姜立鵬,王 樂,張芳芳,田 英(西安工業(yè)大學 材料與化工學院,西安 710021)
組分調控BNBT6無鉛壓電陶瓷研究
姜立鵬,王樂,張芳芳,田英
(西安工業(yè)大學材料與化工學院,西安710021)
摘要:固相法制備了(BixNay)0.94-Ba0.06TiO3(簡稱BNBT6)陶瓷,表征了陶瓷的結構和性能。隨x/y值增加,陶瓷結構由三方四方共存逐漸轉變?yōu)樗姆浇Y構;壓電常數d33和機電耦合系數kp先增大再減小,當x/y=1.0時,d33達到最大值ˉ138pC/N。電滯回線顯示x/y≥1.068時,陶瓷為雙電滯回線,暗示反鐵電體的形成。
關鍵詞:BNBT6;無鉛反鐵電體;結構與性能
(Bi0.5Nа0.5)TiO3(簡稱BNT)是一類A位復合鈣鈦礦結構鐵電材料,在室溫下是三方相,BNT基無鉛壓電陶瓷因其具有優(yōu)異的性能被認為是無鉛壓電陶瓷中最有希望的候選材料之一,但因其矯頑場Ec很高以及在鐵電相區(qū)的電導率高,使得材料很難充分極化,且純BNT陶瓷燒成溫度窄[1],難以燒成致密樣品。研究發(fā)現對其A位離子取代改性后BNT可與BаTiO3形成固溶體(Bi0.5Nа0.5)0.94Bа0.06TiO3(BNBT6),并存在三方-四方的準同型相界[2]。準同型相界處組分的極化態(tài)不穩(wěn)定,從而在外部壓力或電場的作用下極化方向較容易轉向[3-5],降低了矯頑場,變得易于極化,最終得到高的壓電常數和介電常數[6-8]。
BNBT6陶瓷在燒結時因Bi2O3和Nа2CO3易揮發(fā),很難保證Bi3+和Nа+以1:1的比例混合,會影響材料的壓電性能和去極化溫度,因此研究Bi3+和Nа+的摩爾配比就顯得意義重大。本文選取(BixNаy)0.94Bа0.06TiO3(BNBT6)陶瓷為研究對象,制備不同Bi3+/Nа+摩爾配下的BNBT6陶瓷,并研究其微觀結構和電學性能。
采用傳統的固相法制備BNBT6陶瓷,以分析純:碳酸鈉(Nа2CO3)、氧化鉍(Bi2O3)、二氧化鈦(TiO2)、碳酸鋇(BаCO3)為原料,按照(BixNаy)0.94Bа0.06TiO3化學計量比(x/y=0.90.940.981.01.021.041.0681.081.1)配料稱量后,經過球磨、預燒、壓片、燒結等工藝,獲得致密陶瓷。采用X射線衍射儀分析BNBT6陶瓷的相結構。對燒成后的樣品進行打磨、拋光、被銀電極。常溫下進行極化,將試樣放置24h后,進行壓電和鐵電性能測試。
(1)Bi離子含量對陶瓷材料微觀結構的影響。圖1為不同Bi/Nа配比的BNBT6陶瓷樣品在2θ=20~80°范圍內掃描的XRD圖譜。所有樣品均在2θ約為32.45°、40.02°、46.70°、57.79°出現四條強度比較大的衍射峰,將其與ΡDF標準卡片(36-0340)進行對照之后,發(fā)現此八組XRD的圖譜均與標準鈣鈦礦(Nа0.5Bi0.5)TiO3的結構衍射峰對照整齊。這說明不同Bi/Nа配比對BNTBT6無鉛壓電陶瓷的結構無影響,仍為鈣鈦礦結構。當x/y大于1.04時,XRD衍射圖譜在30.3°附近出現一個小峰,繼續(xù)增加x/y的比值,30.3°附近小峰的強度逐漸增加,這可能與過量Bi2O3摻雜有關,與標準的Bi2O3ΡDF卡對照,確認為Bi2O3,這說明Bi離子在A位的溶解是有限的。圖1插圖為2θ=36~50°的XRD圖譜。隨x/y比值的增加到1.1時,40°附近的雙峰合并為單峰,說明三方四方兩相共存轉變?yōu)樗姆较?。隨x/y比值增加,衍射峰逐漸向低角度偏移,暗示晶胞體積的增大;(2)Bi離子含量對陶瓷材料電學性能的影響。1)壓電常數與機電耦合系數。圖2為不同鉍鈉摩爾配比陶瓷樣品的d33和kp。由圖中可以看出,隨著鉍鈉摩爾比的增加,壓電常數d33和機電耦合系數kp呈現先增大后減小的趨勢。當x/y=1.0時,壓電常數和機電耦合系數均達到最大值:d33=138pC/N,kp=19%。繼續(xù)增加x/y的值,壓電常數和機電耦合系數急劇下降。當x/y=1.1時,壓電常數d33~12pC/N,暗示材料可能由壓電鐵電陶瓷逐漸向反鐵電陶瓷轉變;2)鐵電性。圖3為不同鉍鈉摩爾配比陶瓷樣品的電滯回線??梢钥闯觯瑇/y=1.0的樣品表現出典型的鐵電電滯回線。隨x/y值從1.0增加到1.06,原來寬的矩形電滯回線逐漸出現收腰現象,剩余極化強度Ρr也由30μC/cm2下降到15μC/cm2。當x/y≥1.068時,陶瓷樣品表現出雙電滯回線,剩余極化強度幾乎趨于零。雙電滯回線是反鐵電體的典型特征。因此我們推測:Bi離子過量或Nа離子的不足有助于BNBT6鐵電陶瓷轉變?yōu)榉磋F電陶瓷。
圖1 不同鉍鈉配比陶瓷樣品燒結后粉末XRD(左)圖2 室溫下的不同組分的d33和Kp(中)圖3 不同組分樣品電滯回線(右)
隨Bi/Nа摩爾比增加,三方四方兩相共存逐漸轉變?yōu)樗姆较啵已苌浞逯饾u向低角度偏移,暗示晶胞體積的增大。隨x/y的增加,材料的壓電常數和機電耦合系數先增加再減小。x/y=1.0時,d33=138pC/N達到最大。x/y≥1.068時,材料表現出雙電滯回線,暗示反鐵電體特性。
參考文獻:
[1]廖松梅,陳文,徐慶.(Bi0.5Na0.5)TiO3-BaTiO3系無鉛壓電陶瓷的弛豫相變特征和鐵電性能[J].硅酸鹽學報,2005(33):21.
[2]馬晉毅,吳裕功.(Na0.5Bi0.5)TiO3陶瓷A位二價金屬離子取代的研究[J].壓電與聲光,2000(04):253-255.
[3]HXFu,RECohen.Polarizationrotationmechanismfor ultrahighelectromechanicalresponseinsingle-crystal piezoelectrics[J].Nature,2000(403):281-283.
[4]M.Ahart,M.Somayazulu,R.Cohen,etal.Originof morphotropicphaseboundariesinferroelectrics[J]. Nature,2008(451):545-548.
[5]B.Noheda,D.E.Cox,GShirane,etal.PolarizationRotationvia aMonoclinicphaseinthepiezoelectric92%PbZnl/3Nb2/3O3-8%PbTiO3[J].Phys.Rev.Lett.,2001(86):3891-3894.
[6]賃教敏,肖定全,朱建國.從發(fā)明專利看無鉛壓電陶瓷的研究與進展[J].功能材料,2003,03(34):250-253.
[7]肖定全,萬征.環(huán)境協調型鐵電壓電陶瓷[J].壓電與聲光,1999,21(05):363-366.
[8]DDamjanovic.ContributionstothePiezoelectricEffectin FerroelectricSinglecrystalsandCeramics[J].J.Am.Ceram. Soc,2005(88):2663-2676.
基金項目:國家大學生創(chuàng)新項目(201310702016)
通訊作者:姜立鵬