李利斌+紀復勤+劉立鋒+李化銀+高建偉+曹齊衛(wèi)
摘 要:分析了大白菜基因組中3個與擬南芥CBL4直系同源的基因,并進行了比較分析。結果表明,大白菜3個CBL4基因在序列和結構上非常保守,但在順式調(diào)控元件上有所不同,暗示其在功能上存在分化。
關鍵詞:大白菜;CBL4;遺傳進化;序列分析;順式元件
中圖分類號:S634.101 ?文獻標識號:A ?文章編號:1001-4942(2015)06-0005-04
Comparative Analysis of CBL4 Genes in Chinese Cabbage
Li Libin1, Ji Fuqin2, Liu Lifeng1, Li Huayin1, Gao Jianwei1*, Cao Qiwei1*
(1.Vegetable Research Institute,Shandong Academy of Agricultural Sciences/National Improvement Center for
Vegetables, Shandong Branch/Key Laboratory of Greenhouse Vegetables Biology of Shandong Province,Jinan 250100, China;
2. Wanfeng Seed Limited Cooperation of Ningyang County in Shandong Province, Ningyang 271400,China)
Abstract Three genes in Chinese cabbage genome was comparatively ?analyzed with CBL4 orthologous gene of Arabidopsis. The results showed that 3 CBL4 genes of Chinese cabbage were very conserved in sequence and structure, but different in cis-elements,which suggested they were different in functions.
Key words Chinese cabbage; CBL4;Genetic evolution; Sequence analysis;Cis-element
植物鈣調(diào)神經(jīng)磷酸酶 B 類似蛋白(Calcineurin B like protein, 簡稱CBL)與鈣調(diào)神經(jīng)磷酸酶 B 類似蛋白互作的蛋白激酶(CBL-interacting protein kinase, 簡稱CIPK) 組成的信號途徑簡稱CBL-CIPK途徑,在植物鈣信號轉導和非生物逆境應答中具有重要功能,從低等的苔蘚到高等的十字花科植物擬南芥、油菜及禾本科水稻等農(nóng)作物以及木本植物楊樹等物種中普遍存在[1~5]。CBL家族起到鈣感受器的作用,與CIPK互作來調(diào)節(jié)下游基因的表達以應答不同的逆境信號[6]。有關CBL的功能在擬南芥中研究得最為清楚,其中CBL4/SOS3基因在植物高鹽脅迫應答中具有重要功能,而且存在復雜的調(diào)控機制[7]。CBL4/SOS3可以與SOS2/CIPK24互作調(diào)控SOS1(一種鈉離子質(zhì)子泵)的表達和介導鈣依賴的微絲重組從而調(diào)節(jié)植物鹽脅迫的抗性[8,9];也可以通過與CIPK6互作介導鉀離子通道AKT2定位在細胞膜上[10];在低鹽脅迫下還可以通過調(diào)控生長素的重新分布來調(diào)節(jié)側根的發(fā)育[11]。擬南芥CBL4/SOS3編碼的蛋白具有結合鈣離子的EF手結構,還有豆蔻?;稽c,與鈣離子的結合和豆蔻酰化是其在鹽脅迫應答中行使功能所必需的[12~14]。而且在CBL4/SOS3的碳末端存在保守的磷酸化位點,可被SOS2/CIPK24等磷酸化[15]。突變體的研究表明鈣可以調(diào)節(jié)擬南芥CBL4/SOS3對鹽的敏感性[12],擬南芥CBL4/SOS3可以調(diào)節(jié)離子平衡和氧化脅迫反應[16],而且它還受MYB73的負向調(diào)節(jié)[17];突變體研究和基因定位表明水稻和大麥的CBL4/SOS3基因在鹽脅迫應答中具有與擬南芥CBL4/SOS3相似的功能[18,19],過表達玉米的CBL4基因可以提高擬南芥的抗逆性[20]。大白菜是我國重要的特產(chǎn)蔬菜,其有關CBL4/SOS3的研究尚缺乏報道。筆者在解析大白菜CBL家族基因的基礎上[21],發(fā)現(xiàn)有三個大白菜CBL4基因與AtCBL4/SOS3直系同源。本文對這三個大白菜CBL4/SOS3類基因的染色體定位、基因結構、編碼序列及其順式調(diào)控元件進行了系統(tǒng)分析,為進一步研究其功能奠定了基礎。
1 研究方法
利用擬南芥的CBL4基因序列在大白菜基因組數(shù)據(jù)庫中(BRAD:http://brassicadb.org/brad/)搜索比對大白菜的基因組序列,尋找大白菜的CBL1基因序列,對鑒定出的CBL4基因進行結構分析和遺傳進化分析,并對啟動子序列中的順式元件進行預測。結構分析利用GSDS(http://gsds. cbi. pku. edu. cn /) 在線進行,遺傳進化分析利用MEGA4.1 進行,采用Bootstrap test-Neighbor Joining 方法,重復運算500 次,順式元件預測采用PlantCARE 軟件進行在線分析。亞細胞定位預測在WoLF PSORT(http://wolfpsort.org/)中進行。
2 結果與分析
2.1 大白菜CBL4基因的鑒定和特征分析
筆者利用生物信息學方法從大白菜基因組中鑒定出三個擬南芥CBL4的同源基因Bra026462、Bra029396和Bra009743,分別位于大白菜染色體A01、A02和A06上。大白菜三個CBL4的基因組序列中含有8個外顯子,而且這8個外顯子的大小和排列比較保守;預測的編碼區(qū)序列均為666 bp,基因組序列大小略有不同,其編碼蛋白預測定位于細胞核或細胞質(zhì)中(表1)。endprint
表1 大白菜CBL4基因的染色體分布及序列特征
基因 染色體 位置 外顯
子數(shù) 基因組
序列(bp) 編碼區(qū)
序列(bp) 亞細胞
定位預測
Bra026462 A01 9159114-9160610 8 1497 666 細胞質(zhì)
Bra029396 A02 25418218-25419717 8 1500 666 細胞核
Bra009743 A06 16967951-16969375 8 1425 666 細胞質(zhì)
圖1 大白菜CBL4基因的外顯子-內(nèi)含子結構
2.2 大白菜CBL4基因的遺傳進化和序列比對
遺傳進化分析是揭示基因功能的重要線索。通過對大白菜CBL4和擬南芥CBL基因的進化分析發(fā)現(xiàn),大白菜的CBL4基因 Bra026462、 Bra029396和Bra009743是擬南芥CBL4/SOS3的直系同源基因(圖2)。序列比對發(fā)現(xiàn)這三個基因非常保守(圖3),三者的核苷酸序列一致性為92.94%,與擬南芥CBL4/SOS3的一致性分別為87.61%、85.99%和85.55%;三者預測編碼蛋白的序列一致性為92.74%,與AtCBL4的一致性分別為82.67%、78.22%和81.78%,與AtCBL8的序列一致性分別為58.22%、58.67%和58.22%。這說明大白菜的三個CBL4類基因可能具有相似的生物學功能。
圖2 大白菜三個CBL4基因預測編碼蛋白的序列比對
圖3 大白菜CBL4基因與擬南芥CBL
基因的遺傳進化分析
2.3 大白菜CBL4基因的順式調(diào)控元件和功能預測
轉錄水平的調(diào)控是植物基因表達的主要調(diào)控步驟,植物基因表達是自身順式調(diào)控元件與轉錄因子相互作用的結果。因此,植物基因上游順式調(diào)控元件的分析對于揭示基因的功能具有重要意義。由表2可知,大白菜三個CBL4基因均含有多個激素和逆境應答順式調(diào)控元件,而且各不相同,說明它們在功能上存在分化。Bra026462可能響應茉莉酸甲酯和水楊酸信號,受干旱、熱脅迫調(diào)控表達;Bra029396 可能響應茉莉酸甲酯、赤霉素和水楊酸信號,可能應答干旱和冷脅迫;Bra009743可能響應脫落酸、茉莉酸甲酯和水楊酸信號,應答熱脅迫、干旱和冷脅迫。
表2 大白菜CBL4基因的順式調(diào)控元件
基因
ABRE
CGTCA
-motif GARE
-motif
HSE LTR MBs TCA
-element
Bra026462〖3〗 1 2 2 1
Bra029396 2 1 2 1 2
Bra009743 1 1 1 2 2 1
注:ABRE為脫落酸應答元件;CGTCA-motif為茉莉酸甲酯應答元件;GARE-motif為赤霉素應答元件;HSE為熱脅迫應答元件;LTR為冷脅迫應答元件;MBs為干旱誘導表達元件;TCA-element為水楊酸應答元件。
3 結論
本文從大白菜基因組中鑒定出三個與擬南芥CBL4直系同源的基因Bra026462、Bra029396和Bra009743,在結構和序列上十分保守,推測是由于基因擴增的結果,可能在鹽脅迫應答過程中具有相似的功能。但是,它們分布在不同的染色體上,而且在其上游序列中含有的順式調(diào)控元件的數(shù)目和類型不盡相同,亞細胞定位預測的結果也不一樣。因此,筆者認為大白菜三個CBL4基因Bra026462、Bra029396和Bra009743在功能上有所分化,具體情況需要進一步研究。
參 考 文 獻:
[1] Kolukisaoglu U, Weinl S, Blazevic D, et al. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks[J]. Plant Physiology,2004,134(1):43-58.
[2] Kleist T J, Spencley A L, Luan S. Comparative phylogenomics of the CBL-CIPK calcium-decoding network in the moss Physcomitrella, Arabidopsis, and other green lineages[J]. Front. Plant Sci., 2014,5:187.
[3] Gong D, Guo Y, Schumaker K S, et al. The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis[J]. Plant Physiology,2004,134(3):919-26.
[4] Zhang H, Yang B, Liu W Z, et al. Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.)[J]. BMC Plant Biology,2014, 14:8.
[5] Tang R J, Liu H, Bao Y, et al. The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress[J]. Plant Mol. Biol., 2010,74(4-5):367-380.endprint
[6] Sánchez-Barrena M J, Martínez-Ripoll M, Albert A. Structural biology of a major signaling network that regulates plant abiotic stress: the CBL-CIPK mediated pathway[J]. Int. J. Mol. Sci., 2013,14(3):5734-5749.
[7] Ji H, Pardo J M, Batelli G, et al. The Salt Overly Sensitive (SOS) pathway: established and emerging roles[J]. Molecular Plant, 2013, 6(2):275-286.
[8] Qiu Q S, Guo Y, Dietrich M A, et al. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3[J]. Proc. Natl. Acad. Sci. USA, 2002,99(12):8436-8341.
[9] Ye J, Zhang W, Guo Y. Arabidopsis SOS3 plays an important role in salt tolerance by mediating calcium-dependent microfilament reorganization[J]. Plant Cell Report, 2013, 32(1):139-148.
[10]Held K, Pascaud F, Eckert C, et al. Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex[J]. Cell Research,2011, 21(7):1116-1130.
[11]Zhao Y, Wang T, Zhang W, et al. SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis[J]. New Phytologist,2011,189(4):1122-1134.
[12]Horie T, Horie R, Chan W Y, et al. Calcium regulation of sodium hypersensitivities of sos3 and athkt1 mutants[J]. Plant Cell Physiology,2006, 47(5):622-633.
[13]Sánchez-Barrena M J, Martínez-Ripoll M, Zhu J K, et al. The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response[J]. Journal of Molecular Biology,2005, 345(5):1253-1264.
[14]Ishitani M, Liu J, Halfter U, et al. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding[J]. Plant Cell,2000,12(9):1667-1678.
[15]Halfter U, Ishitani M, Zhu J K. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3[J]. Proc. Natl. Acad. Sci. USA,2000, 97(7):3735-3740.
[16]Zhu J, Fu X, Koo Y D, et al. An enhancer mutant of Arabidopsis salt overly sensitive 3 mediates both ion homeostasis and the oxidative stress response[J]. Molecular Cell Biology,2007, 27(14):5214-5224.
[17]Kim J H, Nguyen N H, Jeong C Y,et al. Loss of the R2R3 MYB, AtMyb73, causes hyper-induction of the SOS1 and SOS3 genes in response to high salinity in Arabidopsis[J]. Plant Physiology,2013,170(16):1461-1465.
[18]Rivandi J, Miyazaki J, Hrmova M, et al. A SOS3 homologue maps to HvNax4, a barley locus controlling an environmentally sensitive Na+ exclusion trait[J]. Journal of Experimental Botany,2011,62(3):1201-1216.
[19]Martínez-Atienza J, Jiang X, Garciadeblas B, et al. Conservation of the salt overly sensitive pathway in rice[J]. Plant Physiology,2007,143(2):1001-1012.
[20]Wang M, Gu D, Liu T, et al. Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance[J]. Plant Molecular Biology,2007,65(6):733-746.
[21]李利斌,王殿峰,劉立鋒,等. 大白菜CBL家族基因的鑒定和遺傳進化分析[J].山東農(nóng)業(yè)科學,2009(5):4-7.endprint