高山山,徐嘉莉
(成都大學(xué) 電子信息工程學(xué)院,四川 成都 610106)
隨著無(wú)線通信系統(tǒng)的快速發(fā)展,對(duì)低通濾波器提出了更高的要求.過(guò)去的研究中,研究者們主要集中于研究通帶內(nèi)具有等紋響應(yīng)的低通濾波器.然而,由于加工誤差等因素的影響,濾波器在通帶內(nèi)的插入損耗會(huì)增大,該現(xiàn)象在通帶到阻帶的過(guò)渡帶附近尤為嚴(yán)重.近年來(lái),一些研究者開(kāi)始用不同的方法在帶通濾波器上實(shí)現(xiàn)非等紋響應(yīng),如鏈狀函數(shù)濾波器[1-4]、圓頂信封函數(shù)濾波器[5]、短路支節(jié)帶通濾波器[6]、平行耦合線帶通濾波器[7].在此基礎(chǔ)上,本研究設(shè)計(jì)了一種非等紋響應(yīng)的低通濾波器,相比于傳統(tǒng)的等紋響應(yīng)低通濾波器,該濾波器具有更加優(yōu)良的性能.
切比雪夫響應(yīng)在通帶內(nèi)表現(xiàn)為等紋特性,在阻帶內(nèi)呈最大平坦特性.對(duì)于一個(gè)n 階切比雪夫響應(yīng)的低通濾波器而言,它的插入損耗可表示為[8],
其中,
Tn(x)為n 階的第一類切比雪夫函數(shù)多項(xiàng)式.
一個(gè)7 階的切比雪夫函數(shù)多項(xiàng)式為,
若設(shè)置該7 階切比雪夫函數(shù)低通濾波器通帶內(nèi)的反射波瓣值為-10 dB,可得到該濾波器的響應(yīng)曲線如圖1 所示.
圖1 傳統(tǒng)切比雪夫響應(yīng)曲線
由圖1 可知,該濾波器在通帶內(nèi)具有等紋的特性,通帶內(nèi)3 個(gè)反射波瓣值均在-10 dB.
本研究基于非等紋響應(yīng)帶通濾波器的綜合設(shè)計(jì)方法,設(shè)計(jì)出了一種7 階非等紋響應(yīng)的低通濾波器,其插入損耗可以表示為,
其回波損耗可表示為,
其中,F(xiàn) 為特征函數(shù)多項(xiàng)式.
對(duì)于傳統(tǒng)切比雪夫響應(yīng)低通濾波器而言,通帶內(nèi)具有等紋的特性.而對(duì)于非等紋響應(yīng)的低通濾波器,通過(guò)調(diào)節(jié)特征函數(shù)多項(xiàng)式的系數(shù),可以改變通帶內(nèi)反射波瓣的值,將通帶內(nèi)的反射波瓣設(shè)置為不全部相等,即實(shí)現(xiàn)非等紋響應(yīng)低通濾波器的特性.本研究以7 階低通濾波器為研究實(shí)例.從圖1 可以看出,該切比雪夫響應(yīng)低通濾波器在通帶內(nèi)具有3 個(gè)反射波瓣,設(shè)第1 個(gè)反射波瓣的值為RL1,第2 個(gè)反射波瓣的值為RL2,第3 個(gè)反射波瓣的值為RL3.對(duì)于切比雪夫響應(yīng)低通濾波器而言,通帶內(nèi)3 個(gè)反射波瓣值全部相等,即RL1= RL2= RL3.對(duì)于非等紋響應(yīng)低通濾波器,通帶內(nèi)的反射波瓣值不再全部相等,即RL1≠RL2≠RL3,此時(shí),可得特征函數(shù)F 的表達(dá)式為,
通過(guò)調(diào)節(jié)特征函數(shù)F 的系數(shù),可將低通濾波器通帶內(nèi)的反射波瓣設(shè)置在指定值.本設(shè)計(jì)中,設(shè)定通帶內(nèi)反射波瓣值分別為,RL1=-10 dB、RL2=-15 dB、RL3=-20 dB,可建立7 個(gè)滿足邊界條件的方程為,
其中,F(xiàn)1、F2、F3分別對(duì)應(yīng)于反射波瓣值等于RL1、RL2、RL3時(shí)F 函數(shù)的值.通過(guò)求解式(7)~(13)的非線性方程組,可以求得系數(shù)k1、k2、k3、k4的值.通過(guò)綜合得到該濾波器的特征函數(shù)多項(xiàng)式為,
該濾波器的響應(yīng)曲線如圖2 所示.采用相同的綜合設(shè)計(jì)方法,可以綜合得到RL1=- 15 dB、RL2=-20 dB、RL3=-25 dB 時(shí)的特征函數(shù)多項(xiàng)式為,
此時(shí),濾波器的響應(yīng)曲線如圖3 所示.
圖2 非等紋響應(yīng)曲線
圖3 非等紋響應(yīng)曲線
從圖2、圖3 都可以看出,該濾波器的響應(yīng)特性曲線在通帶內(nèi)具有非等紋的特性,通過(guò)調(diào)節(jié)特征函數(shù)多項(xiàng)式的系數(shù),可以控制通帶內(nèi)反射波瓣的值.同時(shí),在靠近通帶邊沿部分反射波瓣值較低,這樣可以很好地解決濾波器在實(shí)際加工過(guò)程中由于加工誤差帶來(lái)的通帶內(nèi)插入損耗增加的問(wèn)題.
本研究設(shè)計(jì)了一種非等紋響應(yīng)的低通濾波器.通過(guò)調(diào)節(jié)特征函數(shù)的系數(shù),可實(shí)現(xiàn)低通濾波器在通帶內(nèi)的非等紋特性.與傳統(tǒng)的切比雪夫函數(shù)濾波器相比,該濾波器具有更加優(yōu)良的性能.
[1]Guglielmi M,Connor G.Chained function filters[J].IEEE Microw Guided Wave Lett,1997,7(12):390-392.
[2]Chrisostomidis C E,Guglielmi M,Young P,et al.Application of chained functions to low-cost microwave bandpass filters using standard PCB etching techniques[C]//Proceedings of 30th European Microwave Conference.Paris,F(xiàn)rance:EUMA,2000:40-43.
[3]Chrisostomidis C E,Lucyszyn S.On the theory of chainedfunction filters[J].IEEE Trans Microw Theory Tech,2005,53(10):3142-3151.
[4]Chrisostomidis C E,Lucyszyn S.Seed function combination selection for chained function filters[J].IET Microw Ant Prop,2010,4(6):799-807.
[5]Jayyousi A B,Lancaster M J,Huang F.Filtering functions with reduced fabrication sensitivity[J].IEEE Microw Wir Comp Lett,2005,15(5):360-362.
[6]Sun S,Gao S S.Design and implementation of ultra-wideband bandpass filter with non-equiripple responses[C]//IEEE MTT-S Int Microwave Symp.Seattle,USA:IEEE Press,2013.
[7]Gao S S,Sun S.Synthesis of wideband parallel-coupled line bandpass filters with non-equiripple responses[J].IEEE Microw Wir Comp Lett,2014,24(9):587-589.
[8]Zhu L,Sun S,Li R.Microwave bandpass filters for wideband communications[M].Hoboken,NJ,USA:John Wiley & Sons,2012.