朱 佩, 張繼光, 薛 琳, 季學軍, 王傳義, 程 森,段蘇珍, 任 夏, 張忠鋒*
(1 中國農業(yè)科學院煙草研究所,農業(yè)部煙草生物學與加工重點實驗室,青島 266101;2 中國農業(yè)科學院研究生院,北京 100081; 3 安徽皖南煙葉有限責任公司,安徽宣城 242000;4上海煙草集團有限責任公司,上海 200082)
不同質地土壤上烤煙氮素積累、分配及利用率的研究
朱 佩1,2, 張繼光1, 薛 琳3, 季學軍3, 王傳義1, 程 森4,段蘇珍1,2, 任 夏1,2, 張忠鋒1*
(1 中國農業(yè)科學院煙草研究所,農業(yè)部煙草生物學與加工重點實驗室,青島 266101;2 中國農業(yè)科學院研究生院,北京 100081; 3 安徽皖南煙葉有限責任公司,安徽宣城 242000;4上海煙草集團有限責任公司,上海 200082)
【目的】土壤質地能概括反映土壤內在的肥力特征,對土壤養(yǎng)分供應具有調控作用,是影響農田中土壤氮素供應和氮肥利用的重要因素。本試驗通過在皖南煙區(qū)3種質地(壤土、黏壤、砂壤)土壤上施用等量氮肥來研究其對烤煙不同生育期的氮素吸收、積累及利用特征的影響,旨在為煙田土壤改良及烤煙合理施肥提供理論依據?!痉椒ā吭谕钅蠠焻^(qū)現代農業(yè)科技園的典型壤土、黏壤和砂壤土上分別建立田間試驗,采用15N田間微區(qū)試驗和室內分析相結合的研究方法,在烤煙的團棵期(移栽后38 d)、現蕾期(移栽后53 d)、平頂期(移栽后64d)和成熟期(移栽后103 d),采集長勢一致的煙株樣品,測定煙株各部位的生物量,并采用凱氏定氮法檢測其全氮含量,采用ZHT-O2型同位素質譜儀測定其15N豐度。【結果】皖南煙區(qū)壤土和黏壤土上烤煙總氮和肥料氮積累均隨生育期呈單峰變化,在烤煙平頂期達最大,總氮積累量分別為4.25 g/plant和3.96 g/plant,肥料氮積累量分別為2.34 g/plant和2.54 g/plant,而砂壤土上烤煙到成熟期其總氮和肥料氮的積累量達到最大,分別是5.64 g/plant和2.73 g/plant,均顯著高于同時期的壤土和黏壤;壤土、黏壤和砂壤土上烤煙均以葉部肥料氮占總氮比例及氮素分配率較高,莖部次之,根部最低;不同質地土壤上烤煙氮肥利用率與肥料氮的積累動態(tài)具有一致的變化趨勢,其中壤土和黏壤在平頂期最大,分別為34.5%和40.7%,之后壤土利用率緩慢下降,黏壤下降幅度較大,而砂壤土上烤煙氮肥利用率在生育期內呈上升趨勢,至成熟期最大,為43.7%?!窘Y論】不同質地土壤上煙株對氮素的吸收利用順序為砂壤>壤土>黏壤,黏壤土在烤煙生育期內供氮能力較弱,應合理調控土壤氮的礦化及增加肥料氮的供應;砂壤土氮肥利用率較高,應嚴格控制氮肥的施用量。
土壤質地; 肥料氮; 土壤氮;15N示蹤; 烤煙; 氮肥利用率
1.1 試驗材料
該試驗于2012年在安徽省宣城市宣州區(qū)黃渡鄉(xiāng)現代農業(yè)科技示范園內(30°40′49″N,118°46′17″E)進行。該地區(qū)屬典型亞熱帶季風氣候區(qū),光、溫、水熱條件優(yōu)越,年均日照時數為2072.5 h,年平均溫度15.8℃,無霜期為228 d,年平均降水量1324.8 mm,該地區(qū)的土壤主要是河流沖積母質形成的潴育型水稻土。本試驗采用的3種不同質地(壤土、黏壤和砂壤土)土壤的基本理化性狀見表1。
表1 試驗田不同質地土壤的基本理化性質
1.2 試驗設計
1.3 樣品采集與測定
全氮采用凱氏法(K-05 自動定氮儀)測定,15N豐度采用ZHT-O2 型質譜儀測定。
1.4 計算方法
植株吸收的氮素來源于肥料和土壤的量及比例的計算參照陳子元的方法[26]:
WN=W1×C1;
Ndff=WN×%Ndff;
Ndfs=WN×(1-%Ndff);
式中:WN—烤煙樣品總氮積累量;W1—烤煙樣品干重;C1—烤煙樣品含氮量;15N1—烤煙樣品15N原子百分超;15N2—肥料15N原子百分超;%Ndff—肥料氮占總氮百分數;Ndff—烤煙肥料氮積累量;Ndfs—土壤氮積累量;RN—當季氮肥利用率;W0—肥料的重量;C0—肥料含氮百分數。
1.5 數據處理
試驗數據采用Excel 2007和SAS 9.2統(tǒng)計分析軟件進行處理。
2.1 不同質地土壤上烤煙氮素積累動態(tài)
由不同質地土壤上烤煙總氮積累動態(tài)(圖1A)可知,壤土和黏壤土上烤煙氮素積累動態(tài)基本一致,均呈單峰變化,即在移栽后64 d的平頂期氮素積累達到頂峰,總氮積累量分別為4.25 g/plant和3.96 g/plant,之后緩慢下降,至移栽后103 d的成熟期降為3.92 g/plant和2.79 g/plant,砂壤土上,烤煙氮素積累則隨移栽后天數的增加呈線性增加趨勢,至成熟期氮素積累量達最大為5.64 g/plant。可見,烤煙在砂壤土上較壤土和黏壤具有更強的吸收利用氮素的能力。多重比較結果表明,在烤煙的前3個取樣時期,3種質地土壤上烤煙氮素積累量沒有明顯差異,在成熟期,砂壤土上烤煙氮素積累量顯著高于壤土和黏壤(P<0.05),但壤土和黏壤土上烤煙氮素積累量差異不顯著。
壤土和黏壤土上烤煙對肥料氮的積累量與其總氮積累變化一致(圖1B),同樣在平頂期最大,分別為2.34 g/plant和2.54 g/plant,之后迅速下降。砂壤土,烤煙從平頂期到成熟期仍有部分肥料氮的積累,但積累速率較前期明顯下降,肥料氮積累量最大值出現在成熟期,為2.73 g/plant。在移栽后38 d的團棵及移栽后53 d的現蕾期,烤煙對土壤肥料氮的積累量順序為黏壤>壤土>砂壤,在成熟期,則表現為砂壤>壤土>黏壤,說明平頂期前后是烤煙對不同質地土壤肥料氮積累量變化的關鍵時期。
壤土、黏壤和砂壤土上烤煙對土壤氮的積累量在生育期內呈逐漸增加的趨勢(圖1C),在成熟期時達到最大值,分別為2.10 g/plant、 1.43 g/plant和2.90 g/plant。其中黏壤土上烤煙土壤氮積累量在整個生育期始終低于壤土和砂壤,說明黏壤土的供氮能力相對較弱,煙株對其吸收利用最少。在平頂期之前,壤土和砂壤土上烤煙對土壤氮的吸收積累量基本一致,而到成熟期,砂壤土上烤煙土壤氮的積累顯著高于壤土和黏壤(P<0.05)。
圖1 不同質地烤煙和土壤氮素的積累動態(tài)Fig.1 N cumulative dynamics of flue-cured tobacco and soil under different soil texture
2.2 不同質地土壤上烤煙器官的氮素積累量
從表2可以看出,在烤煙平頂期之前,不同質地土壤上烤煙根部氮素積累量之間差異不顯著(P>0.05),平頂期之后,烤煙根部氮素積累以壤土和砂壤增加較多,顯著高于黏壤(P<0.05),至成熟期,壤土、黏壤和砂壤土上烤煙根部氮素積累量分別為0.82 g/plant、 0.40 g/plant和0.70 g/plant。不同質地土壤上烤煙莖部氮素積累量隨生育期的推進呈增加趨勢。團棵期,黏壤土上烤煙莖部氮素積累量顯著高于壤土和砂壤(P<0.05);平頂期至成熟期,砂壤土上烤煙莖部氮素吸收仍在增加,在成熟期達最大,為1.62 g/plant,黏壤土上烤煙莖部對氮素的吸收基本停止,二者積累量差異顯著(P<0.05)。從團棵期到成熟期,壤土和黏壤土上烤煙葉部氮素積累變化一致,其烤煙葉部氮素積累量在平頂期達到最大,分別為2.82 g/plant和2.72 g/plant,隨后迅速降低。砂壤土上烤煙葉部氮素積累量在現蕾前低于壤土和黏壤,之后砂壤土上烤煙葉部氮素積累逐漸增加,至成熟期達最大值,為3.32 g/plant。
2.3 不同質地土壤上烤煙氮素分配率
從不同質地土壤上煙株吸收氮素在各部位的分配率(表3)可以看出,烤煙吸收的氮素主要集中在葉部,其次是莖部,根分配得最少。在平頂期,烤煙根、莖、上部葉和中部葉氮素分配率在3種質地土壤之間均無顯著差異,但下部葉氮素分配率以砂壤土顯著高于壤土(P<0.05)。在成熟期,烤煙莖部和3個葉位的氮素分配率在3種質地土壤間差異不顯著,但根部氮素分配率以壤土顯著高于黏壤和砂壤??傊?,從平頂期到成熟期,各土壤上烤煙吸收的氮素更多的向根和莖部轉移,且壤土烤煙根部和砂壤土烤煙葉部的氮素分配率相對較高。
表2 烤煙各器官在不同生育期的氮素積累量(g/plant)
注(Note): 同列數據后不同字母表示處理間差異達5%顯著水平 Values followed by different letters in a column are significant among treatments at the 5% level.
表3 不同質地土壤烤煙氮素分配率(%)
注(Note): 同列數據后不同字母表示處理間差異達5%顯著水平 Values followed by different letters in a column are significant among treatments at the 5% level.
2.4 不同質地土壤下肥料氮在植株中的分布
圖2表明,在團棵期,壤土、黏壤和砂壤土上烤煙均以葉部肥料氮占總氮比例較高,分別達到55.5%、68.6%和50.6%,莖部次之,根部最低,分別為49.0%、60.1%和42.3%。根、莖和葉部肥料氮占總氮比例均以黏壤土最高,壤土次之,砂壤最少,說明黏壤土上施用肥料氮對煙株氮素積累貢獻較大,壤土次之,砂壤最小。且黏壤土上烤煙莖部和葉部肥料氮占總氮比例顯著高于壤土和砂壤(P<0.05)。在現蕾期,3種質地土壤上烤煙各部位肥料氮的分布規(guī)律與團棵期基本一致(圖2)。
圖2 肥料氮在煙株器官的分配狀況Fig.2 Distribution of fertilizer N in various flue-cured tobacco organs[注(Note): 方柱上不同字母表示處理間差異顯著(P<0.05) Different letters above the bars mean significantly different among treatments(P<0.05).]
圖3 不同質地土壤上烤煙吸收肥料氮占總氮的比例Fig.3 Ratios of fertilizer N to total N of flue-cured tobacco in different textured soils[注(Note): 方柱上不同字母表示處理間差異顯著(P<0.05) Different letters above the bars mean significantly different among treatments(P<0.05).]
2.5 不同質地土壤上烤煙氮肥利用率
圖4 不同質地土壤烤煙氮肥利用率 Fig.4 Nitrogen use efficiency of flue-cured tobacco in different textured soils
從圖4可以看出,黏壤土和壤土上烤煙氮肥利用率變化趨勢相似。即從團棵到平頂期,氮肥利用率均平穩(wěn)增加,平頂期時達最大,分別為40.7%和34.5%,且黏壤上烤煙氮肥利用率一直大于壤土,之后黏壤上的氮肥利用率下降幅度較大,至成熟期,黏壤土和壤土上烤煙氮肥利用率分別降為21.7%和29.2%。砂壤土上烤煙氮肥利用率在生育期內一直呈上升趨勢,團棵期時,其烤煙氮肥利用率最低,僅為5.3%,至成熟期最高,為43.7%,與黏壤土烤煙氮肥利用率的差異達到顯著水平(P<0.05)??梢?,土壤質地不同,導致烤煙對肥料氮的吸收利用在生育期間存在明顯的差異,其中砂壤土烤煙氮肥利用率前期較低,隨生育期逐漸增加,而黏壤及壤土上烤煙氮肥利用率則是在生育期前期增加后期降低。
土壤質地是影響烤煙礦質營養(yǎng)吸收與積累的重要因素[27]。薊紅霞等[28]認為土壤質地對煙株氮素積累量有顯著影響,具體表現為粉(砂)質壤土>砂質壤土>壤土,羅新寧等[29]對南疆灌淤土的研究表明,相同處理條件下砂壤土棉株氮的積累量高于重壤土。本研究中在成熟期砂壤土上烤煙氮素積累量最大,顯著高于壤土和黏壤,這與上述研究結果一致。此外,烤煙對肥料氮的積累動態(tài)略有差異,其中在團棵及現蕾期為黏壤>壤土>砂壤,平頂期之后則表現為砂壤>壤土>黏壤。這與皖南的氣候條件有關,在烤煙生育前期,降水較少,黏壤及壤土具有較好的保水性能,因而具有較好的水肥供應能力。在成熟期,適逢雨季高溫高濕且降水較多,黏壤及壤土上反而易積水,造成烤煙根系活力下降[30],或影響根系的有氧呼吸造成根系早衰[31],導致烤煙對氮素吸收的減少,因而氮素積累量降低。
烤煙對土壤氮的積累量在生育期內呈逐漸增加趨勢,且黏壤土上烤煙土壤氮積累量始終低于壤土和砂壤土,這在一定程度上說明黏壤土有機氮礦化量少,土壤供氮能力較弱。由于土壤中的氮大部分是有機氮,直接決定土壤供氮能力,土壤質地對氮素礦化的影響主要通過控制好氧菌活動,土壤粘粒與土壤有機質的結合等對土壤有機質提供保護,來增加或減少氮素的礦化[32]。有研究表明砂壤土中微生物生物量的C/N高于壤土和黏土,且與單位微生物氮生物量的礦化率呈正相關[33],因此砂壤土的氮礦化及供應能力高于壤土和黏壤,以黏壤土氮礦化最低,其供氮能力也相對最弱。
在皖南煙田不同質地土壤上,烤煙對氮素的吸收利用順序為砂壤>壤土>黏壤,在烤煙成熟期,煙株總氮積累量分別為5.64、 3.92和2.79 g/plant,黏壤的供氮能力較弱,應合理調控土壤氮的礦化及增加肥料氮的供應。烤煙氮肥利用率以砂壤條件下的當季利用率最高為43.7%,壤土次之為29.2%,黏壤土上最低為21.7%,僅為砂壤土的1/2。由于砂壤的氮肥利用率較高,因此應嚴格控制氮肥的施用量。
[1] 楊宏敏, 陸引罡, 魏成照, 等. 應用15N示蹤研究烤煙對氮的吸收及分布[J]. 貴州農業(yè)科學, 1991,(5): 29-33. Yang H M, Lu Y G, Wei C Zetal. Absorption and distribution of15N rape seed nitrogen by flue-cured tobacco[J]. Guizhou Agricultural Sciences, 1991, (5): 29-33.
[2] 韓錦峰, 郭培國, 黃元炯, 等. 應用15N示蹤法探討煙草對氮素利用的研究[J]. 鄭州: 河南農業(yè)大學學報, 1992, 26(3): 224-227. Han J F, Guo P G, Huang Y Jetal. Studies on nitrogen utilization with15N rape seed by flue-cured tobacco[J]. Zhengzhou: Journal of Henan Agricultural University, 1992, 26(3): 224-227.
[3] 郭培國, 陳建軍, 鄭燕玲. 應用15N示蹤法研究烤煙的氮素營養(yǎng)[J]. 中國煙草學報, 1998, 4(2): 64-68. Guo P G, Chen J J, Zheng Y L. Studies on nitrogen nutrient with15N rape seed by flue-cured tobacco[J]. Acta Tabacaria Sinica, 1998, 4(2): 64-68.
[4] 蘇帆, 付利波, 陳華, 等. 應用15N研究烤煙對餅肥氮素的吸收利用規(guī)律[J]. 中國生態(tài)農業(yè)學報, 2008, 16(2): 335-339. Su F, Fu L B, Chen Hetal. Absorption and utilization of15N rape seed cake fertilizer by flue-cured tobacco[J]. Chinese Journal of Eco-Agriculture, 2008, 16(2): 335-339.
[5] 中國農業(yè)科學院煙草研究所. 中國煙草栽培學[M]. 上海: 上??茖W技術出版社, 2005. 309-320. Tobacco Research Institute of Chinese Academy of Agricultural Sciences. Chinese tobacco cultivation[M]. Shanghai: Shanghai Science and Technology Press, 2005. 309-320.
[6] 張延春, 陳治峰, 龍懷玉, 羅春燕.不同氮素形態(tài)及比例對烤煙長勢、產量及部分品質因素的影響[J]. 植物營養(yǎng)與肥料學報, 2005, 11(6): 787-792. Zhang Y C, Chen Z F, Long H Y, Luo C Y. Effect of different nitrogen forms and their ratio on agronomical character, economic and quality of flue-cured tobacco[J]. Plant Nutrition and Fertility Science, 2005, 11(6): 787-792.
[7] 化黨領, 黃向東, 劉世亮, 等. 氮素形態(tài)和數量對烤煙干物質積累及鉀含量和積累量的影響[J]. 河南農業(yè)科學, 2005, (5): 49-52. Hua D L, Huang X D, Liu S Letal. Effects of nitrogen form and concentration on flue-cured tobacco dry matter accumulation and potassium content and accumulation[M]. Journal of Henan Agricultural Science, 2005, (5): 49-52.
[8] Cheng L L, Wen Q X, Li H. Transformation of15N labeled fertilizer N in soils under greenhouse and field conditions[J]. Acta Pedologica Sinica, 1989, 26(2): 124-130.
[9] Shi S L, Liao H Q, Wen Q X. Fate of N from green manures and ammonium sulfate[J]. Pedosphere, 1991, 1(3): 219-227.
[10] 朱兆良, 文啟孝. 中國土壤氮素[M]. 南京: 江蘇科學技術出版社, 1992. 213-249. Zhu Z L, Wen Q X. Soil nitrogen of China[M]. Nanjing: Jiangsu Science and Technology Press. 1992. 213-249.
[11] 蔡貴信, 范曉暉. 土壤氮素和氮肥的有效施用[A]. 魯如坤. 土壤-植物營養(yǎng)學原理和施肥[M]. 北京: 化學工業(yè)出版社, 1998. 112-151. Cai G X, Fan X H. The effective application of soil nitrogen and nitrogen[A]. Lu R K. Soil and plant nutrition and fertilization[M]. Beijing: Chemical Industry Press, 1998. 112-151.
[12] 張紹林, 朱兆良, 徐銀華. 黃泛區(qū)潮土—冬小麥系統(tǒng)中尿素的轉化和化肥氮去向的研究[J]. 核農學報, 1989, 3(1): 9-15. Zhang S L, Zhu Z L, Xu Y H. Studies on carbamide transformation and fertilizer nitrogen fate in alluvial soil of Huanghuai district-winter wheat[J]. Acta Agriculturae Nucleatae Sinica, 1989, 3(1): 9-15.
[13] 吳海卿, 楊傳福, 孟兆江. 應用15N示蹤技術研究土壤水分對氮素有效性的影響[J]. 土壤肥料, 2000, (1): 16-18. Wu H Q, Yang C F, Meng Z J. Effects on nitrogen availability of soil water content with15N rape seed[J]. Soil and Fertilizer, 2000, (1): 16-18.
[14] 劉喜慶, 林開創(chuàng), 王旭峰, 等.15N示蹤探究烤煙氮素吸收分配規(guī)律[J]. 江西農業(yè)學報, 2013, 25(4): 76-77. Liu X Q, Lin K C, Wang X Fetal. Study on nitrogen absorption and distribution patterns in flue-cured tobacco by15N trace[J]. Acta Agriculturae Jiangxi, 2013, 25(4): 76-77.
[15] 時映. 利用15N研究烤煙氮素吸收分配規(guī)律[D]. 鄭州: 河南農業(yè)大學碩士學位論文, 2008. Shi Y. Studies on tobacco plant’s absorption and distribution of nitrogen by using15N[D]. Zhengzhou: Ms thesis of Henan Agricultural University, 2008.
[16] 翟琨, 向東山. 貴州省植煙土壤氮素釋放特征研究Ⅱ—不同栽培措施對黔南煙區(qū)土壤供氮動態(tài)的影響[J]. 安徽農業(yè)科學, 2006, 34(5): 953, 978. Zhai K, Xiang D S. Studies on nitrogen release of tobacco-growing soils in Guizhou province-effects on soil nitrogen supply with different cultivation measures in Qiannan tobacco-growing areas[J]. Journal of Anhui Agricultural Sciences, 2006, 34(5): 953,978.
[17] 王帥. 不同種植模式對烤煙氮素吸收、利用、分配的影響[D]. 北京: 中國農業(yè)科學院碩士學位論文, 2010. Wang S. Effect on nitrogen absorption, utilization and distribution of different planting pattern[D]. Beijing: Ms thesis of Chinese Academy of Agricultural Sciences, 2010.
[18] 化黨領, 張詩卉, 王瑞, 等. 土壤氮和15N肥料氮在不同生長期烤煙各器官的積累[J]. 中國煙草學報, 2013, 19(1): 32-36. Hua D L, Zhang S H, Wang Retal. Accumulation of nitrogen from soil and15N-labeled fertilizer in different organs of flue-cured tobacco at different growth stage[J]. Acta Tobacco Sinica, 2013, 19(1): 32-36.
[19] 封幸兵, 李佛琳, 瞿興, 等. 烤煙對餅肥和秸稈肥中15N的吸收利用[J]. 煙草科技, 2005,7(1): 31-34. Feng X B, Li F L, Qu Xetal. Flue-cured tobacco fertilization: absorption and utilization of15N in cake and straw manures[J]. Tobacco Science and Technology, 2005,7(1): 31-34.
[20] 楊志曉, 劉化冰, 柯油松, 等. 廣東南雄煙區(qū)烤煙氮素累積分配及利用特征[J]. 應用生態(tài)學報, 2011, 22(6): 1450-1456. Yang Z X, Liu H B, Ke Y Setal. Nitrogen uptake and allocation characteristics of flue-cured tobacco in Nanxiong tobacco-planting area of Guangdong province[J]. Chinese Journal of Applied Ecology, 2011, 22(6): 1450-1456.
[21] 習向銀, 晃逢春, 李春儉. 利用15N示蹤法研究土壤氮對烤煙氮素累積和煙堿合成的影響[J]. 植物營養(yǎng)與肥料學報, 2008, 14(6): 1232-1236. Xi X Y, Huang F C, Li C J. Effect of soil-N on nitrogen and nicotine accumulation in flue-cured tobacco using15N-traced method[J]. Plant Nutrition and Fertility Science, 2008, 14(6): 1232-1236.
[22] 馬興華, 張忠鋒, 榮凡番, 等. 高低土壤肥力條件下烤煙對氮素吸收、分配和利用的研究[J]. 中國煙草科學, 2009, 30(1): 1-4, 9. Ma X H, Zhang Z F, Rong F Petal. Studies on nitrogen absorption, distribution and utilization in flue-cured tobacco under higher and lower fertility conditions[J]. Chinese Tobacco Science, 2009, 30(1): 1-4, 9.
[23] 徐照麗, 楊宇虹. 不同前作對烤煙氮肥效應的影響[J]. 生態(tài)學雜志, 2008, 27(11): 1926-1931. Xu Z L, Yang Y H. Influence of different preceding crops on nitrogen fertilizer effect of flue-cured tobacco[J]. Chinese Journal of Ecology, 2008, 27(11): 1926-1931.
[24] 謝志堅, 涂書新, 李進平, 等. 移栽期和氮肥對烤煙產量、產值及氮素吸收利用的影響[J]. 核農學報, 2009, 23(3): 513-520. Xie Z J, Tu S X, Li J Petal. Effects of transplanting time and nitrogen fertilizer on the yield, market value and N uptake of flue-cured tobacco by using15N tracing technique[J]. Acta Agriculturae Nucleatae Sinica, 2009, 23(3): 513-520.
[25] 秦艷青, 李春儉, 趙正雄, 等. 不同供氮方式和施氮量對烤煙生長和氮素吸收的影響[J]. 植物營養(yǎng)與肥料學報, 2007, 13(3): 436-442. Qin Y Q, Li C J, Zhao Z Xetal. Effects of rates and methods of N application on growth and N uptake of flue-cured tobacco[J]. Plant Nutrition and Fertility Science, 2007, 13(3): 436-442.
[26] 陳子元, 溫賢芳, 胡國輝. 核技術及其在農業(yè)科學中的應用[M]. 北京: 科學技術出版社, 1983. 466-484. Chen Z Y, Wen X F, Hu G H. Nuclear technology and its application in agricultural science[M]. Beijing: Science and Technology Press, 1983. 466-484.
[27] 石俊雄, 王發(fā)鵬, 陳雪, 李志宏. 黃壤質地對烤煙氮素吸收累積研究[J]. 西南農業(yè)學報, 2009, 22(3): 697-701. Shi J X, Wang F P, Chen X, Li Z H. Nitrogen absorption and accumulation of tobacco plants planted in yellow soil texture[J]. Southwest China Journal of Agricultural Sciences, 2009, 22(3): 697-701.
[28] 薊紅霞. 土壤條件對烤煙生長、養(yǎng)分累積和品質的影響[D]. 北京: 中國農業(yè)科學院碩士學位論文, 2006. Ji H X. Effects of soil conditions on the growth, nutrients accumulation and quality of flue-cured tobacco[D]. Beijing: Ms thesis of Chinese Academy of Agricultural Sciences, 2006.
[29] 羅新寧, 陳冰, 張巨松, 蔣平安. 氮肥對不同質地土壤棉花養(yǎng)分動態(tài)積累與氮素利用率的影響[J]. 土壤通報,2010,41(4): 904-910. Luo X N, Chen B, Zhang J S, Jiang P A. Effect of nitrogen applied levels on the dynamics of biomass, nitrogen accumulation of cotton plant in different soil textures[J]. Chinese Journal of Soil Science, 2010, 41(4): 904-910.
[30] 李金才, 魏鳳珍, 王成雨, 尹鈞. 孕穗期土壤漬水逆境對冬小麥根系衰老的影響[J]. 作物學報, 2006, 32(9): 1355-1360. Li J C, Wei F Z, Wang C Y, Yin J. Effects of waterlogging on senescence o f root system at booting stage in winter wheat[J]. Acta Agronomica Sinica, 2006, 32(9): 1355-1360.
[31] 陳強, 郭修武, 胡艷麗, 等. 淹水對甜櫻桃根系呼吸強度和呼吸酶活性的影響[J]. 應用生態(tài)學報, 2008, 19 (7): 1462-1466. Chen Q, Guo X W, Hu Y Letal. Effects of waterlogging on root respiration intensity and respiratory enzyme activities of sweet cherry[J]. Chinese Journal of Applied Ecology, 2008, 19 (7): 1462-1466.
[32] Hassink T, Bonwman L A, Zwark K Betal. Relationship between habitable pore space, soil biota and mineralization rates in grassland soils[J]. Soil and Biochemistry, 1993, 25: 47-55.
[33] Hassink T, Bonwman L A, Zwark K Betal. Relationships between soil texture, physical protection of organic matter. Soil Biota and C and N mineralization in grassland soils[J]. Geoderrna, 1993, 57: 105-128.
[34] 宇萬太, 周樺, 馬強, 沈善敏. 氮肥施用對作物吸收土壤氮的影響-兼論作物氮肥利用率[J]. 土壤學報, 2010, 47(1): 90-96. Yu W T, Zhou H, Ma Q, Shen S M. Effect of N fertilizer on uptake of soil N by crops with special discussion on fertilizer nitrogen recovery rate[J]. Pedologica Sinica, 2010, 47(1): 90-96.
Nitrogen accumulation, distribution and use efficiency of flue-cured tobacco under different soil texture
ZHU Pei1,2, ZHANG Ji-guang1, XUE Lin3, JI Xue-jun3, WANG Chuan-yi1, CHENG Seng4, DUAN Su-zhen1,2, REN Xia1,2, ZHANG Zhong-feng1*
(1TobaccoResearchInstituteofCAAS/KeyLaboratoryofTobaccoBiologyandProcessing,MinistryofAgriculture,QingdaoShandong266101,China; 2GraduateSchoolofCAAS,Beijing100081,China; 3AnhuiWannanTobaccoLeafCo.Ltd,Xuancheng,Anhui242000,China; 4ShanghaiTobaccoGroupLimitedLiabilityCompany,Shanghai200082,China)
【Objectives】 Soil texture generally reflects inherent soil fertility, affectes soil nutrient supply, especially soil nitrogen supply and nitrogen fertilizer utilization in farmlands. In this study, the nitrogen absorption, accumulation and utilization of flue-cured tobacco in different soil texture in south Anhui were studied to provide a scientific basis for local rational fertilization in flue-cured tobacco. 【Methods】 A field experiment was established in loam, clay loam and sandy loam soils in the modern agricultural science park of south Anhui tobacco planting area. The15N field trials combined with laboratory analysis were conducted in this study. The biomass amounts of different parts of flue-cured tobacco were measured after blenching and drying of these samples, which were taken from the field trial with the similar growing trend at the rosette stage (38 days after the transplanting), budding stage (53 days after the transplanting), topping stage (64 days after the transplanting) and maturity stage (103 days after the transplanting) of flue-cured tobacco. The total nitrogen contents of different parts of flue-cured tobacco were measured by the kjeldahl nitrogen determination method, and the abundances of15N were measured by ZHT-O2 mass spectrometer. 【Results】 The total nitrogen contents and fertilizer nitrogen accumulation amounts of tobacco in loam soil and clay loam soil both exhibit a single peak pattern during the growing season, and reach their maximum values at the topping stage, with the total nitrogen 4.25 g/plant and 3.96 g/plant, and the fertilizer nitrogen 2.34 g/plant and 2.54 g/plant, respectively. The total nitrogen content and fertilizer nitrogen accumulation amount of tobacco in sandy loam soil reach their maximum values at the maturity stage, with the total nitrogen 5.64 g/plant and fertilizer nitrogen 2.73 g/plant which are significantly higher than those in loam soil and clay loam soil at the same stage. The ratios of fertilizer nitrogen to total nitrogen and the nitrogen distribution rates of tobacco in three soils are all highest in leaves, followed by stems, and lowest in roots. The change tendencies of nitrogen use efficiencies of tobacco at different developmental stages are similar to those of the fertilizer nitrogen accumulation in the three soils. The maximum values of nitrogen use efficiencies in loam soil and clay loam soil are observed at the topping stage and are 34.5% and 40.7% respectively. And then, the values decrease gradually in loam soil and rapidly in clay loam soil with the developmental stage. The nitrogen utilization efficiency of tobacco in sandy loam soil increases with the developmental stage and reaches the maximum value of 43.7% at the maturity stage. 【Conclusions】 The order of nitrogen absorption and utilization of tobacco in different soils is sandy loam > loam > clay loam. Due to its weak nitrogen supply capacity, nitrogen mineralization in clay loam soil should be promoted and more nitrogen fertilizer should be applied for growing tobacco. While, less nitrogen fertilizer should be used in sandy loam soil because of its higher nitrogen utilization efficiency.
soil texture; fertilizer nitrogen; soil nitrogen;15N-tracing approach; flue-cured tobacco; nitrogen use efficiency
2013-12-02 接受日期: 2014-01-20
國家自然科學基金(41201291);中國煙草總公司科技項目(110200902030);上海煙草集團公司科技項目(2012-025)資助。
朱佩(1986—),男,安徽蚌埠人,碩士研究生,主要從事作物高產優(yōu)質高效栽培工程方面的研究。E-mail: zhp19880612@126.com * 通信作者 E-mail: zhangzhongfeng@caas.cn
S572.01; S606+.1
A
1008-505X(2015)02-0362-09