盧婷,郜攀,司良毅,趙坤
·基礎研究·
AMPK調(diào)控Ca2+內(nèi)流對高糖誘導內(nèi)皮細胞凋亡的作用及其機制研究
盧婷,郜攀,司良毅,趙坤
目的觀察AMP依賴的蛋白激酶(AMPK)對高糖刺激內(nèi)皮細胞凋亡的抑制作用,并初步探討其機制。方法體外培養(yǎng)MS-1內(nèi)皮細胞株,分別用AMPK激動劑、AMPK抑制劑、鈣庫依賴性鈣離子通道(SOCC)抑制劑2-APB 和(或)高糖處理,另設對照組(未經(jīng)任何方式干預)。采用TUNEL法檢測細胞凋亡情況,激光共聚焦顯微鏡檢測細胞內(nèi)鈣離子(Ca2+)內(nèi)流,Western blotting檢測SOCC蛋白Stim1和Orai1的表達。結果與對照組比較,高糖能夠明顯誘導內(nèi)皮細胞凋亡,增加Stim1和Orai1蛋白表達(P<0.05)。與高糖組比較,AMPK抑制劑+高糖能夠明顯增強高糖誘導的內(nèi)皮細胞的凋亡(P<0.05),而AMPK激動劑+高糖能夠明顯抑制高糖誘導的內(nèi)皮細胞凋亡,并降低Stim1和Orai1蛋白表達(P<0.05)。與對照組比較,高糖能夠明顯誘導內(nèi)皮細胞Ca2+內(nèi)流;與高糖組比較,2-APB+高糖能夠明顯抑制高糖誘導的內(nèi)皮細胞Ca2+內(nèi)流,并阻斷高糖對內(nèi)皮細胞凋亡的誘導作用,而AMPK激動劑能夠明顯抑制高糖誘導的內(nèi)皮細胞Ca2+內(nèi)流。結論AMPK能夠通過降低Stim1和Orai1蛋白的表達,抑制SOCC介導的Ca2+內(nèi)流,進而阻斷高糖刺激的內(nèi)皮細胞凋亡,對內(nèi)皮細胞功能起重要的保護作用。
AMP活化蛋白激酶類;鈣離子載體;高血糖癥;鈣庫依賴性鈣離子通道;內(nèi)皮細胞
隨著中國步入老年化社會,冠心病(CHD)的發(fā)病率和致死率逐年增高[1]。動脈粥樣硬化(atherosclerosis,AS)是CHD的病理學基礎[2],其中血管壁的內(nèi)皮細胞(endothelial cells,ECs)在血管穩(wěn)態(tài)平衡中具有重要作用,研究證實ECs受損和動脈粥樣硬化的多種傳統(tǒng)危險因素均可誘導ECs凋亡,而ECs凋亡可能是動脈粥樣硬化病理發(fā)生的早期事件,并可促進粥樣硬化病變形成、斑塊侵蝕和急性冠脈綜合征形成[3]。
AMP依賴的蛋白激酶(adenosine 5'-monophosphateactivated protein kinase,AMPK)是生物能量代謝調(diào)節(jié)的關鍵分子[4],本課題組在先前的實驗中發(fā)現(xiàn)抑制AMPK的活性能夠誘導高糖對內(nèi)皮細胞的損傷[5]。近年研究發(fā)現(xiàn),一種新型的鈣離子通道——鈣庫依賴性鈣離子通道(store operated Ca2+channel,SOCC)在調(diào)控細胞內(nèi)鈣離子內(nèi)流中發(fā)揮重要作用[6],尤其是SOCC調(diào)節(jié)的鈣離子內(nèi)流在調(diào)控細胞周期、分化、增殖和凋亡中具有非常重要的作用。SOCC的主要組成成分是兩個相互作用的分子Orai1和Stim1,研究發(fā)現(xiàn)抑制SOCC蛋白表達可以抑制神經(jīng)細胞凋亡[7]。本實驗擬觀察在高糖刺激下,AMPK對內(nèi)皮細胞凋亡的保護作用并初步探討SOCC通道在此過程中的作用。
1.1 主要材料及試劑 內(nèi)皮細胞采用ATCC細胞庫的小鼠胰島微血管內(nèi)皮細胞株MS-1(ATCC? CRL-2460TM,美國)。DMEM培養(yǎng)基、胎牛血清(FBS)購自美國Gibco公司,HBSS緩沖液和PBS緩沖液購自北京鼎國生物試劑公司,TUNEL凋亡檢測試劑盒購自瑞士Roche公司,Stim1、Orai1一抗抗體購自英國Abcam公司,內(nèi)參GAPDH一抗、辣根過氧化物酶標記的兔抗山羊IgG購自美國Santa Cruz公司,RIPA蛋白裂解液購自北京鼎國生物公司,其余試劑包括AMPK抑制劑和激動劑等均購自日本Sigma公司。
1.2 細胞培養(yǎng) 將購買的MS-1內(nèi)皮細胞迅速用20% FBS溶解,1000r/min離心后得到的沉淀再次用含有5% FBS的DMEM培養(yǎng)基溶解,分裝到培養(yǎng)瓶中,在37℃、5%CO2培養(yǎng)孵育箱中進行培養(yǎng)。以復蘇傳代后3~5代MS-1細胞株進行實驗,0.25%胰蛋白酶消化制備細胞懸液,調(diào)整細胞密度為5×107/L,接種于培養(yǎng)板備用。經(jīng)37℃、5%CO2、5%FBS預培養(yǎng)24h和0.5%胎牛血清培養(yǎng)基預培養(yǎng)處理12h后進行分組。
1.3 細胞分組及凋亡檢測 為明確AMPK對高糖誘導內(nèi)皮細胞凋亡的作用,將細胞分為6組:對照組(未經(jīng)任何方式干預)、高糖組(30mmol/L葡萄糖處理48h)、高糖+AMPK抑制劑組(30mmol/L葡萄糖處理48h+20μmol/L復合物C預處理1h)、高糖+AMPK激動劑組(30mmol/L葡萄糖處理48h+1mmol/L AICAR預處理1h)、復合物C組(20μmol/L復合物C預處理1h)和AICAR組(1mmol/L AICAR預處理1h)。為進一步明確高糖誘導的鈣內(nèi)流對內(nèi)皮細胞凋亡的影響,將細胞分為4組:對照組、高糖組、高糖+SOCC抑制劑(2-APB)組(30mmol/L葡萄糖處理48h+75μmol/L 2-APB預處理1h)、2-APB組(75μmol/ L 2-APB預處理1h)。細胞經(jīng)胰酶消化后,制成細胞爬片,按照Roche凋亡試劑盒說明書方法進行,將載玻片取出置于水平面,用濾紙小心吸去多余液體,將細胞用4%多聚甲醛(溶于pH7.4的PBS中)在室溫下固定30min,PBS漂洗5次;浸入封閉液(3%H2O2溶于甲醇)中,室溫封閉10min后再用PBS漂洗5min×3次;浸入細胞膜通透液中,室溫下反應30s~2min。采用TUNEL凋亡試劑盒中的標記物標記凋亡的細胞核,以每100個細胞中的TUNEL凋亡細胞數(shù)表示結果。
1.4 細胞分組及鈣離子內(nèi)流檢測 為明確高糖誘導的鈣內(nèi)流與SOCC通道的關系,將細胞分為4組:對照組、高糖組、高糖+2-APB組和2-APB組。為進一步明確AMPK對高糖誘導的鈣內(nèi)流的影響,將細胞分為4組:對照組、高糖組、高糖+AICAR組和AICAR組。將內(nèi)皮細胞培育在HEPES緩沖液中,采用激光共聚焦體系檢測胞質(zhì)內(nèi)Ca2+探針Fura-2/AM熒光強度。細胞在6孔板中以1% FBS孵育2h,用HBSS緩沖液洗1次,加入3μmol/L的Fura-2/AM熒光探針孵育30min,用HBSS緩沖液清洗1次。采用卡爾蔡司激光共聚焦顯微鏡(Carl Zeiss GmbH,德國)采集熒光探針信號,雙激發(fā)波長為340、380nm,發(fā)射波長為520nm。其中毒胡蘿卜素(thapsigargin,TG,實驗濃度1μmol/L)為誘導內(nèi)質(zhì)網(wǎng)鈣庫釋放進而激活SOCC鈣離子通道的SOCC激動劑,于實驗第2分鐘時加入。最初3min內(nèi),培養(yǎng)基中無Ca2+([Ca2+]0),此后于第3分鐘后開始加入1.5mmol/ L CaCl2([Ca2+]1.5)至反應液中,每隔10s采集一次熒光信號,采用Zen2012軟件系統(tǒng)檢測各個時間點的熒光強度并繪制曲線。
1.5 Western blotting檢測細胞內(nèi)SOCC蛋白表達細胞分4組:對照組、高糖組、高糖+AICAR組和AICAR組。收集各組細胞后,以RIPA法裂解細胞,采用考馬斯亮藍法進行蛋白定量。取約40μg總蛋白,置于95℃沸水中變性5min,采用5%濃縮膠和10%分離膠行SDS聚丙烯酰胺凝膠電泳,電泳條件恒壓80mV,時間為3h。然后采用三明治法將蛋白轉移至PVD膜,轉膜采用Bio-Rad電轉儀,轉膜條件為恒流15mA,時間為90min。之后將PVDF膜用5%脫脂奶粉封閉1h,加入封閉液稀釋的一抗,山羊抗小鼠Stim1多克隆抗體(1:200稀釋)和山羊抗小鼠Orai1多克隆抗體(1:200稀釋),封閉過夜,加辣根過氧化物酶標記的兔抗山羊IgG(稀釋濃度1:500)室溫反應1h后染色。用相同方法檢測內(nèi)參GAPDH蛋白表達(稀釋濃度1:1000)。用FR-200凝膠成像分析系統(tǒng)進行定量分析。
1.6 統(tǒng)計學處理 采用SPSS 19.0軟件進行分析。計量資料以表示,比較其方差齊性,多組間比較采用單因素方差分析,進一步兩兩比較采用LSD-t檢驗。P<0.05為差異有統(tǒng)計學意義。
2.1 AMPK對高糖誘導內(nèi)皮細胞凋亡的抑制作用體外培養(yǎng)MS-1內(nèi)皮細胞株,預先用復合物C或AICAR預處理,再加入高糖刺激內(nèi)皮細胞,TUNEL法檢測細胞的凋亡情況。結果顯示,與對照組比較,高糖刺激后內(nèi)皮細胞凋亡顯著增加(P<0.05);與高糖刺激組比較,AICAR能顯著抑制高糖刺激的內(nèi)皮細胞凋亡(P<0.05),復合物C則進一步誘導內(nèi)皮細胞凋亡(P<0.05,圖1)。
圖1 AMPK對高糖誘導內(nèi)皮細胞凋亡的影響(TUNEL ×10)Fig.1 Effects of AMPK on high glucose-stimulated endothelial cell apoptosis (TUNEL ×10)HG. High glucose; AICAR. 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (an AMPK agonist). (1)P<0.05 compared with control group; (2)P<0.05 compared with HG group
2.2 高糖誘導細胞鈣離子內(nèi)流([Ca2+]i)對內(nèi)皮細胞凋亡的影響 將內(nèi)皮細胞予以2-APB預處理后,再予以高糖刺激。結果顯示,與對照組相比,高糖刺激可明顯誘導細胞內(nèi)SOCC介導的Ca2+內(nèi)流,而與高糖組相比,2-APB則能夠明顯抑制高糖誘導的Ca2+內(nèi)流(P<0.05)。另一方面,高糖誘導的內(nèi)皮細胞凋亡也可被2-APB明顯抑制(P<0.05,圖2)。
圖2 內(nèi)皮細胞[Ca2+]i對內(nèi)皮細胞凋亡的影響Fig.2 Effects of calcium influx on the apoptosis of endothelial cellsHG. High glucose; 2-APB. 2-aminoethyl diphenylborinate (a blocker of store-operated Ca2+channels). A. Effects of SOCC blocker (2-APB) on high glucose-induced calcium influx; B. Effects of SOCC blocker (2-APB) on high glucose-induced endothelial cell apoptosis; C. Column chart of endothelial cell apoptosis (TUNEL). (1)P<0.05 compared with control group; (2)P<0.05 compared with HG group
2.3 AMPK對高糖誘導的[Ca2+]i的影響 細胞予AMPK激動劑AICAR(1mmol/L)預處理1h,再加入30mmol/L高糖刺激4h,細胞分成4組:對照組、高糖組、高糖+AICAR組、AICAR組。結果顯示,高糖誘導的Ca2+內(nèi)流被AMPK激動劑AICAR顯著抑制(P<0.05,圖3)。
2.4 AMPK對高糖誘導的內(nèi)皮細胞SOCC通道蛋白表達的抑制作用 細胞予AICAR預處理后,再予高糖處理,檢測各組SOCC通道蛋白分子Stim1和Orai1蛋白表達情況。與對照組比較,高糖刺激可明顯增加Stim1和Orai1蛋白的表達,而AICAR則能夠明顯抑制Stim1、Orai1蛋白的表達(P<0.05,圖4)。
CHD是老年人的常見病和多發(fā)病,也是老年患者臨床死亡的重要原因,其病理基礎為冠狀動脈粥樣硬化。研究發(fā)現(xiàn),內(nèi)皮細胞能夠釋放大量活性因子,如一氧化氮、血管緊張素和內(nèi)皮素等,可調(diào)節(jié)冠脈事件中的血栓形成、炎癥和免疫反應[8-10]。血管內(nèi)皮在外界因素作用下出現(xiàn)損傷、凋亡,可使血管平滑肌直接暴露于血液中的脂蛋白、活性氧等刺激因素,推動血管內(nèi)皮細胞的異常修復[11-12],最終導致動脈粥樣硬化的發(fā)生[13]。
圖3 AMPK對高糖誘導的[Ca2+]i的抑制作用Fig.3 Inhibitive effect of AMPK on high glucose-induced Ca2+influx to endothelial cellsHG. High glucose; AICAR. 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (an AMPK agonist); TG. Thapsigargin; (1)P<0.05 compared with control group; (2)P<0.05 compared with HG group
圖4 AMPK對高糖誘導的內(nèi)皮細胞SOCC通道Stim1、Orai1蛋白表達的影響(Western blotting)Fig.4 Effects of AMPK on the expressions of high glucose-stimulated expression of SOCC proteins (Stim1 and Orai1) in endothelial cells (Western blotting)HG. High glucose; AICAR. 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (an AMPK agonist). (1)P<0.05 compared with control group; (2)P<0.05 compared with HG group
Ca2+對維持細胞正常生理功能具有重要作用,一方面可作為第二信使介導細胞內(nèi)多種生物學反應,另一方面Ca2+穩(wěn)態(tài)在維持細胞的增殖、分化和凋亡中發(fā)揮樞紐作用[14-15]。研究表明,血管內(nèi)皮細胞外的Ca2+經(jīng)細胞膜上的鈣通道流入細胞內(nèi),導致細胞內(nèi)Ca2+超載,造成血管內(nèi)皮細胞損傷;毒胡蘿卜素通過抑制內(nèi)質(zhì)網(wǎng)鈣-ATP酶、排空內(nèi)質(zhì)網(wǎng)Ca2+誘導細胞嚴重的內(nèi)質(zhì)網(wǎng)應激反應,導致內(nèi)皮細胞凋亡[16]。本研究中,高糖刺激內(nèi)皮細胞后Ca2+內(nèi)流明顯增加,而2-APB作為SOCC通道抑制劑在抑制高糖誘導內(nèi)皮細胞Ca2+內(nèi)流的同時,還可抑制高糖誘導的內(nèi)皮細胞凋亡,提示內(nèi)皮細胞Ca2+內(nèi)流能夠明顯誘導內(nèi)皮細胞凋亡的發(fā)生。
AMPK是一個含有絲/蘇氨酸蛋白激酶活性的異源三聚體,由催化亞基α、調(diào)節(jié)亞基β和γ通過不同的排列和空間構象形成。既往本課題組在觀察白藜蘆醇(一種具有抗氧化、抗炎、抗凋亡等作用的多酚類化合物)拮抗高糖致內(nèi)皮細胞損害的研究中發(fā)現(xiàn),抑制AMPK活性后,白藜蘆醇對內(nèi)皮細胞功能的保護作用顯著降低,說明AMPK在內(nèi)皮細胞功能的維持中發(fā)揮重要作用[5,17]。SOCC是一種可持續(xù)誘導Ca2+內(nèi)流的鈣通道,可調(diào)節(jié)細胞的基因轉錄、生長和分化等。SOCC的作用機制為:當外界或內(nèi)在刺激使胞內(nèi)鈣庫中Ca2+釋放,使鈣庫中Ca2+濃度下降到一定程度時,細胞膜上SOCC開放產(chǎn)生Ca2+內(nèi)流,引起細胞內(nèi)Ca2+濃度持續(xù)緩慢上升,從而補充胞質(zhì)和鈣庫中的Ca2+[18]。目前研究發(fā)現(xiàn),Stim1和Orai是內(nèi)皮細胞最主要的SOCC蛋白成分[19-20]。本實驗首先觀察了AMPK激動劑AICAR和高糖刺激對鈣通道蛋白表達的影響,結果顯示高糖能夠促進Stim1和Orai1蛋白的表達,而AICAR則能夠顯著抑制高糖誘導的Stim1和Orai1蛋白表達,進一步研究發(fā)現(xiàn)AICAR可顯著抑制高糖誘導的Ca2+內(nèi)流,結果提示激動AMPK后能夠顯著抑制高糖誘導的內(nèi)皮細胞凋亡,其機制可能與抑制SOCC介導的Ca2+內(nèi)流密切相關。
綜上所述,內(nèi)皮細胞凋亡在動脈粥樣硬化發(fā)病中具有重要作用,而AMPK能夠通過抑制SOCC介導的Ca2+內(nèi)流而抑制內(nèi)皮細胞凋亡,對內(nèi)皮細胞功能起到重要的保護作用。后續(xù)研究應觀察在動物模型中AMPK對內(nèi)皮細胞凋亡的影響,并進一步明確AMPK在抑制內(nèi)皮細胞凋亡時發(fā)揮作用的具體亞單位。
[1]He LY, Zhao JF, Han JL,et al. Correlation between serum free fatty acids levels and Gensini score in elderly patients with coronary heart disease[J]. J Geriatr Cardiol, 2014, 11(1): 57-62.
[2]Liang B, Qi Z, Ding HY,et al. Correlation study of B type natriuretic peptide and severity of coronary artery lesions and cardiac function[J]. Chin J Pract Intern Med, 2015, 35(3): 257-258.[梁濱, 戚真, 丁懷玉, 等. B型利鈉肽與冠狀動脈病變程度及心功能相關性研究[J]. 中國實用內(nèi)科雜志, 2015, 35(3): 257-258.]
[3]Riwanto M, Rohrer L, Roschitzki B,et al. Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling[J]. Circulation, 2013, 127(8): 891-904.
[4]Song SZ, Zhang DM, Fu YQ,et al. Expression of adiponectin and AMPK mRNA in pregnant rats with high sucrose and fat diet[J]. J Zhengzhou Univ (Med Sci), 2012, 47(3): 309-312.[宋帥召,張東銘, 付艷芹, 等. 高糖高脂飲食妊娠大鼠脂聯(lián)素和AMPK mRNA的表達[J]. 鄭州大學學報(醫(yī)學版), 2012, 47(3): 309-312.]
[5]Xu Q, Si LY. Protective effects of AMP-activated protein kinase in the cardiovascular system[J]. J Cell Mol Med, 2010, 14(11): 2604-2613.
[6]Elvers M, Herrmann A, Seizer P,et al. Intracellular cyclophilin A is an important Ca(2+) regulator in platelets and critically involved in arterial thrombus formation[J]. Blood, 2012, 120(6): 1317-1326.
[7]Zhang M, Song JN, Wu Y,et al. Suppression of STIM1 in the early stage after global ischemia attenuates the injury of delayed neuronal death by inhibiting store-operated calcium entryinduced apoptosis in rats[J]. Neuroreport, 2014, 25(7): 507-513.
[8]Kurokawa H, Sugiyama S, Nozaki T,et al. Telmisartan enhances mitochondrial activity and alters cellular functions in human coronary artery endothelial cellsviaAMP-activated protein kinase pathway[J]. Atherosclerosis, 2015, 239(2): 375-385.
[9]Qin Q, Chen M, Yi B,et al. Orphan nuclear receptor Nur77 is a novel negative regulator of endothelin-1 expression in vascular endothelial cells[J]. J Mol Cell Cardiol, 2014, 77: 20-28.
[10] Yang GJ. An analysis of benefits of aspirin therapy in cardiovascular primary prevention[J]. Chin J Pract Intern Med, 2012, 32(4): 274-276.[楊國君. 阿司匹林一級預防獲益機制新解[J]. 中國實用內(nèi)科雜志, 2012, 32(4): 274-276.]
[11] Ma R, Ren J, Men JL. Study on coagulation function in patients with chronic heart failure[J]. Tianjin Med J, 2013, 41(1): 65-66.[馬睿, 任靜, 門劍龍. 慢性心力衰竭患者凝血功能的研究[J]. 天津醫(yī)藥, 2013, 41(1): 65-66.]
[12] Fan QB, Jian LG. Effects of different doses of atorvastatin on patients with acute myocardial infarction treated with PCI serum osteopontin[J]. J Zhengzhou Univ (Med Sci), 2012, 47(6): 869-870.[樊清波, 簡立國. 不同劑量阿托伐他汀對急性心肌梗死急診行PCI患者血清骨橋蛋白的影響[J]. 鄭州大學學報(醫(yī)學版), 2012, 47(6): 869-870.]
[13] Stamatelopoulos K, Georgiou S, Kanakakis I,et al. Circulating levels of TNF-like cytokine 1A correlate with reflected waves and atherosclerosis extent and may predict cardiac death in patients with stable coronary artery disease[J]. Cytokine, 2015, 72(1): 102-104.
[14] Uhlig S, Yang Y, Waade J,et al. Differential regulation of lung endothelial permeabilityin vitroandin situ[J]. Cell Physiol Biochem, 2014, 34(1): 1-19.
[15] Moccia F, Lodola F, Dragoni S,et al. Ca2+signalling in endothelial progenitor cells: a novel means to improve cellbased therapy and impair tumour vascularization[J]. Curr Vasc Pharmacol, 2014, 12(1): 87-105.
[16] Tomas-Martin P, Lopez-Guerrero AM, Casas-Rua V,et al. Phospho-STIM1 is a downstream effector that mediates the signaling triggered by IGF-1 in HEK293 cells[J]. Cell Signal, 2015, 27(3): 545-554.
[17] Xu Q, Si LY. Resveratrol role in cardiovascular and metabolic health and potential mechanisms of action[J]. Nutr Res, 2012, 32(9): 648-658.
[18] Shim AH, Tirado-Lee L, Prakriya M. Structural and functional mechanisms of CRAC channel regulation[J]. J Mol Biol, 2015, 427(1): 77-93.
[19] Moccia F, Dragoni S, Lodola F,et al. Store-dependent Ca(2+) entry in endothelial progenitor cells as a perspective tool to enhance cell-based therapy and adverse tumour vascularization[J]. Curr Med Chem, 2012, 19(34): 5802-5818.
[20] Zhou MH, Zheng H, Si H,et al. Stromal interaction molecule 1 (STIM1) and Orai1 mediate histamine-evoked calcium entry and nuclear factor of activated T-cells (NFAT) signaling in human umbilical vein endothelial cells[J]. J Biol Chem, 2014, 289(42): 29446-29456.
Effects of AMPK on high glucose stimulated apoptosis of endothelial cellsviaregulation of calcium influx
LU Ting, GAO Pan, SI Liang-yi*, ZHAO Kun
Department of Geriatrics, Xinan Hospital, Third Military Medical University, Chongqing 400038, China
*< class="emphasis_italic">Corresponding author, E-mail: doctorsly@126.com
, E-mail: doctorsly@126.com
This work was supported by the National Natural Science Foundation of China (81370446, 81370007)
ObjectiveTo investigate the inhibitory effect of adenosine monophosphate (AMP)-dependent protein kinase (AMPK) on high glucose-stimulated endothelial cell apoptosis and its mechanism.MethodsMS-1 endothelial cells were culturedin vitro, and they were treated with AMPK agonist, AMPK inhibitor, 2-APB (a blocker of store operated Ca2+channel (SOCC)) and (or) high glucose, and a control group without any intervention were set up. TUNEL assay was performed to determine apoptotic cells. Laser scanning confocal microscopy was used to assess the Ca2+influx into cells, and Western-blotting was performed to determine the expressions of Stim1 and Orai1 of the store operated Ca2+channel (SOCC) proteins.ResultsApoptosis of endothelial cells was induced significantly, and the expressions of Stim1 and Orai1 were upregulated in high glucose group compared with that in control group (P<0.05). The rate of apoptosis of high glucose-induced endothelial cell was found to be increased in AMPK inhibitor group and decreased in AMPK agonist group, and the expressions of Stim1 and Orai1 were found to be downregulated in AMPK agonist group as compared with that in high glucose group (P<0.05). Compared with the control group, high glucose stimulation significantly induced the Ca2+influx to endothelial cells; compared with high glucose group, 2-APB significantly inhibited high glucose-induced Ca2+influx to endothelial cells, and blocked the inducing effect of high-glucose on endothelial cell apoptosis. Compared with high glucose group, AMPK agonist significantly inhibited high glucose-induced cell Ca2+influx.ConclusionBy reducing the expressions of Stim1 and Orai1, AMPK may inhibit SOCC-mediated Ca2+influx, and block the high glucose-stimulated endothelial cell apoptosis, thus play an important protective role in sustaining endothelial cell function.
AMP-activated protein kinases; calcium ionophores; hyperglycemia; store operated Ca2+channel; endothelial cells
R345
A
0577-7402(2015)10-0773-05
10.11855/j.issn.0577-7402.2015.10.01
2015-03-23;
2015-07-12)
(責任編輯:張小利)
國家自然科學基金(81370446、81370007)
盧婷,碩士研究生。主要從事老年心血管病方面的研究
400038 重慶 第三軍醫(yī)大學西南醫(yī)院老年病科(盧婷、郜攀、司良毅、趙坤)
司良毅,E-mail:doctorsly@126.com