儲(chǔ)建華,錢榮榮,王傳齊
1) 蘇州工業(yè)職業(yè)技術(shù)學(xué)院機(jī)電工程系,蘇州 215104; 2) 中國科學(xué)院合肥物質(zhì)科學(xué)研究院,合肥 230031
【電子與信息科學(xué) / Electronics and Information Science】
波導(dǎo)濾波器的等效電路模型及實(shí)驗(yàn)研究
儲(chǔ)建華1,2,錢榮榮2,王傳齊2
1) 蘇州工業(yè)職業(yè)技術(shù)學(xué)院機(jī)電工程系,蘇州 215104; 2) 中國科學(xué)院合肥物質(zhì)科學(xué)研究院,合肥 230031
建立同軸腔加載波導(dǎo)濾波器系統(tǒng)的等效電路模型,在波導(dǎo)短路端面與同軸探針弱耦合狀態(tài)下,通過求解回路方程組得到3個(gè)諧振頻率點(diǎn),分別對(duì)應(yīng)π/2模、0模和π模,頻率間隔決定于耦合系數(shù).強(qiáng)耦合狀態(tài)下,該模型僅存在1個(gè)諧振頻率點(diǎn),波導(dǎo)只起傳輸信號(hào)及濾波作用.通過實(shí)驗(yàn)測(cè)量波導(dǎo)濾波器系統(tǒng)正向傳輸系數(shù)曲線,在弱耦合狀態(tài)下獲得3個(gè)諧振頻率點(diǎn),強(qiáng)耦合狀態(tài)下僅存在1個(gè)諧振頻率點(diǎn),結(jié)果與理論分析一致.
微波技術(shù);波導(dǎo);同軸腔;波導(dǎo)濾波器;等效電路模型;高次模;耦合系數(shù)
隨著微波器件向高頻率和高功率方向發(fā)展,對(duì)圓柱形同軸腔高次模式的研究日漸增多[1-5].高次模式適合對(duì)功率要求強(qiáng)于對(duì)信號(hào)頻寬要求的情形.采用高次模式有利于增大腔體橫截面面積,減輕陰極負(fù)荷,降低管子的工作電壓,獲得高脈沖功率和大平均輸出功率.同時(shí),在高頻段,工作模式與鄰近的非工作模式之間有一定的頻率間隔,這有利于信號(hào)輸出和濾波.將同軸腔高次模式用于真空中電子束流參數(shù)測(cè)量已引起學(xué)者的廣泛關(guān)注,用該方法測(cè)量的分辨率可達(dá)到亞微米量級(jí)[6-10].無論高功率微波信號(hào)的產(chǎn)生還是真空中電子束流參數(shù)測(cè)量,都需要解決同軸腔基模信號(hào)濾除以及高次模信號(hào)耦合輸出這兩個(gè)主要問題[11-12].本研究以用于真空中電子束流測(cè)量的同軸腔加載波導(dǎo)濾波器為研究對(duì)象,利用波導(dǎo)濾波器濾除同軸腔基模信號(hào)和耦合輸出高次模信號(hào),建立波導(dǎo)濾波器等效電路模型,研究強(qiáng)耦合與弱耦合狀態(tài)下的特性,給出系統(tǒng)試驗(yàn)結(jié)果,對(duì)于高次模信號(hào)的利用及耦合輸出系統(tǒng)的設(shè)計(jì)具有一定的借鑒作用.
同軸腔高次模式用于真空中電子束流參數(shù)測(cè)量的主要原理是,圓柱形同軸腔中電子束流主要激勵(lì)起基模TM010信號(hào)及高次模TM110信號(hào).其中,高次模TM110信號(hào)與電子束流相對(duì)腔軸偏移量成正比,根據(jù)TM110模信號(hào)強(qiáng)度可測(cè)量束流位置.因此,耦合輸出TM110高次模信號(hào)并且抑制TM010基模信號(hào)輸出成為關(guān)鍵難點(diǎn).
利用波導(dǎo)濾波器可實(shí)現(xiàn)同軸腔TM010基模信號(hào)的濾除和TM110高次模信號(hào)的耦合輸出.根據(jù)電磁場(chǎng)分布特性,將圓柱形同軸腔中TM110高次模與波導(dǎo)中TE10模耦合,選取合適的波導(dǎo)尺寸,當(dāng)波導(dǎo)寬度a與TE10模波長(zhǎng)λ滿足a<λ<2a時(shí),僅TE10模式傳播,其他模式都處于截止?fàn)顟B(tài).波導(dǎo)TE10模電場(chǎng)只有單向分量,在波導(dǎo)中獲得單方向極化,因此可在波導(dǎo)中插入同軸探針耦合輸出信號(hào).此外,根據(jù)電磁場(chǎng)分布特性,圓柱形同軸腔中TM010基模與波導(dǎo)中TE10模不能有效耦合,并且選擇TM010基模信號(hào)波長(zhǎng)大于2a,則進(jìn)一步抑制TM010基模與波導(dǎo)模式的耦合,因此波導(dǎo)濾波器可有效濾除TM010基模信號(hào).
本研究研制的同軸腔加載波導(dǎo)濾波器系統(tǒng)如圖1.其中,圓柱形同軸腔長(zhǎng)度為20mm,內(nèi)直徑為64mm,外直徑為74mm,矩形波導(dǎo)橫截面尺寸為28.5mm×12.6mm,對(duì)稱分布4個(gè)矩形波導(dǎo)與同軸腔耦合槽焊接在一起.與耦合槽構(gòu)成完整波導(dǎo)濾波耦合輸出結(jié)構(gòu).
圖1 同軸腔加載波導(dǎo)濾波器系統(tǒng)Fig.1 Coaxial cavity loaded with waveguide filter
利用三維電磁場(chǎng)軟件HFSS(highfrequencystructuresimulator)仿真同軸腔加載波導(dǎo)濾波器系統(tǒng)電磁場(chǎng)分布,結(jié)果如圖2.由TM010模的電場(chǎng)強(qiáng)度分布可見,其電場(chǎng)完全限制在同軸腔內(nèi)部,波導(dǎo)中并無耦合輸出.TM110模的電場(chǎng)強(qiáng)度分布狀況反映了波導(dǎo)有效耦合輸出TM110模信號(hào),波導(dǎo)中心處電場(chǎng)最強(qiáng),可在波導(dǎo)中心插入同軸探針耦合輸出信號(hào).
圖2中縱向極化的TM110模通過橫向?qū)Σ▽?dǎo)耦合輸出;與之相反,橫向極化的TM110模通過縱向?qū)Σ▽?dǎo)耦合輸出.其中,1,2,3,4,5表示端口.在忽略相鄰波導(dǎo)耦合的情況下,端口1和2對(duì)應(yīng)的橫向?qū)Σ▽?dǎo)與同軸腔耦合情況可用2端口網(wǎng)絡(luò)來描述,端口3和4對(duì)應(yīng)的縱向波導(dǎo)與同軸腔耦合等效為另一個(gè)2端口網(wǎng)絡(luò).
圖2 TM010和TM110電場(chǎng)強(qiáng)度分布Fig.2 Electric field distributions of TM010 and TM110
波導(dǎo)與同軸腔的耦合可用等效電路模型來表示.先考慮單個(gè)波導(dǎo)與圓柱形同軸腔的電耦合情況,等效電路如圖3,同軸腔用并聯(lián)等效諧振電路表示,等效電感、電容和電導(dǎo)分別是L1、C1和G1,TM110模本征頻率為f1,波導(dǎo)的特征導(dǎo)納為Y0,SS′為失諧短路面,同軸腔與波導(dǎo)之間耦合可等效成從同軸腔到波導(dǎo)的變比為n∶1的理想變壓器,則波導(dǎo)的特征導(dǎo)納Y0變換到同軸腔內(nèi)時(shí)有Y0′=Y0/n2. 波導(dǎo)對(duì)同軸腔影響相當(dāng)于在同軸腔并聯(lián)等效電路中增加損耗電導(dǎo)Y0′,則同軸腔有載品質(zhì)因數(shù)QL[13]為
QL=2πf1C1/(G1+y0′)
(1)
波導(dǎo)與同軸腔間的耦合系數(shù)β為
β=Y0/(n2G1)
(2)
圖3 單波導(dǎo)與同軸腔耦合等效電路Fig.3 Equivalent circuit of single waveguide and coaxial cavity coupling system
在圖3中距離失諧短路面SS′為1/4波長(zhǎng)處放置端面短路板,則此時(shí)波導(dǎo)被截成矩形波導(dǎo)腔,波導(dǎo)腔的主模為TE101,這時(shí)的波導(dǎo)不能僅看作單純的傳輸系統(tǒng),耦合系統(tǒng)工作于雙腔耦合狀態(tài).耦合系統(tǒng)等效電路如圖4,端面短路板處對(duì)應(yīng)的并聯(lián)諧振參考面用等效并聯(lián)諧振回路表示,等效電感、電容和電導(dǎo)分別是L2、C2和G2. 同軸腔的等效電感、電容和電導(dǎo)分別是L1、C1和G1,同軸腔與波導(dǎo)的耦合等效為n∶1的理想變壓器.同軸腔TM110模和波導(dǎo)腔TE101模固有品質(zhì)因數(shù)分別為Q1和Q2,本征頻率分別為f1和f2. 由1/4 波長(zhǎng)變換器特性可知,端面短路板處并聯(lián)諧振參考面的總導(dǎo)納Y2經(jīng)變換到SS′參考面的總導(dǎo)納Y2′=Y02/Y2. 其中,Y2′經(jīng)n∶1變壓器變換到同軸腔內(nèi)的導(dǎo)納Y2″=Y2′/n2=Y02/(n2Y2). 從SS′參考面向同軸腔看進(jìn)去的總輸入導(dǎo)納為
(3)
其中,T=1+jQ2(f/f2-f2/f).當(dāng)耦合系統(tǒng)并聯(lián)諧振時(shí),式(3)的歸一化導(dǎo)納虛部為0,可以得到2個(gè)并聯(lián)諧振頻率解,分別對(duì)應(yīng)0模和π模頻率,兩模式電場(chǎng)在同軸腔結(jié)合面的兩個(gè)方向上分別相同和相反.
但是,當(dāng)波導(dǎo)上的同軸探針接匹配負(fù)載強(qiáng)耦合時(shí),矩形波導(dǎo)腔失諧,此時(shí)端面短路的矩形波導(dǎo)只起傳輸信號(hào)和濾波作用,耦合輸出信號(hào)頻率為圓柱形同軸腔TM110模的本征頻率f1.
圖4 端面短路波導(dǎo)與同軸腔耦合等效電路Fig.4 Equivalent circuit of the system coupled with shorted end-face waveguide and coaxial cavity coupling system
以上考慮的是圓柱形同軸腔與一個(gè)波導(dǎo)耦合的情形,而從圖2中的TM110模電場(chǎng)強(qiáng)度分布圖可見,端口1和2對(duì)應(yīng)的2個(gè)波導(dǎo)都與同軸腔耦合.由以上分析可知,當(dāng)波導(dǎo)上的同軸探針接匹配負(fù)載強(qiáng)耦合時(shí),波導(dǎo)只能看作為一個(gè)傳輸結(jié)構(gòu);當(dāng)波導(dǎo)上的同軸探針耦合度非常低時(shí),端面短路的矩型波導(dǎo)可看作為矩形波導(dǎo)腔,則弱耦合下的模式耦合關(guān)系可利用多腔等效諧振回路來分析.為便于分析,用等效串聯(lián)諧振電路來表示耦合關(guān)系,當(dāng)兩個(gè)對(duì)稱波導(dǎo)的等效參數(shù)相同時(shí),建立的等效電路如圖5.
圖5 多腔耦合系統(tǒng)等效電路Fig.5 Equivalent circuit of multi-cavity coupling system
圖5中k為腔間的耦合系數(shù),L1、C1和R1分別表示圓柱形同軸腔等效電感、電容和電阻,L2、C2和R2分別表示矩形波導(dǎo)腔等效電感、電容和電阻,f1和f2分別表示圓柱形同軸腔TM110模和波導(dǎo)腔TE101模本征頻率;Q1和Q2分別表示它們的固有品質(zhì)因數(shù).根據(jù)基爾霍夫定律求解諧振回路可得如下方程[14-15]
(4)
求解方程(4)可得到諧振頻率f的3個(gè)解,分別對(duì)應(yīng)π/2模頻率為f1, 以及0模和π模的諧振頻率fa和fb.
(5)
(6)
其中,m=(4-2k2)f12f22.fa、fb與f1的頻率間隔取決于耦合系數(shù)k的大?。?/p>
圖6 弱耦合系統(tǒng)正向傳輸系數(shù)S21測(cè)量曲線Fig.6 Forward transmission coefficient S21 frequency curve for weak coupling system
使用矢量網(wǎng)絡(luò)分析器對(duì)同軸腔加載波導(dǎo)濾波器系統(tǒng)進(jìn)行測(cè)試,在波導(dǎo)中心處插入同軸探針耦合輸出信號(hào),當(dāng)同軸探針插入深度為1mm時(shí),圖2橫向?qū)Σ▽?dǎo)對(duì)應(yīng)的端口1和2間的正向傳輸系數(shù)S21曲線如圖6,可看出3個(gè)諧振頻率點(diǎn),中間諧振頻率5.711GHz對(duì)應(yīng)同軸腔TM110模本征頻率,兩邊分別為0模和π模對(duì)應(yīng)的諧振頻率點(diǎn),3個(gè)諧振點(diǎn)的頻率間隔隨探針插入深度改變而變化,即隨耦合系數(shù)大小而變化.
當(dāng)同軸探針插入較深5mm時(shí),系統(tǒng)處于強(qiáng)耦合狀態(tài)時(shí),多腔諧振條件破壞,只存在1個(gè)固有諧振頻率點(diǎn).此時(shí)1號(hào)和2號(hào)波導(dǎo)端口間的正向傳輸系數(shù)S21曲線如圖7.可看出此時(shí)只剩下5.711 GHz這一個(gè)諧振頻率點(diǎn),說明矩形波導(dǎo)腔失諧,波導(dǎo)起濾波及耦合輸出信號(hào)作用.
圖7 強(qiáng)耦合系統(tǒng)正向傳輸系數(shù)S21測(cè)量曲線Fig.7 Forward transmission coefficient S21 frequency curve for strong coupling system
以同軸腔加載波導(dǎo)濾波器系統(tǒng)為研究對(duì)象,分別建立單個(gè)波導(dǎo)以及雙波導(dǎo)與同軸腔耦合等效電路模型,在波導(dǎo)端面短路,且同軸探針弱耦合狀態(tài)下,通過求解回路方程組,得到3個(gè)諧振頻率點(diǎn),分別對(duì)應(yīng)π/2模、0模以及π模.同軸探針強(qiáng)耦合狀態(tài)下,僅存在1個(gè)諧振頻率點(diǎn),波導(dǎo)只起傳輸信號(hào)及濾波作用.實(shí)驗(yàn)測(cè)量得到的S21參數(shù)與理論分析一致.研究結(jié)果對(duì)于同軸腔高次模耦合輸出系統(tǒng)的設(shè)計(jì)具有一定的借鑒意義.
/ References:
[1] Chen F C,Qiu J M,Wong S W,et al.Dual-band coaxial cavity bandpass filter with helical feeding structure and mixed coupling[J].IEEE Microwave and Wireless Components Letters,2015,25(1):31-33.
[2] Dong Yuhe,Liu Tianda,Cao Jing,et al.Bandwidth simulation of coaxial cavity coupled with waveguide filter by transmission method[C]// The 15th IEEE Inter-national Vacuum Electronics Conference.Monterey (USA):IEEE Press,2014:351-352.
[3] Xie Xingjuan,Huang Chuanlu,Dong Yuhe,et al.Output circuit design for double gap coaxial cavity loaded with waveguide filter[J].High Power Laser and Particle Beams,2012,24(8):1925-1930.(in Chinese) 謝興娟,黃傳祿,董玉和,等.雙間隙同軸腔加載波導(dǎo)濾波器輸出回路設(shè)計(jì)[J].強(qiáng)激光與粒子束,2012,24(8):1925-1930.
[4] Dong Yuhe,Liu Yongxia,Zhu Min.Klystron output circuit of high order transverse magnetic mode in coaxial cavity loaded with waveguide filter[J].Journal of Electronics & Information Technology,2013,35(5):1267-1270.(in Chinese) 董玉和,劉永霞,朱 敏.速調(diào)管輸出腔高階橫磁模式加載波導(dǎo)濾波器輸出回路[J].電子與信息學(xué)報(bào),2013,35(5):1267-1270.
[5] Zhang Rui,Wang Yong.Study on the two-port output system for an L-band 10 MW coaxial cavity multi-beam klystron[J].Journal of Electronics & Information Technology,2012,34(9):2282-2286.(in Chinese) 張 瑞,王 勇.L波段10 MW同軸腔多注速調(diào)管雙端口輸出系統(tǒng)的研究[J].電子與信息學(xué)報(bào),2012,34(9):2282-2286.
[6] Zhao Lei,Gao Xingshun,Hu Xiaofang.Beam position and phase measurement system for the proton accelerator in ADS[J].IEEE Transactions on Nuclear Science,2014,61(1):538-545.
[7] Shin Seunghwan,Wendt M.Design studies for a high resolution cold cavity beam position monitor[J].IEEE Transactions on Nuclear Science,2010,57(4):2159-2166.
[8] Slater M,Adolphsen C,Arnold R,et al.Cavity BPM system tests for the ILC energy spectrometer[J].Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2008,592(3):201-217.
[9] Walston S,Boogert S,Chung C,et al.Performance of a high resolution cavity beam position monitor system[J].Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2007,578(1):1-22.
[10] Su Jiahang,Du Yingchao,Hua Jianfei,et al.Design and cold test of a rectangular cavity beam position monitor[J].Chinese Physics C,2013,37(1):107-112.
[11] Li Jisan.Wang Yong,Liu Wenxin.Resonant frequency computation of waveguide-loaded cavity with boundary element method[J].High Power Laser and Particle Beams,2012,24(1):3-4.(in Chinese) 李紀(jì)三,王 勇,劉文鑫.計(jì)算波導(dǎo)加載諧振腔諧振頻率的新方法[J].強(qiáng)激光與粒子束,2012,24(1):3-4.
[12] Han Huipeng,Wang Yong,Zhang Rui.Parasitic mode-suppression in TM310-mode coaxial resonator of multiple-beam klystron[J].Chinese Journal of Vacuum Science and Technology,2011,31(4):413-418.(in Chinese) 韓慧鵬,王 勇,張 瑞.多注速調(diào)管TM310模同軸諧振腔雜模抑制的研究[J].真空科學(xué)與技術(shù)學(xué)報(bào),2011,31(4):413-418.
[13] Zhang Shichang.Analysis of equivalent circuit for radial coupling multi-cavity resonators[J].Journal of Electronics & Information Technology,2004,26(4):640-644.(in Chinese) 張世昌.多腔徑向耦合輸出系統(tǒng)的等效電路分析[J].電子與信息學(xué)報(bào),2004,26(4):640-644.
[14] Shi Jiaru,Zheng Shuxin,Chen Huaibi.Calculating field distribution of a linear accelerator using equivalent circuit model[J].High Energy Physics and Nuclear Physics,2006,30(7):699-703.(in Chinese) 施嘉儒,鄭曙昕,陳懷璧.耦合腔鏈等效電路模型計(jì)算加速管場(chǎng)分布[J].高能物理與核物理,2006,30(7):699-703.
[15] Xu Jiaming,Chen Lin,Zang Xiaofei,et al.Triple-channel terahertz filter based on mode coupling of cavities resonance system[J].Applied Physics Letters,2013,103(16):1116-1120.
【中文責(zé)編:英 子;英文責(zé)編:雨 辰】
Equivalent circuit model of waveguide filter and experimental research
Chu Jianhua1,2?, Qian Rongrong2, and Wang Chuanqi2
1) Depcotment of Mechanical and Electrical Engineering, Suzhou Institute of Industrial Technology, Suzhou 215104, P.R.China 2) Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R.China
We establish an equivalent circuit model to analyze the coaxial cavity coupled with waveguide filter. By solving the circuit equations, we derive three resonant frequencies of π/2 mode, zero mode and π mode in the case of weak coupling. The resonant frequency internals for three modes depend on the coupling coefficient. There is only one resonant frequency in the case of strong coupling. We test the forward transmission coefficient of waveguide filter system. We obtain three resonant frequencies for weak coupling case and one resonant frequency for strong coupling case in experimental measurements. The results agree well with theoretical predictions.
microwave technique; waveguide; coaxial cavity; waveguide filter; equivalent circuit model; high order mode; coupling coefficient
:Chu Jianhua,Qian Rongrong,Wang Chuanqi.Equivalent circuit model of waveguide filter and experimental research[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(2): 183-187.(in Chinese)
TN 61;O 441
A
10.3724/SP.J.1249.2015.02183
國家自然科學(xué)基金資助項(xiàng)目(61005064);蘇州市應(yīng)用基礎(chǔ)研究計(jì)劃資助項(xiàng)目(SYG201438)
儲(chǔ)建華(1982—),男(漢族),安徽省安慶市人,蘇州工業(yè)職業(yè)技術(shù)學(xué)院副研究員、博士.E-mail: hamigua878@163.com
Received:2014-06-28;Revised:2015-01-23;Accepted:2015-03-02
Foundation:National Natural Science Foundation of China (61005064); Applied Basic Research Programs of Suzhou (SYG201438)
? Corresponding author:Associate professor Chu Jianhua. E-mail: hamigua878@163.com
引 文:儲(chǔ)建華,錢榮榮,王傳齊.波導(dǎo)濾波器的等效電路模型及實(shí)驗(yàn)研究[J]. 深圳大學(xué)學(xué)報(bào)理工版,2015,32(2):183-187.