• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-criteria user selection scheme for learning-based multiuser MIMO cognitive radio networks

    2015-04-22 06:17:32WANGNiwei王妮煒FEIZesong費(fèi)澤松XINGChengwen邢成文NIJiqing倪吉慶KUANGJingming匡鏡明
    關(guān)鍵詞:吉慶成文

    WANG Ni-wei(王妮煒), FEI Ze-song(費(fèi)澤松), XING Cheng-wen(邢成文),NI Ji-qing(倪吉慶), KUANG Jing-ming(匡鏡明)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Multi-criteria user selection scheme for learning-based multiuser MIMO cognitive radio networks

    WANG Ni-wei(王妮煒), FEI Ze-song(費(fèi)澤松), XING Cheng-wen(邢成文),NI Ji-qing(倪吉慶), KUANG Jing-ming(匡鏡明)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    For multiuser multiple-input-multiple-output (MIMO) cognitive radio (CR) networks a four-stage transmiision structure is proposed. In learning stage, the learning-based algorithm with low overhead and high flexibility is exploited to estimate the channel state information (CSI) between primary (PR) terminals and CR terminals. By using channel training in the second stage of CR frame, the channels between CR terminals can be achieved. In the third stage, a multi-criteria user selection scheme is proposed to choose the best user set for service. In data transmission stage, the total capacity maximization problem is solved with the interference constraint of PR terminals. Finally, simulation results show that the multi-criteria user selection scheme, which has the ability of changing the weights of criterions, is more flexible than the other three traditional schemes and achieves a tradeoff between user fairness and system performance.

    learning-base; multiple-input-multiple-output(MIMO); cognitive radio (CR) network; multiuser

    Current wireless networks are characterized by a static spectrum allocation policy, but it faces the scarcity of frequency spectrum, which limits the development of future wireless communication systems. Recently,cognitive radio (CR) has drawn intensive attentions from both academic and industrial communities[1]. In CR systems, CR users (CR-UE) and primary users (PR-UE) are allowed to share the same spectrum, which is divided into two spectrum sharing policies, i.e., overlay spectrum sharing and underlay spectrum sharing[2].

    It is obvious that frequency spectrum is used more efficiently by above technologies, but the performance for PR systems should not be ignored. In addition, the interference at PR-UEs caused by CR-UEs must be effectively reduced and limited by a predefined interference threshold. An efficient technique in CR networks is that the CR transmitters equipped with multiple antennas exploit the beamforming technique to steer the transmit energy to the intended users[3-4]. As we all known, beamforming can be interpreted as a spatial filter and its implementation is usually based on channel state information (CSI). Unfortunately, PR terminals have no responsibility to transmit pilots to CR terminals, so blind channel estimation algorithms will be preferred to gain the CSI between PR terminals and CR terminals[5].

    To make the underlay spectrum sharing most efficient, environment learning[6-8]is exploited in this paper, which blindly estimates the null spaces of the PR-UEs without implicit information exchange and additional communication overhead. In this paper, the time of each CR frame is fixed. Learning-based algorithm is adopted to estimate the CSI between PR terminals and CR terminals, and channels between CR terminals can be obtained through channel training stage. For user selection stage, a multi-criteria user selection scheme is proposed to choose the best user set for service. With selected users, the total capacity is maximized by constrained to the interference to PR-UEs, which was solved with a closed power allocation solution. The results show that the multi-criteria user selection scheme, which can change the weights of criterions, is more flexible than the other three traditional schemes and achieves a tradeoff between user fairness and system performance.

    1 System model

    In our work, the PR system and the CR system share the same frequency band as shown in Fig.1. For the PR system, each PR-UE is equipped withMpantennas and communicates with the PR base-station (PR-BS) without considering the transmission of the CR system. The CR system has a CR base-station (CR-BS) withMBantennas andKCR users (CR-UEs) withMi(i=1,…,K) antennas. In order to use learning method better, we assumeMp

    Fig.1 Multiuser MIMO CR network

    2 Transmission design and problem formulation

    As shown in Fig.2, the CR transmission strategy can be divided into frames with fixed timeN=Nl+Nt+Ns+Nd, which has four stages, i.e., learning, channel training, user selection and data transmission stage. It is obvious that the last stage brings more data transmission and system throughput, while the others provide better transmission quality. Therefore, it is important to design the length of different stages and the details are described in the following subsections.

    Fig.2 CR frame structure

    2.1 Learning stage

    It is knowh that the PR system has no responsibility to report its transmission to the CR system, so the CR terminals have to listen to the PR system and find the noise space of the transmitted signals. After this period of time, CR transmitters precode the transmitted signals by multiplying the noise space to reduce interference to the PR system, while CR receivers reduce interference from the PR system by multiplying noise space after receiving their targeted signals.

    At symbol periodn, the signals sent from the PR user can be expressed as

    sp(n),n=1,2,…,N

    (1)

    wheresp(n)isanindependentidenticallydistributedrandomsignal.ThenthesignalsreceivedattheCRterminalscanbeformulatedas

    yB(n)=GBsp(n)+zB(n),for the CR-BS

    yi(n)=Gisp(n)+zi(n),for the CR-UE,

    n=1,2,…,Nl

    (2)

    The covariance matrices of received signalsyBandyicanbeexpressedas

    (3)

    Inordertogainthenoisespace,theEVDofcovariancematricesRBandRiareformulatedas

    (4)

    Ifthelearningtimeislongenough,thenoisespacewillbeabsolutelyaccurate.Therefore,theinterferencecanbetotallyeliminatedatCRterminalsasbelow

    (5)

    If the signals transmitted at CR terminals ared(n),theinterferenceatPRterminalswillalsoreducetozero

    (6)

    2.2Channeltrainingstage

    Thechanneltrainingstageisdesignedindownlinktransmissionwithtwogoals,i.e.,obtainingchannelmatricesandprovidingfeedbackofsignalnoiseratio(SNR)toCR-BS.

    WeassumeCR-BStransmitstrainingsequencest(n)toallusersatthesametime,sothesignalreceivedatithCR-UEis

    (7)

    Because the training time is finite and the channel environment is complex in real transmission, estimation error is existed in general. We use the LMMSE-based channel estimator forWianditcanbeobtainedas

    (8)

    where

    (9)

    Thus, the practical signals received at the CR-UEs can be reformulated as

    (10)

    (11)

    Inordertochooseabetteruserset,weneedtoknowtheSNRofeachuser,whichcanbeexpressedas

    (12)

    wheren=Nl+1,…,Nl+Nt. We assume that the channel is quasi static in one CR frame, so the average SNR during the channel training stage can be written as

    (13)

    wheretr(TTH)=NtPBS.

    2.3 User selection stage

    Because a CR-BS cannot serve all the CR-UEs simultaneously a user selection method is necessarily needed andKoptusers can be supported at most before data transmission. A user can be more easily selected with largerfi, which is the user selection function of theithuser.

    Firstly, three traditional user selection schemes are introduced. For the SNR scheme, the user selection function is defined as

    (14)

    Then,bydefiningtheselectedtimesoftheithuser as δi,theuserselectionfunctionofRoundRobin(RR)schemecanbeformulatedas

    fi=i+ΔiK

    (15)

    The last traditional scheme is proportional fair (PF) with user selection function described as

    (16)

    However, users usually have different requirements in real systems, so a multi-criteria user selection method is proposed. Assume that there are Γkindsofcriterionsandapriorityfunctionofithuserrelativetojthuserisdefinedas

    (17)

    (18)

    Thesameaschanneltrainingstage,CR-BStransmitstheselectedusersettoallCR-UEsthroughfeedbackchannelsfinally.Withinfinitecapacity,thereisnoadditionerror.Inaddition,duetothegreatcomputingabilityofCR-BSitisreasonabletoassumeNB=1.

    2.4 Data transmission stage

    (19)

    whereKois the number of selected users,v(n)istheeffectiveinterference-plus-noiseterm.Notethat,notonlytheinterferencefromtheCRtothePRbutalsothatfromthePRtotheCRhasbeencontrolled.

    3 Problem optimization

    Beforechanneltrainingstage,CR-BSdoesnotknowthechannelstateinformation,sothepowershouldbeallocatedequally,

    (20)

    wherePBis the transmit power of CR-BS. Thus, Eq.(11) can be reformulated as

    (21)

    Consideringtheimperfectchanneltraininganduserselectionschemes,weaimtoallocatethepowerofbeamsforeachCR-UEtomaximizethesystemcapacity.Theoptimalproblemis

    (22)

    Thecapacityinthedatatransmissionstageis

    (23)

    where the covariance matrix defined as

    (24)

    then the capacity in Eq.(23) becomes

    (25)

    where

    Λi=diag{λi,1,λi,2,…,λi,(Mi-Mp)}

    diag{xi,1,xi,2,…,xi,(Mi-Mp)}

    (26)

    In order to optimize the total capacity, two stages are proposed.

    ① For a fixedNt, we use water-filling algorithm[9]to allocate the power and the solution is that if ρei∈(qi,c-1,qi,c],then

    (27)

    where

    (28)

    ②Basedontheoptimalpower,wesearchfortherangeofNtto find the maximal capacity, which has the final optimal solution.

    4 Simulation results

    In the simulation, the CR network has one PR-UE withMp=2 antennas, one CR-BS withMB=4 antennas andK=5 CR-UEs withM1=…=MK=4 antennas. In a transmission,Ko=4 users can be transmitted simultaneously at most. When the total time of a CR frame isN=60, the learning stage can be stable withNl=10[7]. According to the standard of LTE, we setPB=1,PU=0.2. In the simulation, we assume that user 3 has bad channel state, i.e. it is far away from the CR-BS or the interference cannot be dismissed. We put all these factors as a part of noise, so the noise power vector is ={1,1,5,1,1}.

    Fig.3 shows that SNR scheme has the best performance, while RR scheme has the worst performance because of considering fairness only. PF scheme is a little better than RR scheme because it takes both fairness and system performance into consideration. However, multi-criteria scheme considers both aspects with the same weightφ1=φ2=0.5 and outperforms RR scheme. In addition, multi-criteria is more flexible and can achieve different levels of performance by changing the weights.

    As Fig.4 illustrated that user 3 is selected barely while the other users are selected frequently in SNR scheme, which causes great unfairness between users. Although some users have bad channel conditions, they may still transmit important information, i.e., emergency calls. Obviously, the other three schemes are better programed in this case except SNR scheme. In fact, the emergency incident does not occur frequently, so in most cases the system performance is more important than fairness. To sum all, multi-criteria scheme fits the practical situation and has a trade off between both sides.

    Fig.3 Total capacity for the four schemes verses Nt

    Fig.4 Selected probabilities of users for the four schemes

    5 Conclusion

    In this paper, we have proposed a multi-criteria user selection scheme which provides the best service user set for the learning-based multiuser MIMO CR networks. In addition channel training is exploited to gain the channels between CR terminals. The total capacity is maximized with the interference constraint at PR-UEs. Simulation results demonstrate that the multi-criteria user selection scheme achieves a tradeoff be-tween user fairness and system performance than SNR, RR and PF schemes. Moreover, it is more flexible by changing the weight of criteria.

    [1] Liang Yingchang, Chen Kwangcheng, Li Geoffrey Ye, et al. Cognitive radio networking and communications: an overview [J]. IEEE Transactions on Vehicular Technology , 2011, 60(7): 3386-3407.

    [2] Zhao Qing, Sadler B M. A survey of dynamic spectrum access[J]. IEEE Signal Processing Magazine, 2007, 24(3): 79-89.

    [3] Tajer A, Prasad N, Wang Xiaodong. Beamforming and rate allocation in MISO cognitive radio networks[J]. IEEE Transactions on Signal Processing, 2010, 58(1): 362-377.

    [4] Hamdi K, Zarifi K, Ben Letaief K, et al. Beamforming in relay-assisted cognitive radio systems: a convex optimization approach [C]∥IEEE International Conference on Communications (ICC), Kyoto, Japan, 2011.

    [5] Noam Y, Goldsmith A J. Blind null-space learning for spatial coexistence in MIMO cognitive radios[C]∥IEEE International Conference on Communications (ICC), Ottawa, Ontario, Canada, 2012.

    [6] Zhang Rui, Gao Feifei, Liang Yingchang. Cognitive beamforming made practical: effective interference channel and learning-throughput tradeoff [J]. IEEE Transactions on Communications, 2010, 58(2): 706-718.

    [7] Gao Feifei, Zhang Rui, Liang Yingchang, et al. Design of learning-based MIMO cognitive radio systems[J]. IEEE Transactions on Vehicular Technology, 2010, 59(4): 1707-1720.

    [8] Li Shuo, Fei Zesong, Xing Chengwen, et al. Joint resource allocation for learning-based cognitive radio networks with MIMO-OFDM relay-aided transmissions[C]∥IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, 2013.

    [9] Boyd S, Vandenberghe L. Convex optimization[M]. Cambridge, UK: Cambridge University Press, 2004.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004- 0579.201524.0216

    TN 929.5 Document code: A Article ID: 1004- 0579(2015)02- 0240- 06

    Received 2014- 03- 18

    Supported by National S & T Major Project of China (2013ZX 03003002-003)

    E-mail: feizesong@bit.edu.cn

    猜你喜歡
    吉慶成文
    “00后”的愛情標(biāo)簽
    徐成文
    大江南北(2023年2期)2023-02-11 05:45:56
    我和老伴的快樂“毽 ”身法
    晚秋
    寶藏(2021年5期)2021-12-01 10:15:58
    富庶吉慶的鯉魚
    Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography?
    剪紙欣賞
    中老年保健(2017年1期)2017-06-02 06:14:42
    成文昊設(shè)計(jì)作品
    Low-complexity transceiver design scheme based on channel null-space feedback
    一輩子的藍(lán)顏
    日韩 亚洲 欧美在线| 免费高清视频大片| 久久久久久久久久黄片| 女人十人毛片免费观看3o分钟| x7x7x7水蜜桃| 午夜视频国产福利| 午夜免费成人在线视频| 欧美性感艳星| 91精品国产九色| 欧美高清成人免费视频www| 在线观看免费视频日本深夜| 色综合亚洲欧美另类图片| 成人特级av手机在线观看| 免费人成视频x8x8入口观看| 免费黄网站久久成人精品| 国产精品亚洲美女久久久| 亚洲av中文av极速乱 | 国产高清三级在线| 亚洲中文字幕一区二区三区有码在线看| 日本 av在线| 校园人妻丝袜中文字幕| 成年免费大片在线观看| 久久精品国产亚洲av涩爱 | 欧美日韩黄片免| 亚洲av.av天堂| 91久久精品国产一区二区成人| 非洲黑人性xxxx精品又粗又长| 大又大粗又爽又黄少妇毛片口| 夜夜看夜夜爽夜夜摸| 午夜a级毛片| 午夜亚洲福利在线播放| 干丝袜人妻中文字幕| 成人欧美大片| 99久久久亚洲精品蜜臀av| 国产精品免费一区二区三区在线| 在现免费观看毛片| 啦啦啦观看免费观看视频高清| 久久香蕉精品热| 久久99热这里只有精品18| 夜夜爽天天搞| av在线老鸭窝| 91久久精品电影网| 成年女人永久免费观看视频| 国产精品美女特级片免费视频播放器| 波多野结衣巨乳人妻| 久久热精品热| 乱人视频在线观看| 亚洲成a人片在线一区二区| 色综合婷婷激情| 永久网站在线| 精品久久久久久久久av| 很黄的视频免费| 在线国产一区二区在线| 日韩欧美精品v在线| 国产精品女同一区二区软件 | 搡女人真爽免费视频火全软件 | 久久久色成人| 成人精品一区二区免费| 大型黄色视频在线免费观看| 偷拍熟女少妇极品色| 国产亚洲欧美98| 在线播放无遮挡| 亚洲真实伦在线观看| 我要看日韩黄色一级片| 特大巨黑吊av在线直播| 小说图片视频综合网站| 国产成年人精品一区二区| 亚洲四区av| 九色国产91popny在线| 一区二区三区激情视频| 色哟哟·www| 熟女人妻精品中文字幕| 色5月婷婷丁香| 无遮挡黄片免费观看| 国产黄色小视频在线观看| 久久精品国产99精品国产亚洲性色| 国产伦在线观看视频一区| 2021天堂中文幕一二区在线观| 偷拍熟女少妇极品色| 亚洲欧美激情综合另类| 午夜爱爱视频在线播放| 天堂动漫精品| 舔av片在线| 中文字幕熟女人妻在线| 一区二区三区免费毛片| 两人在一起打扑克的视频| 午夜久久久久精精品| 国产在线男女| 波多野结衣巨乳人妻| 亚洲精华国产精华液的使用体验 | 亚洲av一区综合| 99riav亚洲国产免费| 99热6这里只有精品| 午夜免费成人在线视频| 久久久久久久久大av| 听说在线观看完整版免费高清| 欧美成人一区二区免费高清观看| 亚洲国产精品成人综合色| 一级毛片久久久久久久久女| 一级黄色大片毛片| 女同久久另类99精品国产91| 动漫黄色视频在线观看| 国产av在哪里看| 美女大奶头视频| 日本精品一区二区三区蜜桃| 校园人妻丝袜中文字幕| 亚洲国产色片| 久久精品国产鲁丝片午夜精品 | 日日撸夜夜添| 校园人妻丝袜中文字幕| 成人av在线播放网站| 日本三级黄在线观看| 午夜免费男女啪啪视频观看 | 国产高清视频在线播放一区| 久久精品影院6| 国内精品久久久久久久电影| 波野结衣二区三区在线| 国国产精品蜜臀av免费| 很黄的视频免费| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利欧美成人| 日韩亚洲欧美综合| 国产精品不卡视频一区二区| 男女下面进入的视频免费午夜| 性插视频无遮挡在线免费观看| 午夜久久久久精精品| 两个人的视频大全免费| 日本a在线网址| 日本在线视频免费播放| 在线观看免费视频日本深夜| 听说在线观看完整版免费高清| 人妻久久中文字幕网| 国产高清不卡午夜福利| 最近视频中文字幕2019在线8| 干丝袜人妻中文字幕| 婷婷精品国产亚洲av| 国产精品久久久久久精品电影| 久久午夜福利片| 日本一本二区三区精品| 国产乱人视频| 天美传媒精品一区二区| 久久久精品大字幕| 亚洲欧美日韩无卡精品| 亚洲最大成人手机在线| 国产伦在线观看视频一区| 村上凉子中文字幕在线| 欧美xxxx黑人xx丫x性爽| 亚洲欧美日韩高清在线视频| 日韩欧美精品v在线| 一区二区三区免费毛片| 啦啦啦韩国在线观看视频| 麻豆久久精品国产亚洲av| 欧美一区二区国产精品久久精品| 久久久国产成人精品二区| 久久久久国产精品人妻aⅴ院| 久久婷婷人人爽人人干人人爱| 国产精品嫩草影院av在线观看 | 免费电影在线观看免费观看| 亚洲七黄色美女视频| 亚洲av熟女| 波多野结衣高清无吗| 欧美日韩精品成人综合77777| 色吧在线观看| 国模一区二区三区四区视频| 欧美中文日本在线观看视频| a级一级毛片免费在线观看| 国内精品美女久久久久久| 国产精品,欧美在线| 97热精品久久久久久| 欧美极品一区二区三区四区| 91狼人影院| 成人毛片a级毛片在线播放| 亚洲一级一片aⅴ在线观看| 亚洲精品影视一区二区三区av| 一卡2卡三卡四卡精品乱码亚洲| 国产伦在线观看视频一区| 波多野结衣高清无吗| av视频在线观看入口| 国产高清三级在线| 色噜噜av男人的天堂激情| 在现免费观看毛片| 黄色配什么色好看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲第一电影网av| 色在线成人网| 麻豆成人午夜福利视频| 婷婷精品国产亚洲av| 国产一区二区在线av高清观看| 欧美3d第一页| 精品人妻偷拍中文字幕| 国模一区二区三区四区视频| 国产探花极品一区二区| 我的女老师完整版在线观看| 中文字幕精品亚洲无线码一区| 黄色一级大片看看| 精品午夜福利在线看| 麻豆av噜噜一区二区三区| 精品不卡国产一区二区三区| 偷拍熟女少妇极品色| 最近最新中文字幕大全电影3| 日韩精品青青久久久久久| 日本 欧美在线| 亚洲三级黄色毛片| 99久久精品热视频| 97超级碰碰碰精品色视频在线观看| 一个人看的www免费观看视频| 国产欧美日韩精品亚洲av| 精品日产1卡2卡| 国产高潮美女av| 最近中文字幕高清免费大全6 | 国产高潮美女av| 一夜夜www| 99热这里只有是精品50| 日韩中字成人| x7x7x7水蜜桃| 悠悠久久av| 久久6这里有精品| 啦啦啦韩国在线观看视频| 国产不卡一卡二| 能在线免费观看的黄片| 在线天堂最新版资源| 丰满乱子伦码专区| 可以在线观看的亚洲视频| 国产精品精品国产色婷婷| 少妇丰满av| 我要看日韩黄色一级片| 中文亚洲av片在线观看爽| 国产精品1区2区在线观看.| 国产一区二区在线av高清观看| 精品久久久久久成人av| 亚洲乱码一区二区免费版| 久久久久九九精品影院| 亚洲色图av天堂| 亚洲av日韩精品久久久久久密| 久久精品国产亚洲av天美| 国产三级中文精品| 欧美色视频一区免费| 国产伦一二天堂av在线观看| 长腿黑丝高跟| 一本精品99久久精品77| 在线观看一区二区三区| 成人鲁丝片一二三区免费| 动漫黄色视频在线观看| 欧美成人一区二区免费高清观看| 亚洲国产精品合色在线| 制服丝袜大香蕉在线| 成人美女网站在线观看视频| 国产主播在线观看一区二区| 毛片一级片免费看久久久久 | 免费高清视频大片| 国产高清视频在线观看网站| 国产高清有码在线观看视频| 欧美成人免费av一区二区三区| 中文亚洲av片在线观看爽| 国产精品人妻久久久影院| 亚洲欧美日韩高清专用| 看黄色毛片网站| 欧美日本亚洲视频在线播放| 亚洲性夜色夜夜综合| av黄色大香蕉| 欧美+亚洲+日韩+国产| 最近中文字幕高清免费大全6 | 网址你懂的国产日韩在线| 深夜精品福利| 51国产日韩欧美| 在线观看舔阴道视频| 最新中文字幕久久久久| 一边摸一边抽搐一进一小说| 精品久久久噜噜| av在线观看视频网站免费| 欧美成人性av电影在线观看| 老司机福利观看| 99视频精品全部免费 在线| 99热只有精品国产| 久99久视频精品免费| 国产伦在线观看视频一区| 精品国产三级普通话版| 欧美成人一区二区免费高清观看| 精品一区二区三区av网在线观看| 亚洲成人久久性| 欧美性感艳星| 亚洲精品乱码久久久v下载方式| 身体一侧抽搐| 噜噜噜噜噜久久久久久91| 精品日产1卡2卡| 熟女电影av网| 国产精品三级大全| 成人鲁丝片一二三区免费| 精品福利观看| 亚州av有码| 三级毛片av免费| 国产高清不卡午夜福利| 亚洲精品影视一区二区三区av| 亚洲性久久影院| 国产精品日韩av在线免费观看| 日韩欧美国产在线观看| 午夜a级毛片| 日本黄色片子视频| 亚洲精品一区av在线观看| 午夜精品久久久久久毛片777| 国产熟女欧美一区二区| 亚洲av熟女| 国产午夜精品论理片| 九色成人免费人妻av| 真实男女啪啪啪动态图| 国产主播在线观看一区二区| 九九爱精品视频在线观看| 成人三级黄色视频| 很黄的视频免费| 一区二区三区高清视频在线| 在线免费十八禁| 亚洲中文字幕日韩| 男插女下体视频免费在线播放| 白带黄色成豆腐渣| 亚洲欧美日韩卡通动漫| 黄色配什么色好看| 亚洲国产欧洲综合997久久,| 亚洲欧美日韩高清在线视频| 免费高清视频大片| 欧美最黄视频在线播放免费| 美女黄网站色视频| 国产在线精品亚洲第一网站| 亚洲自偷自拍三级| 淫妇啪啪啪对白视频| 日日撸夜夜添| 中文字幕人妻熟人妻熟丝袜美| 国产一区二区在线观看日韩| 婷婷丁香在线五月| 3wmmmm亚洲av在线观看| 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美精品v在线| 久久精品国产亚洲网站| 成人国产一区最新在线观看| 欧美xxxx性猛交bbbb| 亚洲成人久久性| 男插女下体视频免费在线播放| 婷婷精品国产亚洲av| 两个人视频免费观看高清| 亚洲中文日韩欧美视频| 天堂√8在线中文| 一本精品99久久精品77| 免费不卡的大黄色大毛片视频在线观看 | 少妇丰满av| 免费看av在线观看网站| 成人三级黄色视频| 蜜桃亚洲精品一区二区三区| av在线观看视频网站免费| 熟女人妻精品中文字幕| 波多野结衣高清无吗| bbb黄色大片| 日本-黄色视频高清免费观看| 性插视频无遮挡在线免费观看| 99久久九九国产精品国产免费| av视频在线观看入口| 欧美精品啪啪一区二区三区| 免费搜索国产男女视频| .国产精品久久| 免费搜索国产男女视频| 又紧又爽又黄一区二区| 久久国内精品自在自线图片| 久久精品国产亚洲av涩爱 | 精品国产三级普通话版| 黄色视频,在线免费观看| 亚洲图色成人| 极品教师在线免费播放| av在线老鸭窝| 美女大奶头视频| 好男人在线观看高清免费视频| 人妻制服诱惑在线中文字幕| 色哟哟·www| 亚洲图色成人| 日本五十路高清| 俺也久久电影网| 日韩国内少妇激情av| 国产精品三级大全| 蜜桃久久精品国产亚洲av| 亚洲精品在线观看二区| videossex国产| 欧美激情国产日韩精品一区| 亚洲精品粉嫩美女一区| 如何舔出高潮| 在线观看av片永久免费下载| 51国产日韩欧美| 日韩一本色道免费dvd| 久99久视频精品免费| 又粗又爽又猛毛片免费看| 亚洲成人久久爱视频| 成人国产一区最新在线观看| 美女高潮的动态| 亚洲国产精品sss在线观看| 免费看av在线观看网站| 日韩精品有码人妻一区| 免费黄网站久久成人精品| 久久婷婷人人爽人人干人人爱| 久久久久久久久久久丰满 | 夜夜夜夜夜久久久久| av中文乱码字幕在线| 干丝袜人妻中文字幕| 成人三级黄色视频| 亚洲av电影不卡..在线观看| 亚洲精品一区av在线观看| 免费观看的影片在线观看| 国产视频一区二区在线看| 最近最新免费中文字幕在线| 伦精品一区二区三区| 国产一区二区亚洲精品在线观看| 久久久久免费精品人妻一区二区| 狠狠狠狠99中文字幕| 内射极品少妇av片p| 校园人妻丝袜中文字幕| 一个人看的www免费观看视频| 欧美成人一区二区免费高清观看| 亚洲一区二区三区色噜噜| 午夜爱爱视频在线播放| 午夜影院日韩av| 91精品国产九色| 精品国产三级普通话版| 国产aⅴ精品一区二区三区波| 深夜精品福利| 色综合婷婷激情| 国产精品女同一区二区软件 | 国产亚洲精品久久久com| 成人av一区二区三区在线看| 日韩 亚洲 欧美在线| 亚洲真实伦在线观看| 蜜桃亚洲精品一区二区三区| 免费av毛片视频| 精品一区二区三区av网在线观看| 91久久精品国产一区二区三区| 91在线观看av| 嫩草影院新地址| 亚洲av五月六月丁香网| 欧美成人一区二区免费高清观看| 免费在线观看影片大全网站| 午夜激情欧美在线| 亚洲成人中文字幕在线播放| 亚洲图色成人| 99在线人妻在线中文字幕| 波多野结衣巨乳人妻| 极品教师在线免费播放| 国产乱人伦免费视频| 午夜老司机福利剧场| 亚洲中文字幕一区二区三区有码在线看| 久久午夜亚洲精品久久| 男人舔奶头视频| 亚洲精品456在线播放app | 看片在线看免费视频| 成人一区二区视频在线观看| 色噜噜av男人的天堂激情| 人妻久久中文字幕网| 黄片wwwwww| 啦啦啦啦在线视频资源| 成人毛片a级毛片在线播放| 日本一二三区视频观看| 日韩,欧美,国产一区二区三区 | 俄罗斯特黄特色一大片| 最近最新中文字幕大全电影3| 一区福利在线观看| 午夜激情欧美在线| 又紧又爽又黄一区二区| 欧美zozozo另类| 亚洲成av人片在线播放无| 草草在线视频免费看| 美女高潮的动态| 人妻夜夜爽99麻豆av| 欧美成人性av电影在线观看| 啦啦啦观看免费观看视频高清| 搡女人真爽免费视频火全软件 | 超碰av人人做人人爽久久| 久久国产精品人妻蜜桃| 久久精品国产自在天天线| a在线观看视频网站| h日本视频在线播放| 男女之事视频高清在线观看| 亚洲性久久影院| or卡值多少钱| 精品福利观看| 成人av在线播放网站| 国产精品无大码| 在线播放国产精品三级| 成年女人永久免费观看视频| 亚洲无线观看免费| 最近最新免费中文字幕在线| 国内少妇人妻偷人精品xxx网站| 非洲黑人性xxxx精品又粗又长| 色在线成人网| 老女人水多毛片| 亚洲无线在线观看| 国产黄片美女视频| 国产真实乱freesex| 亚洲美女黄片视频| 精品久久久久久久久久久久久| 久久久久久久久大av| 亚洲av不卡在线观看| 国产熟女欧美一区二区| 人人妻人人澡欧美一区二区| 性插视频无遮挡在线免费观看| 婷婷精品国产亚洲av| 欧美激情在线99| 老司机深夜福利视频在线观看| 国产精品精品国产色婷婷| 国产免费男女视频| 我要搜黄色片| 亚洲最大成人中文| 少妇猛男粗大的猛烈进出视频 | 日韩欧美精品v在线| 婷婷丁香在线五月| 搡女人真爽免费视频火全软件 | 两人在一起打扑克的视频| 嫩草影视91久久| 99精品久久久久人妻精品| 在线天堂最新版资源| 精品久久久久久久末码| 一级黄色大片毛片| 最近中文字幕高清免费大全6 | 婷婷精品国产亚洲av在线| 精品人妻熟女av久视频| 国产一区二区三区视频了| 毛片女人毛片| 亚洲va日本ⅴa欧美va伊人久久| а√天堂www在线а√下载| 欧美日韩瑟瑟在线播放| 国产麻豆成人av免费视频| 国产一级毛片七仙女欲春2| 毛片女人毛片| 两个人的视频大全免费| 人妻少妇偷人精品九色| 日本免费一区二区三区高清不卡| 最近在线观看免费完整版| 国产免费一级a男人的天堂| 国产真实乱freesex| 大型黄色视频在线免费观看| 简卡轻食公司| 在线观看av片永久免费下载| 国产成人aa在线观看| av国产免费在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲av第一区精品v没综合| 国产午夜福利久久久久久| 成人二区视频| 免费高清视频大片| 国产精品一区二区三区四区免费观看 | 性色avwww在线观看| 亚洲av中文av极速乱 | 久久精品综合一区二区三区| 国产精品98久久久久久宅男小说| 少妇人妻精品综合一区二区 | 亚洲中文字幕日韩| 久久久国产成人精品二区| 国产高清视频在线观看网站| 成人高潮视频无遮挡免费网站| 国产淫片久久久久久久久| 18禁黄网站禁片免费观看直播| 成人美女网站在线观看视频| 日日干狠狠操夜夜爽| 成人av一区二区三区在线看| 免费黄网站久久成人精品| 国产精品日韩av在线免费观看| 国产精品1区2区在线观看.| x7x7x7水蜜桃| 亚洲一级一片aⅴ在线观看| 特级一级黄色大片| 亚洲国产色片| 国产伦精品一区二区三区视频9| 亚洲av中文字字幕乱码综合| 亚洲精品久久国产高清桃花| 国产午夜精品久久久久久一区二区三区 | 亚洲欧美精品综合久久99| 少妇的逼好多水| 婷婷精品国产亚洲av| 免费在线观看成人毛片| 99热只有精品国产| 人妻制服诱惑在线中文字幕| 18禁黄网站禁片午夜丰满| 一进一出好大好爽视频| 国产精品99久久久久久久久| 国产欧美日韩一区二区精品| 日本 av在线| 91在线观看av| 男人和女人高潮做爰伦理| 午夜影院日韩av| 亚洲美女搞黄在线观看 | 国内久久婷婷六月综合欲色啪| 黄色女人牲交| 男女那种视频在线观看| 亚州av有码| 国产在线男女| 欧美性感艳星| 老熟妇乱子伦视频在线观看| 中亚洲国语对白在线视频| 国产老妇女一区| 久久国内精品自在自线图片| 1000部很黄的大片| 午夜激情福利司机影院| 亚洲成人精品中文字幕电影| 免费黄网站久久成人精品| 亚洲自偷自拍三级| 国产精品人妻久久久久久| 国产黄色小视频在线观看| 日本成人三级电影网站| 中文字幕精品亚洲无线码一区| 精品久久久久久久久亚洲 | 国产免费av片在线观看野外av| 人妻丰满熟妇av一区二区三区| 欧美性猛交╳xxx乱大交人| 欧美激情久久久久久爽电影| 男人的好看免费观看在线视频| 亚洲专区中文字幕在线| 精品午夜福利视频在线观看一区| 日本 av在线| 国产探花在线观看一区二区| 一级毛片久久久久久久久女| 在线a可以看的网站| 日韩 亚洲 欧美在线| 婷婷色综合大香蕉|