Haj-Fraj A, Pfeiffer F. Optimal control of gear shift operations in automatic transmissions[J]. Journal of the Franklin Institute, 2001, 338(2-3): 371-390.

    [7] Hahn J O, Hur J W, Choi G W, et al. Self- learning approach to automatic transmission shift control in a commercial construction vehicle during the inertia phase[J]. Proceeding of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2002, 216(11): 909-919.

    [8] Watechagit S, Srinivasan K. Implementation of on-line clutch pressure estimation for stepped automatic transmission[C]// Proceedings of the 2005 American Control Conference, Portland, Oregon, USA, 2005: 1607-1612.

    [9] Song X, Sun Z. Pressure-based clutch control for automotive transmission using a sliding-mode controller[J]. Transactions of the IEEE/ASME on Mechatronics, 2012, 17(3): 534-546.

    [10] Gao B, Chen H, Tian L, et al. A nonlinear clutch pressure observer for automatic transmission: considering drive-shaft compliance[J]. Transactions of the ASME, Journal of Dynamics Systems, Measurement, and Control, 2012, 134(1): 11-18.

    [11] Tokura T, Asami T, Hasegawa Y, et al. Development of smooth up-shift control technology for automatic transmissions with integrated control of engine and automatic transmission[C]// SAE World Congress & Exhibition, Detroit, Michigan, USA, 2007: 2007-01-1310.

    [12] Naidu D S. Optimal control systems[M]. Boca Raton, FL: CRC Press, 2002: 125-141.

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0405

    U 27 Document code: A Article ID: 1004- 0579(2015)04- 0458- 08

    Received 2014-10- 31

    Supported by the National Natural Science Foundation of China(51475043)

    E-mail: hy111@bit.edu.cn

    猜你喜歡
    黃英主要參數(shù)萬(wàn)國(guó)
    生活垃圾分類對(duì)垃圾主要參數(shù)的影響分析
    有機(jī)硅流化床氣體分布板主要參數(shù)設(shè)計(jì)
    黃英推出傾心之作《奶奶的蒲扇》
    青年歌聲(2019年12期)2019-12-17 06:49:54
    春節(jié)700萬(wàn)國(guó)人出境游
    馬萬(wàn)國(guó)作品
    紀(jì)念卡拉斯,是紀(jì)念一種精神——聽黃英致敬卡拉斯音樂會(huì)
    歌劇(2017年4期)2017-05-17 04:06:56
    碎邊剪剪切特性分析與主要參數(shù)確定
    “萬(wàn)國(guó)茶幫”拜媽祖
    海峽姐妹(2016年7期)2016-02-27 15:21:38
    影響輪軌粘滑振動(dòng)的主要參數(shù)分析
    黃英 不改野路子
    音樂周刊(2011年1期)2011-08-16 03:32:14
    亚洲国产欧美网| 99国产精品一区二区蜜桃av | av电影中文网址| svipshipincom国产片| 老司机午夜十八禁免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 青草久久国产| 亚洲熟女精品中文字幕| 国产成人91sexporn| 亚洲国产中文字幕在线视频| 人人妻人人添人人爽欧美一区卜| 亚洲成人手机| 成年人午夜在线观看视频| 亚洲五月色婷婷综合| 欧美 日韩 精品 国产| 十八禁高潮呻吟视频| 亚洲精品久久成人aⅴ小说| 国产av一区二区精品久久| 国产免费现黄频在线看| 国产欧美日韩综合在线一区二区| 国产av国产精品国产| 精品国产超薄肉色丝袜足j| 国产午夜精品一二区理论片| 又大又爽又粗| 久久热在线av| 国产成人欧美| 国产伦理片在线播放av一区| 免费看十八禁软件| www.熟女人妻精品国产| 久久人人爽人人片av| 国产精品久久久人人做人人爽| 欧美精品一区二区大全| 免费av中文字幕在线| 女性被躁到高潮视频| 国产日韩欧美在线精品| 亚洲黑人精品在线| www.熟女人妻精品国产| 建设人人有责人人尽责人人享有的| 久久毛片免费看一区二区三区| 纵有疾风起免费观看全集完整版| 国产精品人妻久久久影院| 一级毛片我不卡| 99久久人妻综合| 五月开心婷婷网| bbb黄色大片| 高潮久久久久久久久久久不卡| 黄网站色视频无遮挡免费观看| 国产精品国产av在线观看| 亚洲黑人精品在线| 国产精品三级大全| 韩国高清视频一区二区三区| 一本一本久久a久久精品综合妖精| 欧美亚洲 丝袜 人妻 在线| 制服人妻中文乱码| 老司机靠b影院| 99国产精品免费福利视频| 两性夫妻黄色片| 久久热在线av| 亚洲 国产 在线| 看十八女毛片水多多多| 七月丁香在线播放| 亚洲午夜精品一区,二区,三区| 精品视频人人做人人爽| 交换朋友夫妻互换小说| 黑人猛操日本美女一级片| 又紧又爽又黄一区二区| 在线精品无人区一区二区三| 亚洲av成人精品一二三区| 99国产精品99久久久久| 丝袜喷水一区| 亚洲七黄色美女视频| 成年女人毛片免费观看观看9 | 岛国毛片在线播放| e午夜精品久久久久久久| 99久久99久久久精品蜜桃| 极品少妇高潮喷水抽搐| 大型av网站在线播放| 又粗又硬又长又爽又黄的视频| 一边摸一边抽搐一进一出视频| 亚洲国产看品久久| 免费看十八禁软件| 丁香六月欧美| 午夜影院在线不卡| 免费女性裸体啪啪无遮挡网站| 中文字幕色久视频| 五月天丁香电影| 一区福利在线观看| 丝袜人妻中文字幕| 久久人人爽av亚洲精品天堂| 韩国精品一区二区三区| 亚洲男人天堂网一区| 国产一区二区三区综合在线观看| 9191精品国产免费久久| 日韩av免费高清视频| 汤姆久久久久久久影院中文字幕| 天天躁夜夜躁狠狠久久av| 中文字幕另类日韩欧美亚洲嫩草| 一边亲一边摸免费视频| 一级a爱视频在线免费观看| 热99久久久久精品小说推荐| 大香蕉久久成人网| 精品少妇内射三级| 午夜福利乱码中文字幕| 国产精品av久久久久免费| 欧美黄色片欧美黄色片| 新久久久久国产一级毛片| 蜜桃在线观看..| 天天躁夜夜躁狠狠久久av| 久久久久国产一级毛片高清牌| 黄色a级毛片大全视频| 久久人人爽人人片av| 国产欧美日韩一区二区三 | 可以免费在线观看a视频的电影网站| 国产高清videossex| 一级毛片我不卡| 亚洲国产欧美日韩在线播放| 午夜免费观看性视频| 久久国产精品大桥未久av| 久久精品亚洲av国产电影网| 大码成人一级视频| 午夜日韩欧美国产| 啦啦啦啦在线视频资源| 日韩视频在线欧美| 99国产综合亚洲精品| 香蕉国产在线看| 操美女的视频在线观看| 国产人伦9x9x在线观看| 99国产精品一区二区三区| 国产高清视频在线播放一区 | 在线观看免费视频网站a站| 日韩 欧美 亚洲 中文字幕| 一本大道久久a久久精品| 久久99热这里只频精品6学生| 97人妻天天添夜夜摸| 欧美在线黄色| 五月开心婷婷网| 久久性视频一级片| av天堂久久9| 曰老女人黄片| 91成人精品电影| 亚洲av男天堂| 国产成人91sexporn| 99国产精品一区二区三区| 波多野结衣av一区二区av| 你懂的网址亚洲精品在线观看| 国产97色在线日韩免费| 99九九在线精品视频| 女人被躁到高潮嗷嗷叫费观| 国产精品二区激情视频| av福利片在线| 99国产精品99久久久久| 欧美成人精品欧美一级黄| 亚洲国产精品999| 一级毛片黄色毛片免费观看视频| 各种免费的搞黄视频| 国产免费一区二区三区四区乱码| 亚洲成人免费av在线播放| 天天添夜夜摸| 亚洲国产欧美在线一区| 中文字幕精品免费在线观看视频| 91成人精品电影| 国产成人精品在线电影| 桃花免费在线播放| 国产在视频线精品| 乱人伦中国视频| 99re6热这里在线精品视频| 老司机影院毛片| 免费在线观看黄色视频的| 亚洲欧洲日产国产| 无限看片的www在线观看| 成人国产一区最新在线观看 | 视频区图区小说| 亚洲欧美日韩高清在线视频 | 精品久久蜜臀av无| 精品卡一卡二卡四卡免费| 中文字幕制服av| 人妻一区二区av| 久久天躁狠狠躁夜夜2o2o | 欧美黑人精品巨大| 国产成人精品久久久久久| 女警被强在线播放| √禁漫天堂资源中文www| 日韩免费高清中文字幕av| 嫩草影视91久久| 国产亚洲欧美在线一区二区| 天天躁夜夜躁狠狠久久av| 国产成人免费观看mmmm| 丝袜美足系列| 丝瓜视频免费看黄片| 亚洲国产日韩一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 久久综合国产亚洲精品| 一级黄片播放器| 国产精品久久久人人做人人爽| 色精品久久人妻99蜜桃| 国产精品 欧美亚洲| 欧美精品啪啪一区二区三区 | 久久人人爽人人片av| 性高湖久久久久久久久免费观看| 高清av免费在线| 蜜桃国产av成人99| 老鸭窝网址在线观看| av国产精品久久久久影院| 国产在线观看jvid| 亚洲欧洲国产日韩| 性色av一级| 狠狠婷婷综合久久久久久88av| 国产高清国产精品国产三级| 欧美在线黄色| 青草久久国产| 青青草视频在线视频观看| 国产精品一区二区精品视频观看| 日韩 亚洲 欧美在线| 久久久久久久国产电影| 国产91精品成人一区二区三区 | 伊人久久大香线蕉亚洲五| 黄色视频不卡| 丝袜美腿诱惑在线| av福利片在线| 女人精品久久久久毛片| 欧美中文综合在线视频| 欧美乱码精品一区二区三区| 丝瓜视频免费看黄片| 亚洲黑人精品在线| 国产在视频线精品| 十八禁网站网址无遮挡| 一级毛片电影观看| 国产成人精品无人区| 伦理电影免费视频| 精品一区二区三卡| 一级毛片 在线播放| 久久久久国产精品人妻一区二区| 男女免费视频国产| 久久精品国产综合久久久| 国产不卡av网站在线观看| 女人精品久久久久毛片| 91字幕亚洲| 久久久亚洲精品成人影院| 色播在线永久视频| 欧美激情极品国产一区二区三区| 久久热在线av| 国产精品国产av在线观看| 国产97色在线日韩免费| 国产深夜福利视频在线观看| 日本av免费视频播放| 美女国产高潮福利片在线看| 99国产综合亚洲精品| 久久久久久久精品精品| 青春草视频在线免费观看| 欧美日韩一级在线毛片| 国产日韩欧美视频二区| 高清黄色对白视频在线免费看| 日日夜夜操网爽| 国产午夜精品一二区理论片| 国产激情久久老熟女| 亚洲精品一区蜜桃| 中文欧美无线码| 色婷婷久久久亚洲欧美| 久久国产精品大桥未久av| 欧美日韩视频高清一区二区三区二| 精品国产一区二区三区四区第35| 七月丁香在线播放| 亚洲精品一区蜜桃| 人人妻人人澡人人看| 精品少妇一区二区三区视频日本电影| 高清黄色对白视频在线免费看| 亚洲中文日韩欧美视频| 大香蕉久久网| 亚洲 欧美一区二区三区| av视频免费观看在线观看| 操美女的视频在线观看| 国产欧美日韩一区二区三区在线| 久久精品国产亚洲av高清一级| 成人三级做爰电影| 久久99一区二区三区| 日韩av免费高清视频| www日本在线高清视频| 中国美女看黄片| 成人三级做爰电影| 亚洲欧美一区二区三区国产| 国产又色又爽无遮挡免| 麻豆av在线久日| 9191精品国产免费久久| 久久亚洲国产成人精品v| 亚洲国产av影院在线观看| 一级a爱视频在线免费观看| videosex国产| 久久久精品94久久精品| 女人高潮潮喷娇喘18禁视频| 久久天躁狠狠躁夜夜2o2o | av天堂在线播放| 欧美日韩成人在线一区二区| 久久精品国产综合久久久| 久久毛片免费看一区二区三区| 日韩制服骚丝袜av| 性色av一级| 欧美日韩亚洲综合一区二区三区_| 欧美国产精品一级二级三级| 蜜桃国产av成人99| 久久人妻熟女aⅴ| 午夜免费鲁丝| 国产一区有黄有色的免费视频| 一区二区三区精品91| 精品久久久精品久久久| 国产精品国产av在线观看| 日韩人妻精品一区2区三区| 久久人人爽av亚洲精品天堂| 青春草视频在线免费观看| 国产成人91sexporn| 久久久久久久国产电影| 18禁黄网站禁片午夜丰满| 久久精品久久久久久久性| 亚洲一区二区三区欧美精品| 亚洲精品成人av观看孕妇| 99国产精品一区二区蜜桃av | 久久免费观看电影| 狂野欧美激情性bbbbbb| 亚洲精品自拍成人| 午夜激情av网站| 最近最新中文字幕大全免费视频 | 这个男人来自地球电影免费观看| 国产黄色视频一区二区在线观看| 亚洲一码二码三码区别大吗| 9热在线视频观看99| 精品国产乱码久久久久久男人| 亚洲中文日韩欧美视频| 精品久久久久久久毛片微露脸 | 2021少妇久久久久久久久久久| 国产成人精品在线电影| 亚洲国产最新在线播放| 90打野战视频偷拍视频| 欧美日韩国产mv在线观看视频| 大香蕉久久网| 亚洲成人手机| 国产av精品麻豆| 热re99久久国产66热| 捣出白浆h1v1| 啦啦啦在线免费观看视频4| www.999成人在线观看| 久久午夜综合久久蜜桃| 欧美老熟妇乱子伦牲交| 国产日韩一区二区三区精品不卡| 欧美黄色片欧美黄色片| 校园人妻丝袜中文字幕| 欧美日本中文国产一区发布| 91精品国产国语对白视频| 精品人妻熟女毛片av久久网站| 人人澡人人妻人| 国产成人一区二区在线| 亚洲欧美日韩高清在线视频 | 少妇被粗大的猛进出69影院| 欧美大码av| 赤兔流量卡办理| 国产激情久久老熟女| 久久精品熟女亚洲av麻豆精品| 91麻豆av在线| 日韩欧美一区视频在线观看| 成人影院久久| 免费在线观看完整版高清| 一级毛片电影观看| 亚洲,欧美精品.| 国产高清国产精品国产三级| 国产精品二区激情视频| 日日摸夜夜添夜夜爱| 美女高潮到喷水免费观看| 国产1区2区3区精品| 看免费成人av毛片| 亚洲av片天天在线观看| 国产有黄有色有爽视频| 男人爽女人下面视频在线观看| 满18在线观看网站| 亚洲欧美精品综合一区二区三区| 久久精品成人免费网站| 日韩中文字幕欧美一区二区 | 涩涩av久久男人的天堂| 国产男人的电影天堂91| 国产av一区二区精品久久| www.熟女人妻精品国产| 亚洲成人国产一区在线观看 | 蜜桃在线观看..| 国产成人欧美在线观看 | 国产精品香港三级国产av潘金莲 | 亚洲成人免费电影在线观看 | 我要看黄色一级片免费的| 一二三四社区在线视频社区8| 婷婷丁香在线五月| 好男人电影高清在线观看| 免费久久久久久久精品成人欧美视频| 悠悠久久av| 日韩av在线免费看完整版不卡| 人妻人人澡人人爽人人| 国产欧美日韩精品亚洲av| 黑人猛操日本美女一级片| 91成人精品电影| 日韩伦理黄色片| 一边摸一边做爽爽视频免费| 精品免费久久久久久久清纯 | 一区二区日韩欧美中文字幕| 亚洲欧洲精品一区二区精品久久久| av视频免费观看在线观看| 搡老乐熟女国产| 欧美激情 高清一区二区三区| 亚洲av电影在线观看一区二区三区| a级片在线免费高清观看视频| 精品第一国产精品| 国产精品九九99| 亚洲av片天天在线观看| 欧美xxⅹ黑人| 又紧又爽又黄一区二区| 日本色播在线视频| 亚洲伊人色综图| 一级毛片 在线播放| 久久国产精品男人的天堂亚洲| www.精华液| 国产91精品成人一区二区三区 | 亚洲精品国产色婷婷电影| a级片在线免费高清观看视频| 精品少妇久久久久久888优播| 女人久久www免费人成看片| 久久精品国产综合久久久| 免费观看人在逋| a 毛片基地| 一区二区三区精品91| 国产高清视频在线播放一区 | 亚洲欧美清纯卡通| 日韩人妻精品一区2区三区| 国产精品一二三区在线看| 69精品国产乱码久久久| 黑人巨大精品欧美一区二区蜜桃| 各种免费的搞黄视频| h视频一区二区三区| 久久影院123| 在线精品无人区一区二区三| 99九九在线精品视频| 亚洲七黄色美女视频| 午夜激情av网站| 久久精品亚洲av国产电影网| 韩国精品一区二区三区| 中文精品一卡2卡3卡4更新| 一区二区日韩欧美中文字幕| 日本av手机在线免费观看| 色94色欧美一区二区| 亚洲自偷自拍图片 自拍| 电影成人av| 亚洲av综合色区一区| 国产极品粉嫩免费观看在线| 国产一区有黄有色的免费视频| 精品欧美一区二区三区在线| 新久久久久国产一级毛片| 国产麻豆69| 国产精品久久久久久精品古装| 久久精品成人免费网站| 无限看片的www在线观看| 国产免费现黄频在线看| 欧美性长视频在线观看| 国产免费现黄频在线看| 真人做人爱边吃奶动态| 老汉色av国产亚洲站长工具| 两个人看的免费小视频| av视频免费观看在线观看| 午夜久久久在线观看| 国产精品久久久av美女十八| 午夜激情久久久久久久| 午夜福利,免费看| 99国产精品99久久久久| cao死你这个sao货| 久久精品久久久久久久性| 日本wwww免费看| 天天躁夜夜躁狠狠躁躁| 欧美日韩一级在线毛片| 女人被躁到高潮嗷嗷叫费观| 亚洲熟女精品中文字幕| 国产精品99久久99久久久不卡| 91国产中文字幕| 好男人电影高清在线观看| 精品欧美一区二区三区在线| 欧美黄色片欧美黄色片| 天天躁日日躁夜夜躁夜夜| 国产女主播在线喷水免费视频网站| 欧美成人午夜精品| 亚洲av成人精品一二三区| 欧美精品高潮呻吟av久久| 国产高清国产精品国产三级| 人人妻人人澡人人爽人人夜夜| a级毛片黄视频| 香蕉国产在线看| 女人高潮潮喷娇喘18禁视频| www.精华液| 成年人免费黄色播放视频| 欧美人与性动交α欧美软件| 国产精品偷伦视频观看了| 人人妻,人人澡人人爽秒播 | 欧美+亚洲+日韩+国产| 熟女少妇亚洲综合色aaa.| 久久av网站| 亚洲成人手机| 色精品久久人妻99蜜桃| 欧美+亚洲+日韩+国产| 亚洲精品国产一区二区精华液| 在线精品无人区一区二区三| 老司机深夜福利视频在线观看 | 黄色a级毛片大全视频| 国产av精品麻豆| 少妇 在线观看| 黄色片一级片一级黄色片| 国产精品香港三级国产av潘金莲 | 性色av乱码一区二区三区2| 黄网站色视频无遮挡免费观看| 国产一区二区在线观看av| 精品人妻在线不人妻| 日日爽夜夜爽网站| 亚洲av欧美aⅴ国产| 免费在线观看影片大全网站 | 亚洲精品一区蜜桃| 精品一区在线观看国产| 午夜福利在线免费观看网站| 97精品久久久久久久久久精品| 黄色片一级片一级黄色片| 一区福利在线观看| 久久 成人 亚洲| 欧美精品人与动牲交sv欧美| 午夜精品国产一区二区电影| 亚洲国产中文字幕在线视频| 国产精品.久久久| a级毛片黄视频| 最黄视频免费看| 国产淫语在线视频| 亚洲精品av麻豆狂野| 纵有疾风起免费观看全集完整版| 亚洲国产成人一精品久久久| 亚洲精品国产一区二区精华液| 九草在线视频观看| a 毛片基地| 视频区图区小说| 日本欧美视频一区| 午夜久久久在线观看| 考比视频在线观看| 女性生殖器流出的白浆| 成人影院久久| 国产成人一区二区在线| 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩一区二区三 | 超碰成人久久| 欧美日韩亚洲综合一区二区三区_| 国产精品久久久久成人av| 狠狠婷婷综合久久久久久88av| 久久精品久久精品一区二区三区| 91精品三级在线观看| 亚洲色图综合在线观看| 黄色视频不卡| 精品少妇内射三级| 成人亚洲精品一区在线观看| 精品国产国语对白av| 久久女婷五月综合色啪小说| 一级毛片我不卡| 精品人妻熟女毛片av久久网站| 丁香六月欧美| 国产精品.久久久| 精品国产国语对白av| 国产有黄有色有爽视频| 久久精品亚洲熟妇少妇任你| 国产伦人伦偷精品视频| 亚洲欧美精品综合一区二区三区| 老司机午夜十八禁免费视频| 免费在线观看完整版高清| 2021少妇久久久久久久久久久| 婷婷色综合大香蕉| 精品一品国产午夜福利视频| 91精品伊人久久大香线蕉| 亚洲精品自拍成人| av在线app专区| 两个人看的免费小视频| 免费一级毛片在线播放高清视频 | 久久人妻福利社区极品人妻图片 | 国产精品亚洲av一区麻豆| 欧美黑人欧美精品刺激| 国产精品熟女久久久久浪| 观看av在线不卡| 一区福利在线观看| 99九九在线精品视频| 国产一区二区三区av在线| 日韩精品免费视频一区二区三区| 色播在线永久视频| 久久九九热精品免费| 久久狼人影院| av国产久精品久网站免费入址| 亚洲美女黄色视频免费看| 亚洲国产看品久久| 少妇猛男粗大的猛烈进出视频| 亚洲一区二区三区欧美精品| 亚洲国产毛片av蜜桃av| 国产成人免费无遮挡视频| 日韩一本色道免费dvd| 亚洲成人免费av在线播放| 亚洲欧美日韩高清在线视频 | 亚洲欧美精品自产自拍| 久久久久久人人人人人| 桃花免费在线播放| 人妻 亚洲 视频| 91老司机精品| videos熟女内射| 男女边摸边吃奶| 秋霞在线观看毛片| 人人妻人人澡人人看| 国产真人三级小视频在线观看| 国产片内射在线| 91麻豆精品激情在线观看国产 | 一区二区三区精品91| 中文字幕亚洲精品专区| 国产精品亚洲av一区麻豆| 两个人免费观看高清视频| 国产日韩一区二区三区精品不卡| 美女高潮到喷水免费观看| 日本欧美国产在线视频| 在线观看免费日韩欧美大片|