鐘美娥,李 季,龔道新,姚倩鈺,丁春霞,楊麗華(.湖南農(nóng)業(yè)大學(xué)理學(xué)院,湖南 長(zhǎng)沙 408;.湖南農(nóng)業(yè)大學(xué)資源環(huán)境學(xué)院,湖南 長(zhǎng)沙 408;3.湖南農(nóng)業(yè)大學(xué)東方科技學(xué)院,湖南 長(zhǎng)沙 408)
均相Co(Ⅱ)/PMS體系對(duì)二氯喹啉酸的降解特性研究
鐘美娥1,2,3,李 季1,龔道新2*,姚倩鈺2,丁春霞1,楊麗華2(1.湖南農(nóng)業(yè)大學(xué)理學(xué)院,湖南 長(zhǎng)沙 410128;2.湖南農(nóng)業(yè)大學(xué)資源環(huán)境學(xué)院,湖南 長(zhǎng)沙 410128;3.湖南農(nóng)業(yè)大學(xué)東方科技學(xué)院,湖南 長(zhǎng)沙 410128)
采用高級(jí)氧化技術(shù),以Co2+為催化劑分解單過(guò)氧硫酸氫鉀(PMS)所產(chǎn)生的強(qiáng)氧化性硫酸根自由基(SO4·-)降解水中的二氯喹啉酸(QC).考察了PMS用量、Co(Ⅱ)/PMS比值和Cl-濃度以及QC初始濃度對(duì)該均相Co(Ⅱ)/PMS體系降解QC的影響.結(jié)果表明,QC的降解遵循準(zhǔn)一級(jí)動(dòng)力學(xué)過(guò)程.當(dāng)QC初始濃度在0.02~0.2mmol/L時(shí),QC的降解速率隨著QC/PMS比值的降低而增大,但當(dāng)QC/PMS比值小于1/100時(shí),則相反.QC的降解速率隨著PMS濃度升高而線性增大,當(dāng)PMS濃度為32mmol/L時(shí),4h內(nèi)QC的降解率可達(dá)94%.增大Co(Ⅱ)/PMS的摩爾比能夠促進(jìn)QC的降解,而Cl-對(duì)QC的降解有一定的抑制作用.LC/MS分析結(jié)果表明,3,7-二氯-8-羥基喹啉和7-氯-8-喹啉甲醛為QC降解過(guò)程中兩種主要的中間產(chǎn)物.
高級(jí)氧化技術(shù);單過(guò)氧硫酸氫鉀;硫酸根自由基;降解;二氯喹啉酸
二氯喹啉酸是一種生長(zhǎng)激素類除草劑,主要用于防除稻田單子葉雜草,尤其對(duì)稗草有極高活性,是我國(guó)稻田芽前苗后的主要除草劑品種之一[1-4].但是,由于前茬稻田使用除草劑二氯喹啉酸,其在土壤中的殘留會(huì)導(dǎo)致后茬作物(如烤煙、黃瓜、蠶豆等)出現(xiàn)植株畸形生長(zhǎng),嚴(yán)重影響農(nóng)作物的產(chǎn)量和質(zhì)量.目前,針對(duì)水田二氯喹啉酸污染問(wèn)題的治理措施主要有物理方法治理、化學(xué)藥劑補(bǔ)救和微生物降解等措施.物理防治措施主要利用活性炭、蒙脫石等具有吸附特性的物質(zhì)吸附土壤中殘留的二氯喹啉酸[5-6],但不能從根本上去除二氯喹啉酸的影響;化學(xué)藥劑補(bǔ)救主要是針對(duì)已經(jīng)出現(xiàn)二氯喹啉酸藥害的植株進(jìn)行修復(fù),如赤霉素、植保素、施嘉樂(lè)等化學(xué)藥劑均體現(xiàn)出不同的修復(fù)效果[7],但是噴施化學(xué)藥劑只能一定時(shí)間內(nèi)緩解植株畸形,因?yàn)殡S著植株的生長(zhǎng),不斷吸入土壤中存在的二氯喹啉酸,使體內(nèi)二氯喹啉酸含量不斷增加,植株畸形逐漸加重;微生物降解主要利用對(duì)二氯喹啉酸具有高效降解功能的菌株進(jìn)行修復(fù)[8-9],但存在菌株篩選困難、降解周期長(zhǎng)等缺點(diǎn).可見(jiàn),這些治理措施均存在一定的弊端,因此,開發(fā)一種高效、安全去除水田環(huán)境中二氯喹啉酸的方法成為環(huán)境科學(xué)領(lǐng)域亟待解決的問(wèn)題.
1.1試劑與儀器
試劑:二氯喹啉酸(QC,江蘇天容,96%),單過(guò)氧硫酸氫鉀復(fù)合鹽(PMS),七水合硫酸鈷.實(shí)驗(yàn)用水均為去離子水.
儀器:Agilent1260高效液相色譜儀(色譜柱:250mm×4.6mm,5μm,反相C18柱),恒溫震蕩器,超高效液相色譜聯(lián)合飛行時(shí)間串聯(lián)質(zhì)譜儀(Agilent, UHPLC(1290)-Q-TOF(6530), USA)等.
1.2試驗(yàn)方法
向50mL的敞口反應(yīng)容器中依次加入一定濃度的二氯喹啉酸溶液和PMS溶液,最后加入一定量的Co2+溶液開始反應(yīng)并計(jì)時(shí),實(shí)驗(yàn)過(guò)程均未調(diào)節(jié)pH值.反應(yīng)過(guò)程在150r/min恒溫振蕩器中進(jìn)行,于 25℃振蕩一定時(shí)間,按照一定的時(shí)間間隔進(jìn)行取樣,每次取樣 1mL于樣品瓶中,然后加入等體積的甲醇進(jìn)行淬滅,搖勻后用液相色譜儀對(duì)溶液中剩余的二氯喹啉酸濃度進(jìn)行檢測(cè),流動(dòng)相為甲醇和水(1%冰乙酸)(V:V=60:40),檢測(cè)波長(zhǎng)240nm,流動(dòng)相速度1.0mL/min,進(jìn)樣量20μL.
2.1二氯喹啉酸初始濃度對(duì)其降解的影響
保持反應(yīng)體系中 Co2+濃度為 0.04mmol/L,PMS濃度為4mmol/L,改變二氯喹啉酸的初始濃度,研究QC初始濃度對(duì)其降解速率的影響,所得結(jié)果如圖1所示.
均相Co(Ⅱ)/PMS體系催化降解有機(jī)污染物的反應(yīng)動(dòng)力學(xué)一般用準(zhǔn)一級(jí)動(dòng)力學(xué)方程來(lái)描述[22-24].本研究按照準(zhǔn)一級(jí)動(dòng)力學(xué)方程(1)式求出不同QC初始濃度時(shí)的反應(yīng)動(dòng)力學(xué)常數(shù):
式中:C0和C分別為t=0及t時(shí)反應(yīng)體系中QC的濃度;k為反應(yīng)速率常數(shù);t為反應(yīng)時(shí)間.不同QC初始濃度下反應(yīng)速率常數(shù)變化如表1所示.
圖1和表1結(jié)果均表明,在維持Co2+濃度和PMS濃度不變的情況下,隨著二氯喹啉酸初始濃度的降低,QC的降解速率逐漸加快,但當(dāng)其初始濃度小于0.04mmol/L,即QC與PMS的摩爾比小于1/100時(shí),繼續(xù)降低二氯喹啉酸的初始濃度,對(duì)其降解速率產(chǎn)生了一定程度的抑制.這與文獻(xiàn)報(bào)道的隨污染物初始濃度的降低其體系的降解速率總是逐漸加快的現(xiàn)象不一致[15,25].原因可能是由于:如式(2)所示,當(dāng)Co2+濃度和PMS濃度不變時(shí),體系產(chǎn)生的硫酸根自由基量是一定的,當(dāng)二氯喹啉酸濃度越低,相對(duì)所獲得的硫酸根自由基的進(jìn)攻越多,越有利于QC的降解.另一方面,由式(3)可以看出,當(dāng)產(chǎn)生的硫酸根自由基來(lái)不及消耗時(shí),過(guò)多的硫酸根自由基之間相互反應(yīng)生成過(guò)硫酸鹽,從而影響了二氯喹啉酸的反應(yīng)速率[26].
圖1 不同二氯喹啉酸初始濃度下ln(C0/C)與反應(yīng)時(shí)間的擬合曲線Fig.1 Plots of ln(C0/C) versus reaction time at various [QC]
表1 不同二氯喹啉酸初始濃度下降解速率常數(shù)的變化Table 1 Effect of QC initial concentration on its degradation rate constant
2.2PMS用量對(duì)二氯喹啉酸降解的影響
保持反應(yīng)體系中二氯喹啉酸初始濃度不變,為0.04mmol/L,Co2+與PMS摩爾濃度之比始終保持在Co(Ⅱ)/PMS=1/100,改變PMS的投加量,使其在0~32mmol/L范圍內(nèi)變化,研究PMS用量對(duì)QC降解速率的影響,所得結(jié)果如圖 2(a)所示.由圖2(a)可以看出,隨著PMS用量的增大,QC的降解速率逐漸加快,當(dāng)PMS濃度為20mmol/L時(shí),4h 內(nèi)QC的降解率可達(dá)80%左右;當(dāng)繼續(xù)增加PMS濃度至32mmol/L時(shí),4h內(nèi)QC的降解率為94%. 圖2(b)描述了PMS濃度在0~32mmol/L范圍內(nèi)變化時(shí)對(duì)反應(yīng)速率常數(shù) k的影響.由圖 2(b)可知,QC的降解速率隨著PMS濃度的升高而線性增大.表明Co(Ⅱ)/PMS體系降解QC的一級(jí)動(dòng)力學(xué)常數(shù)與PMS的濃度成正比[27].
圖2 PMS濃度對(duì)Co(Ⅱ)/PMS體系中二氯喹啉酸降解的影響Fig.2 Effect of PMS concentration on the degradation of quinclorac in the Co(Ⅱ)/PMS system
2.3Co2+用量對(duì)二氯喹啉酸降解的影響
保持溶液中二氯喹啉酸和PMS初始濃度不變,分別為0.02mmol/L和4mmol/L,改變鈷鹽的加入量,使Co2+濃度和PMS濃度之比分別為不添加Co2+和Co(Ⅱ)/PMS=1/10000、1/1000與l/100,研究Co2+用量的變化對(duì)Co(Ⅱ)/PMS體系降解二氯喹啉酸的影響.實(shí)驗(yàn)結(jié)果如圖3所示.由圖3可知,隨著Co2+用量的增加,二氯喹啉酸的降解率逐漸增大,當(dāng)體系中只有PMS時(shí),二氯喹啉酸的降解率僅為 8%,當(dāng) Co(Ⅱ)/PMS=1/10000、1/1000 與l/100時(shí)其降解率分別為 24%、30%和 70%.雖然 Co2+用量的增加能夠促進(jìn)二氯喹啉酸的降解,但是Co2+不是環(huán)境友好物質(zhì),在使用過(guò)程中不宜過(guò)多投加,因此,實(shí)驗(yàn)選定 Co(Ⅱ)/PMS= l/100為適宜添加量.
圖3 Co(Ⅱ)/PMS摩爾比對(duì)Co(Ⅱ)/PMS體系中二氯喹啉酸降解的影響Fig.3 Effect of molar ratio of Co(Ⅱ)/PMS on the degradation of quinclorac in the Co(Ⅱ)/PMS system
2.4Cl-濃度對(duì)二氯喹啉酸降解的影響
目前,在諸多陰離子中,研究較多的是 Cl-,因此實(shí)驗(yàn)選擇添加NaCl來(lái)考察無(wú)機(jī)陰離子Cl-對(duì)Co(Ⅱ)/PMS體系降解二氯喹啉酸的影響,所得結(jié)果如圖4所示.
圖4 Cl-濃度對(duì)Co(Ⅱ)/PMS體系中二氯喹啉酸降解的影響Fig.4 Effect of Cl-concentration on the degradation of quinclorac in the Co(Ⅱ)/PMS system
由圖 4可以看出,當(dāng)氯離子的添加量為5mmol/L時(shí),其對(duì)Co(Ⅱ)/PMS體系催化降解二氯喹啉酸的影響較小,QC的降解率從 70%下降到64%,僅降低了6%;繼續(xù)增大Cl-用量時(shí),QC的降解率繼續(xù)降低,但總體下降幅度不大,當(dāng)氯離子的添加量高達(dá)50mmol/L時(shí),QC降解率仍有56%.可見(jiàn),氯離子對(duì) Co(Ⅱ)/PMS體系降解二氯喹啉酸有一定的抑制作用.這可能是因?yàn)槟軌蜓趸?Cl-生成氯自由基,如式(4)所示,而氯自由基的氧化活性比低,從而成為的淬滅劑[28-29].
2.5二氯喹啉酸在均相 Co(Ⅱ)/PMS體系中的降解機(jī)理
二氯喹啉酸在均相Co(Ⅱ)/PMS體系中的降解產(chǎn)物經(jīng)過(guò)LC/MS分析,發(fā)現(xiàn)產(chǎn)物主要為圖5中的a[m/z=214,179,150,122]和b[m/z=188,173,130].根據(jù)質(zhì)譜圖,當(dāng)降解產(chǎn)物的m/z=214時(shí),推測(cè)該物質(zhì)可能是二氯喹啉酸脫羰基后的產(chǎn)物,為 3,7-二氯-8-羥基喹啉(242-CO=214),特征碎片有 7-氯-8-羥基喹啉(214-Cl+H=179)、1,2,3,4-四氫-8-羥基喹啉(214-2Cl+6H=150)、2-氨基-3-甲基-苯酚(214-2Cl-CH-N+6H=122).當(dāng)降解產(chǎn)物的m/z =188時(shí),推斷二氯喹啉酸的另一降解產(chǎn)物為7-氯-8-喹啉甲醛(242-Cl-OH-H=188);特征碎片有 7-氯-8-甲基喹啉(188-O+H=173)、喹啉(188-Cl-CO+5H=130).另外,向二氯喹啉酸降解產(chǎn)物中添加AgNO3溶液時(shí),觀察到有白色沉淀形成,進(jìn)一步證實(shí)二氯喹啉酸的降解產(chǎn)物中形成了脫氯物質(zhì).
圖5 二氯喹啉酸在Co(Ⅱ)/PMS體系中可能的降解途徑Fig.5 Possible degradation pathways of quinclorac in the Co(Ⅱ)/PMS system
因此,根據(jù)這一分析結(jié)果,提出了二氯喹啉酸在均相 Co(Ⅱ)/PMS體系中的降解途徑,所得結(jié)果如圖5所示.由圖5可推測(cè),在均相Co(Ⅱ)/PMS體系中,Co2+催化PMS分解生成.然后硫酸自由基進(jìn)攻二氯喹啉酸分子兩個(gè)不同的位置:第一,進(jìn)攻羧酸基團(tuán)上的羰基生成相應(yīng)的脫羰基化合物 a;第二,進(jìn)攻喹啉環(huán)上氯原子和羥基生成相應(yīng)的醛類化合物 b.這一研究結(jié)果與 Li等[8]和Lucía等[30]采用生物技術(shù)和光催化技術(shù)降解二氯喹啉酸生成的降解產(chǎn)物相類似.
3.1采用 Co2+活化單過(guò)氧硫酸氫鉀(PMS)的方法可以有效降解二氯喹啉酸,降解過(guò)程符合準(zhǔn)一級(jí)反應(yīng)動(dòng)力學(xué).
3.2在 Co(Ⅱ)/PMS體系中隨著二氯喹啉酸初始濃度的降低,QC降解速率先升高后降低,QC的降解速率隨著PMS濃度的升高而線性增大,Co2+促進(jìn)二氯喹啉酸的降解,Cl-對(duì)QC降解有抑制作用.
3.3LC/MS鑒定結(jié)果表明二氯喹啉酸的降解是一個(gè)脫羰基和脫氯的過(guò)程,降解的主要產(chǎn)物為3,7-二氯-8-羥基喹啉和7-氯-8-喹啉甲醛.
[1] Yukari Sunohara, Hiroshi Matsumoto. Quinclorac-induced cell death is accompanied by generation of reactive oxygen species in maize root tissue [J]. Phytochemistry, 2008,69(12):2312-2319.
[2] Maria Vittoria Pinna, Alba Pusino. Direct and indirect photolysis of two quinolinecarboxylic herbicides in aqueous systems [J]. Chemosphere, 2012,86(6):655-658.
[3] Lü Zhenmei, Min Hang, Wu Shuwen, et al. Phylogenetic and degradation characterization of burkholderia cepacia wz1 degrading herbicide quinclorac [J]. Journal of Environmental Science and Health Part B-pesticides, food contaminants, and agricultural wastes, 2003,B38(6):771-782.
[4] Yukari Sunohara, Shinjiro Shirai, Hiroki Yamazaki, et al. Involvement of antioxidant capacity in quinclorac tolerance in Eleusine indica [J]. Environmental and Experimental Botany,2011,74:74-81.
[5] 丁春霞,何紫君,鄭 琛,等.HDTMAB改性蒙脫石對(duì)二氯喹啉酸的吸附研究 [J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2014,33(9):1755-1761.
[6] 楊麗華,龔道新,袁雅潔,等.低分子量有機(jī)酸對(duì)粘土礦物吸附二氯喹啉酸的影響 [J]. 農(nóng)藥學(xué)學(xué)報(bào), 2013,15(3):323-330.
[7] 鄭雄志,李宏光,龍世平,等.幾種解毒劑對(duì)煙田二氯喹啉酸次生藥害的修復(fù)效果 [J]. 南方農(nóng)業(yè)學(xué)報(bào), 2013,44(3):426-430.
[8] Li Zimu, Shao Tiejuan, Min Hang, et al. Stress response of Burkholderia cepacia WZ1 exposed to quinclorac and the biodegradation of quinclorac [J]. Soil Biology and Biochemistry,2009,41(5):984-990.
[9] Lü Zhenmei, Li Zimu, Sang Liya, et al. Characterization of a strain capable of degrading a herbicide mixture of quinclorac and bensulfuronmethyl [J]. Pedosphere, 2008,18(5):554-563.
[10] 劉佳露,盧 偉,張鳳君,等.活化過(guò)硫酸鹽氧化地下水中苯酚的動(dòng)力學(xué)研究 [J]. 中國(guó)環(huán)境科學(xué), 2015,35(9):2677-2681.
[11] Li Huanxuan, Wan Jinquan, Ma Yongwen, et al. Influence of particle size of zero-valent iron and dissolved silica on the reactivity of activated persulfate for degradation of acid orange 7 [J]. Chemical Engineering Journal, 2014,237:487-496.
[12] Han Donghui, Wan Jinquan, Ma Yongwen, et al. New insights into the role of organic chelating agents in Fe(II) activated persulfate processes [J]. Chemical Engineering Journal, 2015,269:425-433.
[13] Shi Yafei, Yang Jiakuan, Yu Wenbo, et al. Synergetic conditioning of sewage sludge via Fe2+/persulfate and skeleton builder: Effect on sludge characteristics and dewaterability [J]. Chemical Engineering Journal, 2015,270:572-581.
[14] 何洋洋,唐素琴,康婷婷,等.響應(yīng)面法優(yōu)化硫酸根自由基高級(jí)氧化深度處理滲濾液生化尾水 [J]. 中國(guó)環(huán)境科學(xué), 2015,35(6):1749-1755.
[15] Javier Fernandez, Pichai Maruthamuthu, Albert Renken, et al. Bleaching and photobleaching of Orange II within seconds by the oxone/Co2+ reagent in Fenton-like processes [J]. Applied Catalysis B: Environmental, 2004,49(3):207-215.
[16] Do Si-Hyun, Jo Jeong-Hwan, Jo Young-Hoon, et al. Application of a peroxymonosulfate/cobalt (PMS/Co(II)) system to treat diesel-contaminated soil [J]. Chemosphere, 2009,77(8):1127-1131.
[17] Wang Zhaohui, Yuan Ruixia, Guo Yaoguang, et al. Effects of chloride ions on bleaching of azo dyes by Co2+/oxone regent:kinetic analysis [J]. Journal of Hazardous Materials, 2011, 190 (1-3):1083-1087.
[18] George P. Anipsitakis, Dionysios D. Dionysiou. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt [J]. Environ. Sci. Technol., 2003,37(20):4790-4797.
[19] Xu Lei, Yuan Ruixia, Guo Yaoguang, et al. Sulfate radicalinduced degradation of 2,4,6-trichlorophenol: A de novo formation of chlorinated compounds [J]. Chemical EngineeringJournal, 2013,217:169-173.
[20] Zhang Mi, Chen Xiaoqing, Zhou He, et al. Degradation of p-nitrophenol by heat and metal ions co-activated persulfate [J]. Chemical Engineering Journal, 2015,264:39-47.
[21] Li Shen-Xin, Wei Dong, Mak Nai-Ki, et al. Degradation of diphenylamine by persulfate: Performance optimization, kinetics and mechanism [J]. Journal of Hazardous Materials, 2009,164(1):26-31.
[22] Yang Shiying, Xiao Tuo, Zhang Jun, et al. Activated carbon fiber as heterogeneous catalyst of peroxymonosulfate activation for efficient degradation of Acid Orange 7 in aqueous solution [J]. Separation and Purification Technology, 2015,143:19-26.
[23] Sun Hongqi, Kwan ChungKeat, Suvorova Alexandra, et al. Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals [J]. Applied Catalysis B: Environmental, 2014,154-155:134-141.
[24] Zhou Lincheng, Ma Junjun, Zhang He, et al. Fabrication of magnetic carbon composites from peanut shells and its application as a heterogeneous Fenton catalyst in removal of methylene blue [J]. Applied Surface Science, 2015,324:490-498.
[25] Wang Xuxian, Sun Hongqi, Duan Xiaoguang, et al. A new magnetic nano zero-valent iron encapsulated in carbon sphere for oxidative degradation of phenol [J]. Applied Catalysis B:Environmental, 2015,172-173:73-81.
[26] 陳曉旸,王衛(wèi)平,朱鳳香,等.UV/K2S2O8降解偶氮染料AO7的研究:動(dòng)力學(xué)及反應(yīng)途徑 [J]. 環(huán)境科學(xué), 2010,31(7):1433-1537.
[27] Chen Xiaoyang, Qiao Xianliang, Wang Degao, et al. Kinetics of oxidative decolorization and mineralization of acid orange 7by dark and photoassisted Co2+-catalyzed peroxymonosulfate system [J]. Chemosphere, 2007,67(4):802-808.
[28] Chan K H, Chu W. Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate: different cobalt counter anions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process [J]. Water Research, 2009,43(9):2513-2521.
[29] Lars R Bennedsen, Jens Muff, Erik G S?gaard. Influence of chloride and carbonates on the reactivity of activated persulfate [J]. Chemosphere, 2012,86(11):1092-1097.
[30] Lucía Pareja, Andrés Pérez-Parada, Ana Agüera, et al. Photolytic and photocatalytic degradation of quinclorac in ultrapure and paddy field water: Identification of transformation products and pathways [J]. Chemosphere, 2012,87(8):838-844.
致謝:本實(shí)驗(yàn)的液質(zhì)(LC/MS)分析測(cè)試工作由湖南農(nóng)業(yè)大學(xué)分析測(cè)試中心完成,在此表示感謝.
Degradation characteristics of quinclorac in homogeneous Co(Ⅱ)/PMS system.
ZHONG Mei-e1,2,3, LI Ji1, GONG Dao-xin2*, YAO Qian-yu2, DING Chun-xia1, YANG Li-hua2(1.College of Science, Hunan Agriculture University,Changsha 410128, China;2.College of Resource and Environment, Hunan Agricultural University, Changsha 410128,China;3.Orient Science and Technology College of Hunan Agricultural University, Changsha 410128, China).
China Environmental Science, 2015,35(11):3282~3287
An effective advanced oxidation process for the degradation of quinclorac (QC) in water is reported. This method is based on the oxidation of quinclorac by sulfate radicals generated from the decomposition of peroxymonosulfate (PMS) mediated by Co (Ⅱ) ion in the aqueous phase. The effects of the concentration of PMS and Cl-,molar ratio of Co (Ⅱ)/PMS as well as the initial concentration of QC on the degradation efficiency of QC were examined. The results showed that the degradation of QC in the homogeneous Co (Ⅱ)/PMS system fitted well to the pseudo-first-order kinetic model. The degradation rate of QC increased with the decreasing of molar ratio of QC/PMS, but declined as the ratio of QC/PMS lower than 1/100 when the initial concentration of QC was in the range of 0.02~0.2mmol/L. The reaction rates linearly increased with the increase of PMS concentration with a QC decomposition as high as 94% within 4 hours at an initial concentration of 32mmol/L PMS. The ratio of Co (Ⅱ)/PMS had positive effect on the degradation of QC, while Cl-had negative impact. The results of LC/MS analysis indicated that 3,7-dichloro-8-hydroxy quinoline and 7-chloro-8-quinoline carboxaldehyde were the two major intermediates of QC degradation.
advanced oxidation technologies;peroxymonosulfate;sulfate radical;degradation;quinclorac
X703.5
A
1000-6923(2015)11-3282-06
2015-04-15
湖南農(nóng)業(yè)大學(xué)東方科技學(xué)院項(xiàng)目(14QNZ07);湖南省教育廳項(xiàng)目(15C0653);湖南省科技廳項(xiàng)目(2014SK3178)
* 責(zé)任作者, 教授, gdx4910@163.com
鐘美娥(1979-),女,湖南邵陽(yáng)人,講師,博士,主要從事環(huán)境污染物的修復(fù)治理以及功能材料的制備與性能研究.發(fā)表論文 20余篇.