王 昊,楊萬波
(1.城市智能交通江蘇省重點(diǎn)實(shí)驗(yàn)室(東南大學(xué)),210096南京;2.現(xiàn)代城市交通技術(shù)江蘇高校協(xié)同創(chuàng)新中心,210096南京;3.深圳市城市交通規(guī)劃設(shè)計(jì)研究中心,518021廣東深圳)
速度梯度模型的高速公路交通流狀態(tài)估計(jì)方法
王 昊1,2,楊萬波1,3
(1.城市智能交通江蘇省重點(diǎn)實(shí)驗(yàn)室(東南大學(xué)),210096南京;2.現(xiàn)代城市交通技術(shù)江蘇高校協(xié)同創(chuàng)新中心,210096南京;3.深圳市城市交通規(guī)劃設(shè)計(jì)研究中心,518021廣東深圳)
為改進(jìn)高速公路交通流狀態(tài)估計(jì)方法,采用速度梯度模型作為交通流的系統(tǒng)狀態(tài)方程構(gòu)建交通流狀態(tài)估計(jì)模型.通過對速度梯度模型參數(shù)的敏感性分析,發(fā)現(xiàn)模型估計(jì)誤差對自由流速度和阻塞傳播速度兩參數(shù)較為敏感,需在線估計(jì).然后分別給出了速度梯度模型與擴(kuò)展卡爾曼濾波以及無跡卡爾曼濾波相結(jié)合的高速公路交通流狀態(tài)估計(jì)方法,并應(yīng)用實(shí)測數(shù)據(jù)對兩類交通流狀態(tài)估計(jì)方法的性能進(jìn)行了評估.結(jié)果發(fā)現(xiàn):兩類交通狀態(tài)估計(jì)的精度均可達(dá)85%左右,無跡卡爾曼濾波算法精度略好于擴(kuò)展卡爾曼濾波,但計(jì)算時(shí)耗大.基于速度梯度模型的交通流狀態(tài)估計(jì)方法能有效估計(jì)和跟蹤交通流狀態(tài)的變化,且相較于同類方法,所需標(biāo)定的模型參數(shù)更少.
交通流;交通狀態(tài)估計(jì);速度梯度模型;擴(kuò)展卡爾曼濾波;無跡卡爾曼濾波
實(shí)時(shí)準(zhǔn)確的交通狀態(tài)估計(jì)是高速公路智能管理與控制的關(guān)鍵,也是進(jìn)行高速公路智能交通控制、分析、事件檢測以及事故預(yù)警的基礎(chǔ)[1],對于高速公路智能交通系統(tǒng)的構(gòu)建具有重要的意義.目前,高速公路交通流狀態(tài)估計(jì)的代表性理論主要基于Papagergiou模型[2]和擴(kuò)展卡爾曼濾波來實(shí)現(xiàn)[3-4],對其他交通流模型鮮有涉及.文獻(xiàn)[5-6]提出的速度梯度(SG)模型能較好地計(jì)算堵塞、疏導(dǎo)、幽靈塞車等車流狀態(tài),可克服現(xiàn)有交通流模型普遍存在的特征速度問題,具有表達(dá)形式簡單、辨識參數(shù)少等優(yōu)點(diǎn),已廣泛應(yīng)用于交通流研究領(lǐng)域.因此,本文將利用擴(kuò)展卡爾曼濾波(EKF)方法以及無跡卡爾曼濾波(UKF)方法[7]構(gòu)建基于速度梯度模型的高速公路交通流狀態(tài)估計(jì)方法,并對估計(jì)性能進(jìn)行評估.
SG模型由全速差跟馳模型推導(dǎo)而來,其偏微分方程表達(dá)式為
其中:t、x分別為高速公路的時(shí)間和一維空間位置變量;ρ、q、v、s分別為交通流的宏觀密度、流率、速度與匝道凈流率,均為與時(shí)空相關(guān)的二元變量;c0為小擾動傳播速度,本文參照文獻(xiàn)[8]取6 m/s;τ為松弛時(shí)間;ve為交通流平衡態(tài)速度,用下式表示.
式中:cm為阻塞傳播速度,ρm為堵塞密度.
采用時(shí)間步長Δt和空間步長Δx的網(wǎng)格結(jié)構(gòu)對偏微方程(1)進(jìn)行數(shù)值離散,有
式中:k為時(shí)間層序號,i為空間單元序號.
類似的,對偏微方程(3)進(jìn)行數(shù)值離散.當(dāng)路段交通流密度較小時(shí),vik≥c0,方程(3)離散格式為
當(dāng)路段交通流密度較大時(shí),vik≥ c0,方程(3)離散格式為
2.1 數(shù)據(jù)來源
本文數(shù)據(jù)來源于美國加州PeMs數(shù)據(jù)庫中的I-10高速公路,位于Richmond的一段7.06 km長路段的交通流數(shù)據(jù).如圖1所示,該路段內(nèi)共有4個(gè)進(jìn)口匝道和3個(gè)出口匝道,主線路段在J1、J2、…、J10共10個(gè)位置布設(shè)有線圈檢測器,可連續(xù)提供30 s時(shí)間間隔的速度、流量、密度數(shù)據(jù).
2.2 參數(shù)標(biāo)定及敏感性分析
SG模型進(jìn)行數(shù)值計(jì)算的變量為時(shí)空網(wǎng)格單元內(nèi)的交通流速度和密度,在物理意義上與交通流平均速度和密度相對應(yīng).因此,可以采用道路車流檢測器采集的交通流平均速度和平均密度數(shù)據(jù)對連續(xù)模型進(jìn)行參數(shù)標(biāo)定.通過尋找一組最優(yōu)的參數(shù),使分析時(shí)段內(nèi)所有觀測點(diǎn)的模型數(shù)值計(jì)算結(jié)果與實(shí)測值之間的誤差最小.為兼顧速度誤差與密度誤差對模型的影響,本文應(yīng)用速度誤差與密度誤差之和構(gòu)建模型的聯(lián)合誤差E,其計(jì)算式為
式中:K、N分別為分析時(shí)段內(nèi)時(shí)間層總數(shù)和觀測點(diǎn)總數(shù);vik()、ρik()分別為第k時(shí)間層第i觀測點(diǎn)的實(shí)測交通流速度和密度;^vik()、^ρik()分別為第k時(shí)間層第i觀測點(diǎn)的交通流速度和密度的模型計(jì)算值.
參數(shù)優(yōu)化目標(biāo)函數(shù)(8)中,^vik()和^ρik()均由宏觀連續(xù)模型的數(shù)值離散格式計(jì)算獲得,當(dāng)考慮的時(shí)間層和空間觀測點(diǎn)較多時(shí),整體目標(biāo)函數(shù)難以解析化表達(dá),參數(shù)優(yōu)化的搜索方向也難以確定.為此,本文采用遺傳算法對參數(shù)優(yōu)化問題進(jìn)行求解,具體方法可參考文獻(xiàn)[9],此處不再贅述.
圖1 美國加州I-10高速公路路段示意圖(mi)
應(yīng)用圖1中J1~J4斷面數(shù)據(jù)對SG模型中4個(gè)參數(shù)進(jìn)行在線連續(xù)標(biāo)定,目標(biāo)函數(shù)(8)中N取值為4,K取值10,時(shí)間步長Δt=30 s,標(biāo)定結(jié)果如圖2所示.最大阻塞密度ρm保持在180~220 veh/km之間,相對較為穩(wěn)定;而自由流速度vf、阻塞傳播速度cm和松弛時(shí)間τ隨時(shí)間的波動幅度較大.
為了進(jìn)一步確定SG模型需要在線標(biāo)定的參數(shù),需對模型誤差進(jìn)行敏感性分析,方法如下:對模型中某一參數(shù)β的數(shù)值在其最優(yōu)值處分別以 ±5%及 ±10%的幅度進(jìn)行上下波動,同時(shí)固定其余參數(shù)值不變,觀察參數(shù)值變化后模型的誤差變化.令敏感性系數(shù)θ(β)為參數(shù)β變化后模型誤差的相對變化,其表達(dá)式為
其中:p為波動系數(shù),取值-10%~10%.對SG模型的4個(gè)參數(shù)分別進(jìn)行敏感性分析,模型誤差敏感系數(shù)θ(β)的分析結(jié)果如表1所示.
圖2 SG模型參數(shù)值在線標(biāo)定結(jié)果
表1 不同模型參數(shù)的誤差敏感性系數(shù)
表1結(jié)果顯示,SG模型對于最大阻塞密度ρmax和松弛時(shí)間τ的變化不敏感,自由流速度vf和阻塞傳播速度cm的變化對模型的影響比較明顯.因此,實(shí)際應(yīng)用的過程中為了減少計(jì)算時(shí)間僅需要對自由流速度和阻塞傳播速度進(jìn)行在線估計(jì),而最大阻塞密度和松弛時(shí)間均采用離線標(biāo)定.
3.1 基于EKF的高速公路交通流狀態(tài)估計(jì)器構(gòu)建
研究[3-4]表明,高速公路交通流的動態(tài)系統(tǒng)方程可以表達(dá)為
式中:f為系統(tǒng)狀態(tài)的向量函數(shù),由SG模型的離散格式表達(dá);g為觀測向量函數(shù),由實(shí)際可獲得交通測量值及測量噪聲構(gòu)成;x(k)為系統(tǒng)狀態(tài)量,表示所需要估計(jì)的交通變量和模型的部分參數(shù),本文中由SG模型中速度、密度、自由流速度以及阻塞傳播速度構(gòu)成;y(k)為可直接測量的交通狀態(tài)量,本文中包括PeMs數(shù)據(jù)庫中檢測器獲得的流量、速度數(shù)據(jù);ξ(k)、η(k)分別為系統(tǒng)過程噪聲和系統(tǒng)觀測噪聲.
本文所述交通流狀態(tài)估計(jì)方法中均為零均值高斯白噪聲,則基于EKF的交通狀態(tài)估計(jì)算法如下.
步驟1 系統(tǒng)初始化.設(shè)置系統(tǒng)狀態(tài)向量x(k)的初始期望和協(xié)方差矩陣分別為
設(shè)定系統(tǒng)的過程噪聲和測量噪聲協(xié)方差矩陣分別為Q(k)和R(k),則
步驟2 遞歸運(yùn)算.泰勒展開方程線性化為
計(jì)算卡爾曼增益K(k)為
步驟3 交通流狀態(tài)更新
步驟4 重新計(jì)算P(k)的值,返回步驟1繼續(xù)下一時(shí)刻的遞歸運(yùn)算,即
至此,基于SG模型的EKF高速公路實(shí)時(shí)交通流狀態(tài)估計(jì)器構(gòu)建完成.
3.2 基于UKF的高速公路交通流狀態(tài)估計(jì)器構(gòu)建
對于高速公路交通流非線性系統(tǒng)∑(x,y)可通過UKF實(shí)現(xiàn)高速公路交通流狀態(tài)估計(jì)的遞歸和修正[10],模型具體算法如下.
步驟1 系統(tǒng)噪聲協(xié)方差矩陣、測量噪聲協(xié)方差矩陣以及系統(tǒng)狀態(tài)初始化參見上節(jié)中EKF算法的相關(guān)設(shè)定.
步驟2 對于系統(tǒng)時(shí)刻k=1,2,…,計(jì)算數(shù)據(jù)的采樣點(diǎn)
步驟3 系統(tǒng)狀態(tài)更新,包括采樣點(diǎn)更新和狀態(tài)變量更新
步驟4 測量更新
步驟5 計(jì)算卡爾曼增益矩陣
步驟6 系統(tǒng)狀態(tài)估計(jì)變量的校正以及誤差協(xié)方差矩陣更新
步驟7 返回步驟1直至濾波遞推終止.式中:Wi(m)為采樣點(diǎn)的均值的權(quán)重,Wi(c)為采樣點(diǎn)協(xié)方差的權(quán)重.
至此,基于SG模型的UKF高速公路實(shí)時(shí)交通流狀態(tài)估計(jì)器構(gòu)建完成.
4.1 實(shí)例應(yīng)用場景設(shè)置
實(shí)例應(yīng)用場景設(shè)置:采用圖1中I-10高速公路J1—J4段,路段長度約2.46 km,包含3個(gè)入口匝道和兩個(gè)出口匝道,如圖3所示.路段劃分距離約800 m,檢測間隔為30 s,其中J1和J4斷面檢測器以及入口匝道R1、R2和R3的實(shí)際測量數(shù)據(jù)為狀態(tài)估計(jì)模型提供輸入數(shù)據(jù),J2和J3為待估計(jì)斷面,實(shí)際測量數(shù)據(jù)用于評估狀態(tài)估計(jì)的效果.根據(jù)離線參數(shù)標(biāo)定結(jié)果設(shè)定單車道最大阻塞密度ρm=180.2 veh/km,松弛時(shí)間τ=7.1 s.交通狀態(tài)估計(jì)過程中所有噪聲均假設(shè)為高斯白噪聲,參考文獻(xiàn)[3-4]對系統(tǒng)協(xié)方差矩陣設(shè)置如下,其中i為主線檢測斷面編號,j為入口匝道編號.
圖3 實(shí)例應(yīng)用路段(mi)
4.2 性能評價(jià)指標(biāo)選取
本文采用絕對誤差EMA和均方根誤差ERMS兩個(gè)評價(jià)指標(biāo)衡量J2檢測器和J3檢測器的交通狀態(tài)估計(jì)效果,對于交通流速度和密度的估計(jì)效果分別進(jìn)行評價(jià).具體指標(biāo)的表達(dá)式為
式中:Xk為檢測器實(shí)際測量值,為交通狀態(tài)估計(jì)值.
4.3 交通狀態(tài)估計(jì)性能評估比較
應(yīng)用上述EKF和UKF算法,采用主頻為2.6 GHz的計(jì)算機(jī)對實(shí)例路段的J2和J3斷面進(jìn)行交通狀態(tài)估計(jì).圖4、5與表2給出了J2斷面交通狀態(tài)在EKF和UKF算法估計(jì)下的結(jié)果;圖6、7與表3給出了J3斷面交通狀態(tài)在EKF和UKF算法估計(jì)下的結(jié)果.不難發(fā)現(xiàn),基于UKF的高速公里交通狀態(tài)估計(jì)方法的狀態(tài)估計(jì)效果稍優(yōu)于基于EKF的高速公路狀態(tài)估計(jì)方法,但是模型的計(jì)算時(shí)間t大于EKF估計(jì)算法的計(jì)算時(shí)間.誤差結(jié)果顯示,基于UKF模型的估計(jì)誤差基本在13%~17%之間浮動,而基于EKF模型的估計(jì)誤差基本在14%~16%之間浮動.無論是速度估計(jì)效果還是密度估計(jì)效果,誤差相差很小.對于J2斷面,EKF的速度估計(jì)平均絕對誤差僅高出UKF速度估計(jì)誤差1.19%,密度估計(jì)平均絕對誤差也僅高出UKF密度估計(jì)誤差2.81%;對于J3斷面,EKF的速度估計(jì)平均絕對誤差僅高出UKF速度估計(jì)誤差0.06%,密度估計(jì)平均絕對誤差也僅高出UKF密度估計(jì)誤差0.56%;兩種估計(jì)方法的精度基本都可控制在84%以上,能夠?qū)煌鳡顟B(tài)的突變進(jìn)行有效的追蹤.
表2 J2斷面狀態(tài)估計(jì)誤差與計(jì)算時(shí)間對比
表3 J3斷面狀態(tài)估計(jì)誤差與計(jì)算時(shí)間對比
圖4 J2斷面EKF交通狀態(tài)估計(jì)結(jié)果與實(shí)測值對比
圖5 J2斷面UKF交通狀態(tài)估計(jì)結(jié)果與實(shí)測值對比
圖6 J3斷面EKF交通狀態(tài)估計(jì)結(jié)果與實(shí)測值對比
圖7 J3斷面UKF交通狀態(tài)估計(jì)結(jié)果與實(shí)測值對比
1)研究了基于SG模型的高速公路實(shí)時(shí)交通狀態(tài)估計(jì)方法,通過敏感性分析,確定了自由流速度和阻塞傳播速度兩個(gè)模型參數(shù)需要在線標(biāo)定.
2)給出了SG模型與EKF以及UKF相結(jié)合的高速公路交通流狀態(tài)估計(jì)方法,并應(yīng)用美國加州PeMs數(shù)據(jù)庫中I-10高速公路實(shí)測數(shù)據(jù)對所提出的交通狀態(tài)估計(jì)方法進(jìn)行實(shí)例研究.結(jié)果表明:兩種方法均可較好捕捉交通狀態(tài)突變,狀態(tài)估計(jì)精度可控制在85%左右;UKF估計(jì)性能稍好于EKF,但計(jì)算時(shí)間較長;與基于Papageorgiou模型的交通狀態(tài)估計(jì)方法相比,基于SG模型的交通狀態(tài)估計(jì)方法能夠獲得與其相類似的估計(jì)精度,但SG模型所需標(biāo)定的模型參數(shù)更少.SG模型結(jié)合卡爾曼濾波算法可為實(shí)際交通狀態(tài)估計(jì)提供一種簡單高效的方法,具有良好的工程應(yīng)用前景.
[1]陸化普.智能運(yùn)輸系統(tǒng)[M].北京:人民交通出版社,2002.
[2]PAPAGEORGIOU M.A hierarchical control system for freeway traffic[J].Transportation Research Part B,1983,17(3):251-261.
[3]WANG Y,PAPAGEORGIOU M.Real-time freeway traffic state estimation based on extended Kalman filter:a general approach[J].Transportation Research Part B,2005,39(2):141-167.
[4]WANG Y,PAPAGEORGIOU M,MESSMER A.Real-time freeway traffic state estimation based on extended Kalman filter:Adaptive capabilities and real data testing[J]. Transportation Research Part A,2008,42(10):1340-1358.
[5]李力,姜銳,賈斌,等.現(xiàn)代交通流理論與應(yīng)用:卷1高速公路交通流[M].北京:清華大學(xué)出版社,2010.
[6]JIANG R,WU Q,ZHU Z.A new continuum model for traffic flow and numericaltests [J].Transportation Research Part B,2002,36(5):405-419.
[7]MIHAYLOVA L,BOEL R,HEGIY A.An unscented Kalman filter for freeway traffic estimation[C]//Proceedings of the 11th IFAC Symposium on Control in Transportation Systems.Delft:IFAC,2006:31-36.
[8]姜銳,吳青松,朱祚金.一種新的交通流動力學(xué)模型[J].科學(xué)通報(bào),2000,45(17):1895-1899.
[9]雷英杰,張善文,李續(xù)武,等.MATLAB遺傳算法工具箱及應(yīng)用[M].西安:西安電子科技大學(xué)出版社,2005.
[10]SIMON J J,JEFFREY K U.Unscented filtering and nonlinear estmation[J].Proceedings of IEEE,2004,92(3):401-422.
(編輯 魏希柱)
Freeway traffic state estimation by using speed gradient model
WANG Hao1,2,YANG Wanbo1,3
(1.Jiangsu Key Laboratory of Urban ITS(Southeast University),210096 Nanjing,China;2.Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies,210096 Nanjing,China;3.Shenzhen Urban Transport Planning Center,518021 Shenzhen,Guangdong,China)
This paper presents an approach of freeway traffic state estimation based on speed gradient model.Under the sensitivity analysis of model parameters,it is found that error of model estimation is sensitive to the free flow speed and jam propagation speed,which are recommended to be calibrated online.Moreover,the extended Kalman filter and the unscented Kalman filter methods are introduced combined with the speed Gradient model to solve traffic state estimation problems.The real traffic data were used to evaluate the methods.The results indicate that the accuracies of both extended Kalman filter and the unscented Kalman filter are around 85%,while the latter has a slight vantage in estimation accuracy and disadvantage in computing efficiency.The speed gradient model based traffic state estimation method can estimate and track the traffic dynamics effectively,with less model parameters when compared with similar methods.
traffic flow;traffic state estimation;speed gradient model;extended Kalman filter;unscented Kalman filter
U491.112
A
0367-6234(2015)09-0084-06
10.11918/j.issn.0367-6234.2015.09.016
2015-04-20.
國家自然科學(xué)基金(51478113);東南大學(xué)優(yōu)秀青年教師教學(xué)科研資助(2242015R30028).
王 昊(1980—),男,副教授,博士生導(dǎo)師.
王 昊,haowang@seu.edu.cn.