徐世琴,吉喜斌,金博文
(1中國科學院寒區(qū)旱區(qū)環(huán)境與工程研究所,中國生態(tài)系統(tǒng)研究網(wǎng)絡臨澤內(nèi)陸河流域研究站,蘭州730000;2中國科學院大學,北京100049)
西北干旱區(qū)典型固沙植物夜間耗水及其影響因素
徐世琴1,2,吉喜斌1*,金博文1
(1中國科學院寒區(qū)旱區(qū)環(huán)境與工程研究所,中國生態(tài)系統(tǒng)研究網(wǎng)絡臨澤內(nèi)陸河流域研究站,蘭州730000;2中國科學院大學,北京100049)
利用熱平衡包裹式Flow32莖干液流儀和環(huán)境要素監(jiān)測系統(tǒng)研究了河西走廊中段典型固沙植物梭梭(Haloxylon ammodendron)、白刺(Nitraria tangutorum)、沙拐棗(Calligonum mongolicum)夜間液流活動特征,分析影響3種植物夜間耗水的主要環(huán)境因素及其利用途徑。結(jié)果表明:(1)梭梭、白刺、沙拐棗莖干夜間液流密度在前半夜(20:00~0:00)較大且迅速降低,在后半夜(0:00~6:00)仍有微弱液流密度且波動較大;梭梭、白刺、沙拐棗的夜間液流密度差異極顯著,平均夜間液流密度依次為3.73、1.12、6.07g·cm-2·h-1,且在典型降雨天氣條件下3種植物夜間液流活動明顯減弱。(2)在觀測期間,總夜間耗水量與基莖顯著相關,但3種植物夜間耗水分配在不同月份間差異不顯著;梭梭、白刺、沙拐棗夜間耗水對日總耗水貢獻率變化范圍分別為1%~30%、0.1%~16%和1.5%~20%。(3)飽和水汽壓差和風速僅能解釋梭梭、沙拐棗、白刺夜間液流密度24%、25%、27%的變化,3種植物夜間液流主要用以莖干補水。
莖干液流;單因素方差分析;荒漠植物;夜間耗水
蒸騰是陸地表層物質(zhì)與能量交換過程的關鍵環(huán)節(jié),也是植物生命活動的重要過程。借助莖干液流監(jiān)測系統(tǒng),越來越多研究發(fā)現(xiàn)各種生境中的植物存在夜間液流,該過程對于調(diào)控植物冠層與大氣水分交換通量起著重要作用[1-2],也是植物保持和恢復水分平衡的生理策略[3-5]。白天強烈的蒸騰會導致植物體內(nèi)嚴重水分虧缺,而夜間液流能夠緩沖夜間植物體內(nèi)較低的水勢從而有效平衡植物體內(nèi)水分,另外夜間液流也是一些植物適應極端干旱環(huán)境的重要方式[6-8]。Phillips等[9]發(fā)現(xiàn)高大植物通過夜間液流能夠潛在補償水分傳輸限制(hydraulic limitation),另外夜間液流還能維持因暗呼吸導致的碳水化合物持續(xù)向外傳輸,這一功能對于速生型耐陰植物十分重要[10],同時也能防止植物莖干輸水組織產(chǎn)生栓塞和空穴[11]。
研究表明,飽和水汽壓差(saturate vapor pressure difference,VPD)和風速是影響植物夜間液流的主要環(huán)境因子,二者與液流的關系通常被用來判斷夜間液流的利用途徑[12-13]。當液流同VPD和風速高度相關時,夜間液流主要用以蒸騰,其主要原因在于盡管入夜后光合有效輻射為零,但當VPD很高時其仍然能夠成為氣孔張開的重要驅(qū)動因子從而發(fā)生冠層水分交換,較高風速則能夠維持更低冠層邊界層阻力從而加強植物葉片的水汽擴散速率[7]。當夜間液流與VPD和風速關系較弱時,夜間液流主要用以植物莖干水分補充[14]。
梭梭、白刺、沙拐棗是西北干旱區(qū)典型的固沙植物[15],它們在長期適應干旱環(huán)境的過程中形成了獨特的生理生態(tài)性能[16-18]。目前,植物夜間液流的研究對象主要為生長于熱帶、亞熱帶、溫帶等環(huán)境條件相對濕潤的高大喬木[1-2,10,19-21],對極端干旱環(huán)境條件下灌木的夜間液流開展的相關研究還比較少見。本實驗基于2014年對西北荒漠地區(qū)梭梭群落3種主要植物莖干液流以及環(huán)境要素長期野外觀測數(shù)據(jù),旨在研究3種植物夜間液流活動,分析影響3種植物夜間耗水的主要環(huán)境因素及其利用途徑。
1.1 研究區(qū)概況
野外觀測實驗樣地位于中國西北河西走廊中段臨澤綠洲-荒漠過渡帶(39°22′07″N,100°08′48″E,海拔1 386m),為典型大陸性干旱氣候,干旱高溫和多風是其氣候的主要特點。其中,年均日照時數(shù)和輻射總量分別為3 018h和6 254MJ·m-2;年平均氣溫8.9℃,年平均降水量為123mm,近80%降水集中于6~9月;本區(qū)主風向為西北風,年均風速2.7 m·s-1;土壤為壤質(zhì)砂土。除了梭梭、白刺和沙拐棗3種建群植物外,還零星分布有檉柳(Tamarix chinensis)、花棒(Hedysarum scoparum)和蘆葦(Phragmites communis)等,植被蓋度15%左右。
1.2 莖干液流測定
2014年6月1日~9月30日期間,利用熱平衡包裹式Flow32(Dynamax,Inc.,Houston,USA)莖干液流儀對生長狀況良好的梭梭、白刺、沙拐棗莖干液流進行測定,探頭的具體型號和相應基莖見表1。測定前,用砂紙輕輕將莖桿打磨光滑,然后用游標卡尺測量莖干直徑,在打磨好的位置涂抹G4保護油脂后仔細將加熱片安裝于被測區(qū),用鋁箔包裹,最后用膠帶密封,防止雨水進入。通過計算機分別將被測樣枝的莖干類型、橫截面積、探頭電壓、起始時間、數(shù)據(jù)記錄間隔等參數(shù)輸入到數(shù)據(jù)采集器CR1000中并定期采集數(shù)據(jù),測定期間每兩周更換一次探頭。本研究的數(shù)據(jù)采集間隔為60s,每30min平均一次并儲存,將光合有效輻射(PAR)為零時的液流值作為夜間液流[7,22]。
1.3 立地環(huán)境要素測定
表1 被測莖干基本參數(shù)和探頭型號Table 1 Basic parameters of measured stems and types of probe
試驗地建有8m微氣象觀測塔,于冠層頂部2 m高度處安裝有凈輻射傳感器(CNR4,Kipp &Zonen,Delft,Netherlands)、光合有效輻射傳感器(LI-190SB,LI-COR Inc.,Lincoln,NE,USA)、大氣溫度和濕度傳感器(HMP155A,Vaisala,Helsinki,F(xiàn)inlnd),和風速風向傳感器(1405-PK-052Wind-Sonic anemometer,Gill Instruments,Ltd.,Lymington,UK)。植被冠層頂部安裝有降雨量傳感器(TE525MM tipping bucket rain gauges,Texas E-lectronics,Inc.,Texas,USA)。土壤溫度探頭(109-L,Campbell Scientific,Inc.,UT,USA)和水分探頭(CS616,Campbell Scientific,Inc.,UT,USA),設置深度均為10、20、40、60、80、100cm(文中采用10 cm深度處土壤溫度、水分數(shù)據(jù))。所有數(shù)據(jù)通過數(shù)據(jù)采集器(CR1000-XT,Campbell Scientific Inc.,USA)自動記錄,每30min計算平均值并進行存儲。
1.4 數(shù)據(jù)處理
液流數(shù)據(jù)分析采用統(tǒng)計軟件SPASS 16.0。單因素方差分析(One-way ANOVA)判斷不同植物莖干夜間液流密度種間差異及不同月份夜間耗水、夜間耗水對日總耗水貢獻率差異。夜間液流密度與環(huán)境要素的關系采用相關分析和回歸分析,夜間耗水與基莖的關系采用回歸分析。
2.1 植物莖干液流密度日變化特征
觀測期間,梭梭莖干液流密度日變化過程在白天波動較大,呈雙峰或多峰變化,不同基莖莖干液流密度在午間(13:00左右)有所降低(圖1,a),白刺和沙拐棗不同莖徑液流密度日變化均為寬幅單峰形,峰值出現(xiàn)在13:00左右(圖1,b、c)。梭梭、白刺、沙拐棗3種植物莖干液流密度平均值變化范圍分別為(10.7±9.3)~(17.1±15.9)、(23.6±23.1)~(25.6±29.6)、(19.9±14.8)~(29.0±25.2)g· cm-2·s-1,它們均存在微弱夜間液流(圖1)。
圖1 梭梭(a)、白刺(b)和沙拐棗(c)莖干液流密度日變化Fig.1 Diurnal dynamics of sap flow density for H.ammodendron(a),N.tangutorum(b)and C.mongolicum(c)
圖2 梭梭(a)、白刺(b)和沙拐棗(c)在典型晴天的莖干夜間液流密度變化Fig.2 Variation in nighttime sap flow density for H.ammodendron(a),N.tangutorum(b)and C.mongolicum(c)in typical sunny days
2.2 植物夜間莖干液流密度變化特征
入夜之后,典型晴天條件下,3種植物莖干液流密度在前半夜(20:00~0:00)較大并迅速降低,在后半夜(0:00~6:00)有較大波動(圖2)。典型降雨天氣條件下,降雨發(fā)生后3種植物莖干液流密度均明顯減弱甚至為零,且降雨對白刺夜間液流影響最大,僅在8月11日0.36cm基徑的白刺枝條觀測到微弱夜間液流;降雨量最大的6月11日,降雨結(jié)束后僅有基莖為2.04cm和2.64cm的梭梭觀測到夜間液流密度(圖3)。進一步用單因素方差分析結(jié)果表明,3種固沙植物夜間液流密度存在顯著差異(F=15.7,P<0.01),梭梭、白刺、沙拐棗夜間莖干液流密度分別為3.73、1.12、6.07g·cm-2·s-1。
2.3 植物莖干夜間液流密度與環(huán)境因子的關系
觀測期間,相關分析結(jié)果表明,3種植物夜間液流密度與主要環(huán)境要素的相關關系均達到顯著水平(P<0.05),氣溫、VPD、土壤溫度和風速是影響3種植物夜間液流密度的主要因素(表2)。由于VPD和土壤溫度均受氣溫影響,且VPD更能表征空氣的蒸騰需求,故選取VPD和風速作為分析影響3種植物夜間液流密度的環(huán)境要素。3種固沙植物夜間液流密度大體隨VPD和風速的增加而增加。
其中,VPD的影響僅能解釋梭梭、白刺、沙拐棗夜間液流密度17%、14%、25%的變化,風速影響僅能解釋梭梭、白刺、沙拐棗夜間液流密度10%、10%、6%的變化(圖4);多元線性回歸分析的結(jié)果表明VPD和風速綜合影響僅能分別解釋梭梭、白刺、沙拐棗平均夜間液流密度24%,25%及27%的變化(表3)。
圖3 典型降雨天氣下3種植物夜間莖干液流密度變化Fig.3 Variation in nighttime sap flow density for the 3species in typical rainy days
圖4 梭梭(a)、白刺(b)和沙拐棗(c)莖干夜間液流密度與飽和空氣水汽壓差、風速的關系Fig.4 The relationship between nighttime sap flow density and VPD,wind speed for H.ammodendron(a),N.tangutorum(b)and C.mongolicum(c)
表3 植物夜間液流密度與氣象因子VPD、風速(U)多元線性回歸方程Table 3 Regression equation for nighttime sap flow density and environmental variables(VPDand wind speed)
表2 夜間液流密度與主要環(huán)境要素的相關關系Table 2 The correlations between nighttime sap flow density and environmental variables during the study period
2.4 典型固沙植物耗水日變化特征
研究表明,植物莖干液流的90%通過葉片蒸騰散失到大氣之中,因此能夠?qū)⒅参锏那o干液流量作為植物耗水量[22]。觀測期間,3種植物白天耗水量和夜間耗水量顯著相關,梭梭、沙拐棗白天耗水和夜間耗水在最干旱的7月份均有所增加,而白刺白天耗水量總體呈上升趨勢,夜間耗水則沒有顯著的變化;降雨天,3種植物白天和夜間的耗水顯著降低(圖5)。各基莖的梭梭總夜間耗水量變化范圍為11.4~18.6kg,白刺為0.02~0.3kg,沙拐棗為1.8~6.4kg,而夜間耗水量與基莖呈正相關關系(圖6)。
進一步用單因素方差分析方法來檢測3種植物夜間耗水各月分配情況發(fā)現(xiàn),3種植物在不同月份夜間耗水分配差異并不顯著(梭梭F=1.3,P>0.05;白刺F=0.3,P>0.05;沙拐棗F=0.2,P>0.05),表明固沙植物夜間耗水比較穩(wěn)定;另外,基莖為0.32cm、0.36cm的白刺僅在7月和8月有少量的夜間耗水(圖7)。
2.5 固沙植物夜間耗水貢獻率變化特征
觀測期間,3種固沙植物夜間耗水對日總耗水量的貢獻率變化范圍較大,最大貢獻率均出現(xiàn)在降雨之后;這一方面是由于降雨過后夜間耗水升高幅度較日間耗水升高幅度大,另一方面也存在降雨天氣條件下儀器觀測不穩(wěn)定導致的測量誤差。其中,梭梭夜間耗水對日總耗水的平均貢獻率最大,而白刺最小,這與白刺微弱的夜間液流密度有關(表4)。
圖5 不同時期梭梭(a)、白刺(b)和沙拐棗(c)耗水日變化Fig.5 Daytime and nighttime water use for H.ammodendron(a),N.tangutorum(b)and C.mongolicum(c)
圖6 觀測期總夜間液流量與莖徑關系Fig.6 Relationship between total nocturnal sap flow and stem diameter during study period
圖7 梭梭(a)、白刺(b)和沙拐棗(c)不同月份夜間耗水分配Fig.7 Total nighttime water use for H.ammodendron(a),N.tangutorum(b)and C.mongolicum(c)in different months
表4 莖干夜間液流量對日總液流量的貢獻率Table 4 Parameters of ratio of nighttime sap flow to daily total water flow
同時,單因素方差分析結(jié)果表明,梭梭、白刺、沙拐棗夜間耗水對日總耗水貢獻率在季節(jié)間差異并不顯著(梭梭F=1.8,P>0.05;白刺F=0.8,P>0.05;沙拐棗F=1.7,P>0.05),又以白刺變動幅度略大(圖8)。
圖8 梭梭(a)、白刺(b)和沙拐棗(c)不同月份夜間耗水貢獻率變化Fig.8 The ration of nighttime water use to total daily water use for H.ammodendron(a),N.tangutorum(b)and C.mongolicum(c)in different months
研究發(fā)現(xiàn),VPD和風速是影響植物夜間莖干液流的主要環(huán)境因子[7,9,21]。本研究中,VPD和風速對3種植物夜間液流密度較低的解釋率表明,這3種植物莖干夜間液流主要用以莖干補水,是否發(fā)生蒸騰以及蒸騰與莖干補水占夜間耗水的比例還需要輔以其他的研究手段進行深入分析。不同植物以及相同植物在不同季節(jié)夜間液流利用方式存在差異,如荷木的夜間液流主要用于莖干補水[2],雪松、大葉櫸、絲棉木和水杉夜間液流在前半夜主要用以蒸騰,而后半夜則主要用以莖干補水[24],桉樹夜間液流主要用以蒸騰[13]。除了VPD和風速以外,植物夜間液流也受其他環(huán)境因子的調(diào)節(jié),如美國海岸松(Pinus pinaster)夜間耗水隨土壤干旱程度的加重而升高[23],華北落葉松夜間耗水量與土壤含水量顯著相關[25],Phillips等[21]發(fā)現(xiàn)當葉齡越小時,植物夜間耗水會增加。
最優(yōu)化理論認為,由于光合有效輻射在夜間為零,C3、C4植物在夜間并不進行光合作用,氣孔會在夜間關閉以防止水分損失,因此在估算植物蒸騰耗水時假設夜間蒸騰為零[7,26-27]。已有研究發(fā)現(xiàn),不同植物類型和不同生境條件中葉片氣孔在夜間仍然開放[28-31],因此會發(fā)生夜間水分交換。夜間蒸騰對日蒸騰總量的貢獻率不同植物類型存在差異,桉樹群落約為5%,花旗松可達7%,腰果樹和傘樹達9%~15%[13-14]。因此,當某些生境中植物群落夜間耗水比例較大時,忽略夜間蒸騰無論是在時間尺度還是空間尺度均會影響植物耗水估算的準確性,同時也會影響一些植物灌溉需水模型的計算精度[29]。
目前國內(nèi)利用熱平衡技術開展植物莖干液流研究已經(jīng)比較廣泛[32-36],但是該技術依然存在多個誤差來源,如重要參數(shù)鞘傳導率Ksh確定方法的選擇、溫差變化的有效范圍、莖干熱存儲等均會降低測量結(jié)果的可靠性[37-39]。Coners等[40]結(jié)合熱平衡莖流儀、分析天平稱重法和容器測量分析法研究歐洲山毛櫸根系液流變化時發(fā)現(xiàn),當液流速率大于2g· h-1時,莖干液流儀測定結(jié)果與重量測定方法的結(jié)果十分一致,但是當液流速率低于上述值時,莖干液流儀測定結(jié)果不可靠。梭梭、白刺、沙拐棗生長于極端干旱環(huán)境之中,與生長于水分充足環(huán)境中的植物相比具有低液流密度的特點[41],因此在未來的工作中還需要考慮儀器的誤差限。
綜上所述,結(jié)合熱平衡莖干液流儀和微氣象監(jiān)測系統(tǒng)研究3種典型固沙植物夜間耗水,得出如下幾點結(jié)論:(1)梭梭液流密度日變化過程為雙峰或者多峰型,白刺和沙拐棗均為寬幅單峰型;3種植物夜間液流密度存在顯著差異,整個觀測期,梭梭、白刺和沙拐棗平均夜間液流密度依次為3.73、6.07、1.12g·cm-2·h-1;典型降雨天氣條件下3種植物夜間液流密度明顯減弱,且對白刺的影響程度更大。(2)梭梭、沙拐棗夜間和白天耗水在最干旱的7月份均有所增加,而白刺則無明顯變化。(3)多元線性回歸結(jié)果表明VPD和風速綜合影響僅能分別解釋梭梭、白刺、沙拐棗夜間液流密度24%,25%,27%的變化,據(jù)此推測3種植物夜間液流主要用以莖干補水。(4)3種植物夜間耗水和夜間耗水占日總耗水量的貢獻率在不同月份間差異并不顯著;梭梭夜間液流對日總液流量貢獻率變化范圍為1%~30%,平均值為10%,白刺為0.1%~16%,平均值為1.9%,沙拐棗為1%~20%,平均值為7%。研究固沙植物夜間耗水對于估算群落耗水、固沙物種選育具有重要意義,由于其受環(huán)境、木質(zhì)部導水性能、植物抗旱性能等多個方面的綜合影響,要深入研究夜間液流問題除了考慮儀器測定誤差外,還需要開展夜間氣孔導度、氣體交換參數(shù)、基莖收縮特征等相關觀測工作。
[1] ZHAO X W(趙曉偉),ZHAO P(趙 平),et al.Seasonal dynamics of night-time stem water recharge of Schima superbaand its relation to tree architecture and leaf biomass[J].Chinese Journal of Plant Ecology(植物生態(tài)學報),2013,37(3):239-247(in Chinese).
[2] ZHOU M C(周翠鳴),ZHAO P(趙 平),NI G Y(倪廣艷),et al.Water recharge through nighttime stem sap flow of Schima superba in Guangzhou region of Guangdong Province,South China:affecting factors and contribution to transpiration[J].Chinese Journal of Applied Ecology(用生態(tài)學報),2012,23(7):1 751-1 757(in Chinese).
[3] SCH?FER K V R,ORNE R,TENHUNEN J D.The effect of tree height on crown level stomatal conductance[J].Plant,Cell and Environment,2000,23:365-375.
[4] MOTZER T,MUNZ N,KüPPERS M,et al.Stomatal conductance,transpiration and sap flow of tropical montane rain forest in the southern Ecuadorian Andes[J].Tree Physiology,2005,25:1 283-1 293.
[5] ORTU?O M F,YELITZA G O,CONEJERO W.Stem and leaf water potentials,gas exchange,sap flow,and trunk diameter fluctions for detecting water stress in lemon trees[J].Trees,2006,20:1-8.
[6] HOLBROOK N M.Stem water storage.Physiology and Functional Morphology[M].Academic Press,San Diego,1995:151-174.
[7] DALEY M J,PHILLIPS N G.Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest[J].Tree Physiology,2006,26(4):411-419.
[8] VERBEECK H,STEPPE K,NADEZHDINA N,et al.Stored water use and transpiration in Scots pine:a modeling analysis with ANAFORE[J].Tree Physiology,2007,27(12):1 671-1 685.
[9] PHILLIPS N G,RYAN M G,BOND B J,et al.Reliance on stored water increases with tree size in three species in the Pacific Northwest[J].Tree Physiology,2003,23(4):237-245.
[10] MARKS C O,LECHOWICZ M J.The ecological and functional correlates of nocturnal transpiration[J].Tree Physiology,2007,27(4):577-584.
[11] BUSH S E,PATAKI D E,HULTINE K R,et al.Wood anatomy constrains stomatal responses to atmospheric vapor pressure deficit in irrigated,urban trees[J].Oecologia,2008,156(1):13-20.
[12] HOGG E H,HURDLE P A.Sap flow in trembling aspen:implications for stomatal responses to vapor pressure deficit[J].Tree Physiology,1997,17(89):501-509.
[13] BENYON.Nighttime water use in an irrigated Eucalyptus grandis plantation[J].Tree Physiology,1999,19(13):853-859.
[14] GOLDSTEIN G,ANDRADE J L,MEINZER F C,et al.Stem water storage and diurnal patterns of water use in tropical forest canopy trees[J].Plant,Cell and Environment,1998,21(4):397-406.
[15] DAI Y(戴 岳),ZHEN X J(鄭新軍),TAN L S(唐立松),et al.Dynamics of water usage in Haloxylon ammodendronin the southern edge of the Gurbantonggut Desert[J].Chinese Journal of Plant Ecology(植物生態(tài)學報),2004,38(11):1 214-1 225(in Chinese).
[16] SU P X(蘇培璽),AN L ZH(安黎哲),MA R J(馬瑞君),et al.Kranz anatomy and C4photosynthetic character plants,Haloxylon ammodenron and Calligonum mongolicum[J].Acta Physiological Sinica(植物生態(tài)學報),2005,29(1):1-7(in Chinese).
[17] SU P X(蘇培璽),YAN Q D(嚴巧娣).Photosynthetic characteristics of C4desert species Haloxylon ammodendron and Calligonum mongolicumunder different moisture conditions[J].Acta Ecologica Sinica(生態(tài)學報),2006,26(1):75-82(in Chinese).
[18] BAI X F(柏新富),ZHU J J(朱建軍),ZHAO A F(趙愛芬).Comparison of physiological adapt abilities of several desert plants to drying stress[J].China Journal Applied Environmental Biology(應用與環(huán)境生物學報),2008,14(6):763-768(in Chinese).
[19] WANG H(王 華),ZHAO P(趙 平),CAI X A(蔡錫安),et al.Partitioning of night sap flow of Acaclia mangiumand its implication for estimating whole-tree transpiration[J].Chinese Journal of Ecology(植物生態(tài)學報),2007,31(5):777-786(in Chinese).
[20] CHEN L X(陳立欣),ZHANG ZH Q(張志強),LI ZH D(李湛東),et al.Nocturnal sap flow of four urban greening tree species in Dalian,Liaoning Province[J].Chinese Journal of Ecology(植物生態(tài)學報),2010,34(5):535-546(in Chinese).
[21] PHILLIPS N G,LEWIS J D,LOGAN B A,et al.Intera-and intra-specific variation in nocturnal water transport in Eucalyptus[J].Tree Physiology,2010,30:586-596.
[22] JIANG G M(蔣高明).Plant exophysiology 3rd[M].Beijing:China Higher Education Press.
[23] OLIVEIRA R S,DAWSON T E,et al.Hydraulic redistribution in three Amazonian trees[J].Oecologia,2005,145(3):354-363.
[24] LOUSTAU D,BERBIGIER P,ARRUDA P R C,et al.Transpiration of a 64-year-old maritime pine stand in Portugal.1.Seasonal course of water flux through maritime pine[J].Oecologia,1996,107:33-42.
[25] WANG Y B(王艷兵),DE Y J(德永軍),et al.The characteristics of nocturnal sap flow and stem water recharge pattern in growing sea-son for a Larix principis-rupprechtii plantation[J].Acta Ecology Sinica(生態(tài)學報),2013,33(5):1 375-1 385(in Chinese).
[26] VERTESSY R A,HATTON T J,REECE P,et al.Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique[J].Tree Physiology,1997,17(12):747-756.
[27] OREN R,PHILLIPS N,EWERS B E,et al.Sap-flux-scaled transpiration responses to light,vapor pressure deficit,and leaf area reduction in a flooded Taxodium distichumforest[J].Tree Physiology,1999,19(6):337-347.
[28] MUSSELMAN R C,MINNICK T J.Nocturnal stomatal conductance and ambient air quality standards for ozone[J].Atmospheric Environment,2000,34:719-733.
[29] SNYDER K A,RICHARDS J H,DONOVAN L A.Night-time conductance in C3and C4species:do plants lose water at night?[J].Journal of Experimental Botany,2003,54(383):861-865.
[30] KAVANAGH L,PANGLE,SCHOTZKO D.Nocturnal transpiration causing disequilibrium between soil and stem predawn water potential in mixed conifer forests of Idaho[J].Tree Physiology,2007,27(4):621-629.
[31] DAWSON T D,BURGESS S S O,TU K P,et al.Nighttime transpiration in woody plants from contrasting ecosystems[J].Tree Physiology,2007,27(4):561-575.
[32] XU X Y(徐先英),SONG B G(松保國),DING G D(丁國棟),et al.Sap flow patterns of three main sand-fixing shrubs and their response to environmental factors in desert areas[J].Acta Ecology Sinica(生態(tài)學報),2008,28(3):895-905(in Chinese).
[33] XU H(許 浩),ZHANG X M(張希明),YAN H L(閆海龍),et al.Water consumption and transpiration of Haloxylon ammodendronin interland of Taklinakan Desert[J].Acta Ecoligy Sinica(生態(tài)學報),2008,28(8):3 713-3 720(in Chinese).
[34] YUE G Y(岳廣陽),ZHANG T H(張銅會),et al.Characteristics of sap flow and transpiration of Salix gordejevii and Caragana microphyllain Horqin Sandy Land,Northeast China[J].Acta Ecologica Sinica(生態(tài)學報),2006,26(10):3 205-3 213(in Chinese).
[35] ZHAO W Z,LIU B.The response of sap flow in shrubs to rainfull pulses in the desert region on China[J].Agriculrural and Forest Meterology,2010,150(9):1 297-1 306.
[36] LIU B,ZHAO W Z,JIN B W.The response of sap flow in desert shrubs to environmental variables in an arid region of China[J].Ecology,2011,4:448-457.
[37] KENNETH A S,JOHNSONS R S,CHARLES K M.Substantial errors in estimates of sap flow using the heat balance technique on woody stems under field conditions[J].Journal of the American Society for Horticultural Science,1992,117(2):351-356.
[38] GORDON R,DIXON M A,BROWN D M.Verification of sap flow by heat balance method on three potato cultivars[J].Potato Research,1997,40(3):267-276.
[39] MATTHIAS L,KUPISCH M,GRAF A,et al.Improving the stem heat balance method for determining sap-flow in wheat[J].Agricultural and Forest Meteorology,2014,186:34-42.
[40] CONERS H,LEUSCHNER C.In situ water absorption by tree fine roots measured in real measured in real time using miniature sap-flow gauges[J].Functional Ecology,2002,16(5):696-703.
[41] LI SH(李 雙),XIAO H L(肖洪浪),WANG F(王 芳),et al.Accuracy and error sources of stem heat balance method in sap flow measurements[J].Journal of Desert Research(中國沙漠),2014,34(6):1 544-1 551(in Chinese).
(編輯:裴阿衛(wèi))
Nighttime Water Use and Its Influencing Factors for Typical Sand Binding Plants in the Arid Region of Northwest China
XU Shiqin1,2,JI Xibin1*,JIN Bowen1
(1Linze Inland River Basin Research Station,Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences,Lanzhou 730000,China;2University of Chinese Academy of Sciences,Beijing 100049,China)
Independent measurements of sap flow in stems of Haloxylon ammodendron,Nitraria tangutorumand Calligonum mongolicumand environmental variables using a commercial sap-flow gauges and micrometeorological monitoring system,respectively,were made to study nighttime sap flow activities and its influencing factors,and to estimate the nighttime water consumption for an H.ammodendronstand in an oasis-desert ecotone,located in the middle range of Hexi Corridor,Northwest China.(1)Nighttime sap flow density for these species was high before 0o'clock and decreased quickly,it was weak and fluctuated dramatically between 0o'clock and 6o'clock.We found nighttime sap flow densities between these species were very significant(P<0.01),and the mean value for H.ammodendron,N.tangutorum,and C.mongolicum was 3.73,1.12,and 6.07g·cm-2·h-1,respectively.The results showed that sap flow density of three species all decreased in typical rainy days.(2)The total nighttime water use for these species was close related to the stem diameter during the study period(R2=0.92),and it was not significant difference between different months(H.ammodendron,P>0.05;N.tangutorum,P>0.05;C.mongolicum,P>0.05).We found that H.ammodendroncontributed 1%to 30%nighttime water use to daily total water,N.tangutorumcontribute 0.1%to 16%,and C.mongolicumconribute 1.5%to 20%,respectively.(3)We presumed that nighttime sap flow for these species were mainly used to refilling because VPD and wind speedonly explained 24%,25%and 27%of their variation,respectively.
sap flow;One-way ANOVA;desert plants;nighttime water use
Q945.79
A
10.7606/j.issn.1000-4025.2015.07.1443
1000-4025(2015)07-1443-08
2015-04-03;修改稿收到日期:2015-05-04
國家重點基礎研究發(fā)展計劃(973)課題(2013CB429902);國家自然科學基金項目(41271036)
徐世琴(1989-),女,碩士,主要從事干旱區(qū)生態(tài)水文研究。E-mail:xushiqin@lzb.ac.cn
*通信作者:吉喜斌,副研究員,碩士生導師,主要從事生態(tài)水文和氣象研究。E-mail:xuanzhij@ns.lzb.ac.cn