彭艷蓉,王久玲,王 鵬,曾光明,劉 芬,張 玲,黃小明(.湖南大學環(huán)境科學與工程學院,環(huán)境生物與控制教育部重點實驗室,湖南 長沙 4008;.霍尼韋爾綜合科技(中國)有限公司,上海 003)
催化濕式共氧化降解內(nèi)分泌干擾物雙酚A 的研究
彭艷蓉1*,王久玲1,王鵬1,曾光明1,劉芬1,張玲2,黃小明1(1.湖南大學環(huán)境科學與工程學院,環(huán)境生物與控制教育部重點實驗室,湖南 長沙 410082;2.霍尼韋爾綜合科技(中國)有限公司,上海 201203)
以NaNO2為催化劑、2,4,6-三氯苯酚(TCP)為共氧化物質(zhì)對內(nèi)分泌干擾物雙酚A(BPA)進行了催化濕式共氧化(CWCO)降解,研究發(fā)現(xiàn),在NaNO2存在的條件下,TCP的加入極大地促進了BPA的降解:在170℃、0.5MPa氧氣壓力條件下反應6h后,催化濕式共氧化體系中COD去除率達到了71.2%,而BPA單獨氧化降解時,COD去除率僅為24.7%.在此基礎上考察了反應溫度、氧氣壓力、反應時間、TCP濃度和NaNO2濃度對BPA降解效率的影響,篩選出了最優(yōu)反應條件(170℃的反應溫度、0.5MPa的氧氣壓力、6h的反應時間、0.5mmol/L BPA、0.5mmol/L TCP和0.1mmol/L NaNO2).在優(yōu)化條件下,BPA和TCP去除率分別達到了100%和96.4%,同時反應后溶液的可生化性大大提高,BOD5/COD值從反應前的0.08增加到了0.95.另外,GC-MS結(jié)果表明,BPA和TCP降解的產(chǎn)物主要為小分子有機酸,分別是乙酸,2-甲基戊二酸,丁二酸,3-甲基己二酸,己三酸以及1-丙烯基-1,2,3-三羧酸.該共氧化技術(shù)為污染水體中BPA和TCP的同時去除提供了一種可能性.
催化濕式共氧化;雙酚A;2,4,6-三氯苯酚;亞硝酸鈉;污染水體
雙酚 A(BPA)是一種典型的內(nèi)分泌干擾物(EDCs),廣泛應用于聚碳酸酯塑料和環(huán)氧樹脂的生產(chǎn)[1-2].由于大量生產(chǎn)和廣泛使用,BPA通過各種途徑進入到環(huán)境中,美國環(huán)境保護署估計每年被釋放到環(huán)境中的BPA總量超過 100萬磅[3-4],目前已經(jīng)報道在水體[5-10]、大氣[11-12]、沉積物和生物體[13]等各種環(huán)境介質(zhì)中都檢測到了 BPA. BPA具有內(nèi)分泌干擾作用,它能夠通過與激素受體結(jié)合來模擬激素的行為,從而影響哺乳動物的生殖功能[14-15].近年來,國內(nèi)外都致力于污染水體中BPA處理方法的研究[16-17].
傳統(tǒng)的生物法由于處理成本低和操作簡單而被廣泛用于水體中BPA的處理[18],但是生物法處理時間長,且去除效率不高[19].高級氧化法由于氧化速度快、處理效率高,已被廣泛用于水體中 BPA的處理,主要包括 Fenton (Fe2+/H2O2)氧化、臭氧氧化、光催化氧化、濕式空氣氧化(WAO)和超聲氧化等[20-37].催化濕式空氣氧化法(CWAO)被認為是能夠把污染物降解為易于生物降解的小分子化合物或者直接礦化為 CO2和H2O的最有效、最具有應用前景的技術(shù)之一[38-39]. Mezohegyi等[19]和Erjavec等[34,40]分別采用鈦酸鹽納米管為催化劑對BPA水溶液(10mg/L)進行了CWAO處理,在210℃下,BPA去除率均達到了99%以上.Bistan等[41]發(fā)展了以Ru/TiO2為催化劑的CWAO體系來對 BPA溶液(20mg/L)進行處理,在200℃下,BPA完全被去除,同時TOC去除了96%以上.由以上可知,CWAO技術(shù)能夠有效地去除水體中的 BPA,但是一般需要較高的反應溫度(≥200℃),這將會嚴重妨礙CWAO技術(shù)的工業(yè)化應用.為了提高 CWAO技術(shù)的實用性,必須采用合適的方法來降低反應溫度.
催化濕式共氧化法(CWCO)通過加入一種易于氧化的物質(zhì)來帶動難降解物質(zhì)的氧化,從而在較低的反應溫度下實現(xiàn)難降解物質(zhì)的降解.如在NaNO2催化濕式氧化體系中,加入TCP可以在溫和條件下實現(xiàn)對硝基苯酚(PNP)的高效降解[42].另外,本研究小組[43]發(fā)現(xiàn),在該催化濕式氧化體系中,TCP的加入能夠促進垃圾滲濾液中難降解有機物腐殖質(zhì)的降解.Raffainer等[44]采用FeSO4催化濕式氧化體系對偶氮染料酸性橙7進行降解,當加入3,4,5-三羥基苯甲酸(5倍子酸)作共氧化物質(zhì)時,在 160℃和 1.0MPa氧氣壓力條件下反應 90min,溶液的 TOC去除率可以達到70%;而不加5倍子酸時需要在190℃和1.0MPa氧氣壓力條件下才能達到同樣的去除效果.同樣地,在150℃和0.5MPa氧氣壓力條件下,加入四氫呋喃作為共氧化物質(zhì)可以加速十溴聯(lián)苯醚的降解[45].以上這些研究結(jié)果說明了共氧化物質(zhì)的存在能夠降低催化濕式氧化體系的反應溫度,從而在較溫和的條件下實現(xiàn)難降解物質(zhì)的降解.
考慮到在 NaNO2催化濕式氧化體系中, TCP的加入可以促進PNP以及垃圾滲濾液中難降解有機物腐殖質(zhì)的降解,再加上BPA和TCP在垃圾滲濾液中經(jīng)常被同時檢測到[46],所以本研究以TCP作為共氧化物質(zhì),采用NaNO2催化濕式共氧化技術(shù)來實現(xiàn) BPA的氧化降解,旨在達到同時去除污染水體如垃圾滲濾液中BPA和TCP的目的.
1.1試劑
BPA,TCP,NaNO2,氯化鈉,無水硫酸鈉,濃鹽酸,乙醚及其它試劑均為分析純試劑.甲醇(Honeywell Burdick&Jackson,美國)和乙腈(Honeywell Burdick&Jackson,美國)均為HPLC級試劑.0.2mol/L三甲基氫氧化硫(Me3S+OH-)甲醇溶液購自Acros (Tokyo Kasei Kodyo Co., Ltd., Japan).實驗用水為超純水.BPA和TCP的性質(zhì)見表1.
表1 實驗化合物的理化性質(zhì)Table 1 Chemical and physical properties of chemicals in the experiments
1.2實驗裝置與儀器
實驗裝置由 4 部分組成:高壓反應釜(大連旅順偉達分析儀器部件廠)、電加熱套、PID 溫控儀(廈門宇光電子技術(shù)有限公司)和磁力攪拌器(鞏義市英峪予華儀器廠).釜體和釜蓋之間采用四氟墊圈進行良好的密封.釜體內(nèi)放入一個下端封口的玻璃襯套作為反應容器,有效容積約為50mL.
HPLC分析在Agilent 1100series高效液相色譜儀上進行,包括真空脫氣機、四元泵、柱溫箱和 VWD檢測器,Agilent ZORBAX SB-C18色譜柱(250mm×4.6mm×5μm).GC-MS分析在氣相色譜-質(zhì)譜聯(lián)用儀(日本島津 GCMSQP2010/Plus)上進行,色譜柱采用 DB-5MS (30m×0.25mm×0.25μm).MS-3型微波消解COD測定儀(環(huán)境保護部華南環(huán)境科學研究所)用來測定溶液的化學耗氧量(COD).PHS-2F型pH計(上海精密科學儀器有限公司雷磁儀器廠)用來測定溶液的pH值.
1.3實驗方法
向帶有玻璃襯套的反應釜中分別加入10mL 1mmol/L BPA溶液和10mL 1mmol/L TCP溶液,這樣混合溶液中 BPA和 TCP的初始濃度均為0.5mmol/L,然后加入一定量的 NaNO2作為催化劑,放入磁子,接著密封反應釜,向反應釜中充入0.5MPa的氧氣,最后加熱到設定的溫度進行反應,溫度由PID控制,同時進行磁力攪拌,攪拌速度控制在550r/min.反應時間包括加熱時間,加熱時間大約為 40min.反應結(jié)束后,將反應釜放到水浴中冷卻至室溫,緩慢地打開出氣閥泄壓,最后打開反應釜,取樣分析.
1.4分析方法
反應前后溶液的 COD采用微波消解滴定法測定,將COD去除率作為反應后去除效果的一種重要指標[49].溶液的BOD5值采用稀釋與接種法測定(HJ 505-2009).反應前后溶液中 BPA 和TCP濃度采用HPLC進行測定.流動相為甲醇:乙腈:超純水=35:25:40(體積比),流速為1mL/min,柱溫為 30℃,檢測波長為 290nm,BPA 和TCP的出峰時間分別為3.9min和8.4min.采用逐級稀釋的方法分別配制濃度為 1.0,0.8,0.6, 0.4,0.2mmol/L的BPA溶液,用HPLC測定其相應的峰面積,以峰面積對濃度作圖,得到 BPA的HPLC標準曲線,結(jié)果表明峰面積與濃度成線性關(guān)系,線性回歸系數(shù)為 0.995,說明在該濃度范圍內(nèi),HPLC可以準確地測量 BPA的濃度.用同樣的方法在 0.2~1.6mmol/L的濃度范圍內(nèi)可以得到TCP的HPLC標準曲線,其線性回歸系數(shù)為0.999.對于BPA和TCP降解產(chǎn)生的小分子化合物用GC-MS進行定性分析.向0.5mmol/LBPA 和0.5mmol/L TCP混合溶液中加入0.1mmol/L NaNO2溶液,在170℃和0.5MPa氧氣壓力條件下反應 6h后,冷凍干燥,得到淡黃色的固體,加入6mL 3mol/L的鹽酸,得到pH<2的溶液.然后向溶液中加入氯化鈉至飽和,用乙醚萃取 3次,每次10mL.將所有的乙醚萃取液合并,用無水硫酸鈉干燥后,旋轉(zhuǎn)蒸發(fā)得到固體,加入1mL甲醇溶解,向該甲醇溶液中加入0.2mL濃度為0.2mol/L的Me3S+OH-甲醇溶液進行衍生化,最后進行 GCMS分析.以氦氣作為載氣,EI離子源,電子轟擊電壓為 70eV.柱溫程序為: 60℃保持 5min,接著以 5℃/min的升溫速率升到 180℃,再以 10℃/ min升到250℃,并保持10min.
2.1預實驗
圖1 BPA與TCP混合溶液反應前(a)與反應后(b)的高效液相色譜圖Fig.1 HPLC chromatograms of the mixture of BPA and TCP before (a) and after CWCO(b)
單獨加熱0.5mmol/L BPA溶液,在170℃和0.5MPa氧氣壓力條件下反應6h后,BPA溶液的COD去除率為 24.7%.當向 BPA溶液中加入0.1mmol/L NaNO2,在相同條件下,反應后溶液的COD去除率為26.1%.以上實驗結(jié)果表明NaNO2對 BPA的濕式氧化降解沒有明顯的促進作用. 向 0.5mmol/L BPA溶液中加入 0.1mmol/L NaNO2和0.5mmol/L TCP,在170℃和0.5MPa氧氣壓力條件下反應 6h后,BPA去除率達到了100%,同時TCP去除率為96.4%(圖1),此時混合溶液的COD和TOC去除率分別達到了71.2% (356.6mg/L→102.6mg/L)和 67.1%(112.4mg/L→37.0mg/L),這一實驗結(jié)果與預期相符.
2.2溫度和時間對CWCO的影響
溫度是 CWCO法的一個極其重要的操作參數(shù),本研究在130~170℃的范圍內(nèi)考察了溫度對 BPA催化濕式共氧化降解的影響,其他反應條件固定:BPA、TCP和NaNO2濃度分別為0.5, 0.5,0.1mmol/L,氧氣壓力為 0.5MPa.從圖 2(a)和2(b)可以看出,在相同的反應時間內(nèi),隨著反應溫度的升高,BPA和TCP去除率均相應增加,同時反應后溶液顏色由無色透明變成了黃色.由HPLC分析可知,在150℃下反應6h,BPA可能轉(zhuǎn)變成了有色的中間產(chǎn)物,Mezohegyi等[19]也證實了這一點,他們發(fā)現(xiàn) BPA在濕式氧化降解過程中產(chǎn)生了多種中間產(chǎn)物,如對羥基苯乙酮等.另外在臭氧氧化、超聲氧化等氧化降解BPA體系中也檢測到了多種中間產(chǎn)物如羥基化的BPA、苯醌和對苯二酚等[23,35].當溫度進一步增加到170℃時,反應后溶液呈無色透明,說明隨著反應溫度的升高,有色的中間產(chǎn)物進一步被氧化降解,此時BPA和TCP去除率分別增加到100% 和96.4%.
從圖2(c)可以看出,反應后溶液的COD去除率也隨著反應溫度的升高而增大.當反應溫度增加到170℃,反應6h后溶液的COD去除率增加到了71.2%,進一步延長反應時間至8h,COD去除率不再有明顯的增加.由以上結(jié)果可以看出,170℃的反應溫度和6h的反應時間對于目前的CWCO體系已經(jīng)足夠.
圖2 溫度和時間對CWCO法的影響Fig.2 Effect of temperature and time on the CWCO process
2.3氧氣壓力對CWCO的影響
氧氣壓力也是催化濕式共氧化降解有機污染物的重要因素.根據(jù)Henry定律,液相中溶解氧濃度與氣相中氧氣分壓成正比,因此增加氧氣壓力將會使得液相中溶解氧濃度增加,進而導致有機物更有效的氧化去除[50].為了考察氧氣壓力對BPA催化濕式共氧化降解的影響,本研究在0.1~0.7MPa的氧氣壓力范圍內(nèi)進行了BPA的氧化降解,此時其他條件固定為:BPA、TCP和NaNO2濃度分別為 0.5,0.5,0.1mmol/L,反應溫度為170,℃反應時間為6h.從圖3中可以看出,隨著氧氣壓力的增大,BPA、TCP和COD去除率均相應增加.當氧氣壓力增加到 0.5MPa時,TCP和COD去除率分別增加了 12.7%(83.7%→96.4%)和 11.8%(59.4%→71.2%);當氧氣壓力繼續(xù)增加到0.6MPa時,TCP和COD去除率均不再有明顯的增加.以上結(jié)果表明當氧氣壓力高于 0.5MPa 時,它對TCP和COD去除的影響可以忽略,同時也說明了0.5MPa的氧氣壓力對于目前的催化濕式共氧化體系已經(jīng)足夠.
圖3 氧氣壓力對CWCO法的影響Fig.3 Effect of oxygen pressure on the CWCO process
2.4TCP濃度對CWCO的影響
TCP作為共氧化物質(zhì),它的濃度對于BPA的降解有著顯著的影響.本研究在其他實驗條件保持不變(0.5mmol/L BPA、0.1mmol/L NaNO2、170℃、0.5MPa和 6h)的情況下,在 0.05~0.8mmol/L范圍內(nèi)考察了TCP濃度對BPA降解效率的影響.從圖 4中可以看出,TCP的加入對BPA的氧化降解具有很大的促進作用.不加TCP的對照實驗表明BPA去除率可以達到88.0%,但是溶液的COD去除率僅為26.1%,這可能是由于大部分BPA轉(zhuǎn)變成了中間產(chǎn)物.當向該體系中加入0.05mmol/L TCP時,BPA去除率增加到89.7%,同時反應后溶液的 COD去除率達到了 35.5%. 當 TCP濃度從 0.05mmol/L增加到 0.5mmol/L 時,BPA去除率達到了100%,COD去除率增加了35.7%,即從35.5%增加到71.2%.隨著TCP濃度進一步增加到0.8mmol/L,COD去除率只有輕微的增加(71.2%→77.4%).這些結(jié)果表明在該催化濕式共氧化體系中,0.5mmol/L可能是TCP的較佳濃度.
2.5NaNO2濃度對CWCO的影響
圖5 亞硝酸鈉濃度對CWCO法的影響Fig.5 Effect of NaNO2concentration on the CWCO process
在BPA和TCP濃度分別為0.5,0.5mmol/L,反應溫度為170℃,氧氣壓力為0.5MPa和反應時間固定為6h的條件下,在0.05~1.0mmol/L范圍內(nèi)考察了NaNO2濃度對BPA催化濕式共氧化降解效率的影響.從圖 5中可以看出,當加入0.05mmol/L NaNO2時,反應后溶液為淡黃色,同時COD去除率為62.8%.當NaNO2濃度增加到0.1mmol/L時,反應后溶液為無色透明,且COD去除率達到了71.2%.此時再進一步增加NaNO2濃度,反應后溶液的 COD去除率有所下降.如當NaNO2濃度為1.0mmol/L時,反應后溶液呈乳黃色,且 COD去除率下降為 57.8%.基于以上的實驗結(jié)果,NaNO2濃度最終確定為0.1mmol/L.
2.6廢水的可生化性
在優(yōu)化條件(0.5mmol/L BPA、0.5mmol/L TCP和0.1mmol/L NaNO2、170℃的反應溫度、0.5MPa的氧氣壓力、6h的反應時間)下分別確定了BPA原液、BPA溶液經(jīng)濕式氧化處理后溶液、BPA溶液經(jīng)催化濕式氧化處理后溶液、BPA和TCP混合原液及混合原液經(jīng)催化濕式共氧化處理后溶液的可生化性指數(shù),其中濕式氧化處理不加NaNO2,催化濕式氧化處理加NaNO2.
BPA原液(A)、BPA溶液經(jīng)濕式氧化處理后溶液(B)、BPA溶液經(jīng)催化濕式氧化處理后溶液(C)及BPA與TCP混合原液(D)的BOD5/COD值分別為0.07、0.35、0.33和0.08,而混合原液經(jīng)催化濕式共氧化法處理后(E)的BOD5/COD值達到了 0.95(圖 6).一般情況下,廢水的可生化性大于0.3就認為該廢水可以采用生化法進行處理[51].從圖7中可以看出,當TCP加入到BPA催化濕式氧化體系中時,反應后溶液的可生化性大大增加,BOD5/COD值從 0.33增加到了 0.95.雖然CWCO法處理BPA溶液后COD沒有達到100%的去除,但是其降解產(chǎn)物是易于生物降解的,這些降解產(chǎn)物可以通過生物法進一步去除.
圖6 不同樣品在不同實驗條件下的BOD5、COD值及可生化性Fig.6 BOD5, COD and biodegradability indexes of different samples after reaction with different processes
2.7降解產(chǎn)物的鑒定
降解產(chǎn)物中的小分子有機酸用 GC-MS 進行檢測,結(jié)果表明總共可檢測到6種主要的小分子有機酸,它們分別為乙酸、2-甲基戊二酸、丁二酸、3-甲基己二酸、己三酸以及 1-丙烯基-1,2,3-三羧酸(表 2),其中乙酸的峰強度最大,說明它是降解產(chǎn)物中的主要成分.由以上結(jié)果可以看出,檢測到的主要降解產(chǎn)物都是可生物降解的小分子有機酸,這也進一步說明了BPA溶液經(jīng)過催化濕式共氧化降解后可生物降解性大大提高.
表2 BPA 和 TCP 催化濕式共氧化降解產(chǎn)物Table 2 Products formed after the CWCO BPA and TCP
2.8反應機理
對于濕式氧化法來說,有機物質(zhì)的降解與自由基的產(chǎn)生是緊密相關(guān)的[52-53].根據(jù)NaNO2催化濕式共氧化降解PNP和TCP的反應機理[38],TCP 與NaNO2反應生成三氯苯酚鈉和亞硝酸(HNO2),接著三氯苯酚鈉鹽被氧氣氧化形成超氧陰離子(O2·─)和三氯苯酚自由基(方程1).HNO2受熱易分解產(chǎn)生NO和NO2(方程2),O2·─與NO反應生成過氧亞硝酸根(ONOO-)(方程 3).在酸性條件下,ONOO-迅速質(zhì)子化為其共軛酸—過氧亞硝酸(ONOOH,pKa=6.8)(方程4),ONOOH是一種強氧化劑,它能通過均裂的方式分解產(chǎn)生活性很高的·OH和·NO2(方程5)[54-55],從而引發(fā)了自由基反應,使BPA和TCP及其中間產(chǎn)物降解.
3.1與濕式氧化體系相比,加入NaNO2和TCP可以促進BPA的氧化降解.當采用CWCO法處理BPA溶液,在優(yōu)化條件下,只需加入0.1mmol/L NaNO2作催化劑和0.5mmol/L TCP作共氧化物質(zhì)就可使BPA達到100%的去除,同時反應后溶液的COD去除了71.2%,另外TCP去除率也達到了96.4%.
3.2在優(yōu)化條件下采用CWCO法處理BPA和TCP的混合原液,反應后溶液的BOD5/COD從反應前的0.08增加到了0.95,這說明反應后溶液很容易被生物降解,該CWCO法處理效果好.
3.3GC-MS檢測結(jié)果表明,BPA和TCP催化濕式共氧化降解的主要產(chǎn)物是小分子有機酸.
3.4通過反應機理分析,CWCO法處理BPA的過程中有自由基的參與.在NaNO2和TCP同時存在的條件下,生成過氧亞硝酸,其進一步均裂產(chǎn)生的·OH和·NO2參與降解過程.
[1] Mita L, Baldi A, Diano N, et al. Differential accumulation of BPA in some tissues of offspring of Balb-C mice exposed to different BPA doses [J]. Environmental Toxicology and Pharmacology, 2012,33(1):9-15.
[2] Cui Y H, Li X Y, Chen G H. Electrochemical degradation of bisphenol A on different anodes [J]. Water Research, 2009,43(7):1968-1976.
[3] Yamamoto T, Yasuhara A, Shiraishi H, et al. Bisphenol A in hazardous waste landfill leachates [J]. Chemosphere, 2001,42(4):415-418.
[4] Fürhacker M, Scharf S, Weber H. Bisphenol A: emissions from point sources [J]. Chemosphere, 2000,41(5):751-756.
[5] Nakada N, Tanishima T, Shinohara H, et al. Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment [J]. Water Research, 2006,40(17):3297-3303.
[6] Kuch H M, Ballschmiter K. Determination of endocrinedisrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range [J]. Environmental Science and Technology, 2001,35(15):3201-3206.
[7] Ra J, Lee S, Lee J, et al. Occurrence of estrogenic chemicals in South Korean surface waters and municipal wastewaters [J]. Journal of Environmental Monitoring, 2011,13(1):101-109.
[8] Jonkers N, Sousa A, Galante-Oliveira S, et al. Occurrence and sources of selected phenolic endocrine disruptors in Ria de Aveiro, Portugal [J]. Environmental Science and Pollution Research, 2010, 17(4):834-843.
[9] Zhao J, Ying G, Wang L, et al. Determination of phenolic endocrine disrupting chemicals and acidic pharmaceuticals in surface water of the Pearl Rivers in South China by gas chromatography-negative chemical ionization-mass spectrometry [J]. Science of The Total Environment, 2009,407(2):962-974.
[10] Fan Z L, Hu J Y, An W, et al. Detection and Occurrence of Chlorinated Byproducts of Bisphenol A, Nonylphenol, and Estrogens in Drinking Water of China Comparison to the Parent Compounds [J]. Environmental Science and Technology, 2013, 47(19):10841-10850.
[11] Rudel R A, Camann D E, Spengler J D, et al. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust [J]. Environmental Science and Technology, 2003,20(37):4543-4553.
[12] Matsumoto H, Adachi S, Suzuki Y. Bisphenol A in ambient air particulates responsible for the proliferation of MCF-7human breast caner cells and its concentration changes over 6months [J]. Archives of Environmental Contamination and Toxicology, 2005, 48(4):459-466.
[13] Careghini A, Mastorgio A F, Saponaro S, et al. Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review [J]. Environmental Science and Pollution Research, 2015,22(8):5711-5741.
[14] Planello′ R, Mart?′nez-Guitarte J L, Morcillo G. The endocrine disruptor bisphenol A increases the expression of HSP70 and ecdysone receptor genes in the aquatic larvae of Chironomus riparius [J]. Chemosphere, 2008,71(10):1870-1876.
[15] Segner H, Caroll K, Fenske M, et al. Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the European IDEA project [J]. Ecotoxicology and Environmental Safety, 2003,54(3):302-314.
[16] Inoue M, Masuda Y, Okada F, et al. Degradation of bisphenol A using sonochemical reactions [J]. Water Research, 2008,42(6):1379-1386.
[17] Wang R C, Ren D J, Xia S Q, et al. Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR) [J]. Journal of Hazardous Materials, 2009,169(1-3):926-932.
[18] Zhang C, Zeng G M, Yuan L, et al. Aerobic degradation of bisphenol A by Achromobacter xylosoxidans strain B16isolated from compost leachate of municipal solid waste [J]. Chemosphere, 2007,68(1):181-190.
[19] Mezohegyi G, Erjavec B, Kaplan R, et al. Removal of bisphenol A and its oxidation products from aqueous solutions by sequential catalytic wet air oxidation and biodegradation [J]. Industrial and Engineering Chemistry Research, 2013,52(26):9301-9307.
[20] Ioan I, Wilson S, Lundanes E, et al. Comparison of fenton and sono-fenton bisphenol A degradation [J]. Journal of Hazardous Materials, 2007,142(1/2):559-563.
[21] 胡玲,高乃云.Fenton試劑降解內(nèi)分泌干擾物雙酚 A 的研究[J]. 中國給水排水, 2011,27(7):80-82,86.
[22] 周丹,王春暉,趙永紅.Fe/AC非均相Fenton體系降解BPA [J].環(huán)境工程學報, 2014,8(12):5284-5288.
[23] Deborde M, Rabouan S, Mazellier P, et al. Oxidation of bisphenol A by ozone in aqueous solution [J]. Water Research, 2008,42(16):4299-4308.
[24] 王凌云,張錫輝,宋乾武.重污染型河水中典型內(nèi)分泌干擾物的臭氧氧化去除研究 [J]. 環(huán)境科學, 2011,32(5):1357-1363.
[25] 湯茜,周玲妹,陸麗,等.活性炭負載 Fe3+催化臭氧氧化水中雙酚A [J]. 遼寧化工, 2014,43(6):664-667.
[26] Ohko Y, Ando I, Niwa C, et al. Degradation of bisphenol A in water by TiO2photocatalyst [J]. Environmental Science and Technology, 2001,35(11):2365-2368.
[27] 黎雷,高乃云,胡玲,等.陰離子對 UV/H2O2/微曝氣工藝降解雙酚A的影響 [J]. 中國環(huán)境科學, 2008,28(3):233-236.
[28] 柳麗芬,鄭國華,楊鳳林.MWNTs/TiO2/聚酯功能復合膜吸附及其凈化性能 [J]. 中國環(huán)境科學, 2009,29(2):213-218.
[29] 王春英,單國強,陳鵬,等.光催化劑 Bi3.84W0.16O6.24在模擬太陽光下對雙酚A的降解 [J]. 中國環(huán)境科學, 2011,31(12):1977-1982.
[30] 劉成,陳衛(wèi),陶輝,等.太陽光/硫摻雜 TiO2體系對雙酚 A的氧化性能研究 [J]. 環(huán)境科學, 2009,30(6):1653-1657.
[31] 劉芃巖,曹興芳,趙春霞,等.熱敏紙中雙酚A遷移轉(zhuǎn)化的研究 [J].中國環(huán)境科學, 2013,33(5):917-921.
[32] 楊兆輝,閆紹軒,張作友,等.改性葉綠素光催化劑的制備及光催化降解雙酚 A [J]. 水處理技術(shù), 2013,39(10):44-49.
[33] 張雄軍,彭書傳,朱承駐,等.高鐵酸鉀/254nm紫外光氧化降解水體中雙酚A [J]. 環(huán)境化學, 2014,33(4):643-648.
[34] Erjavec B, Kaplan R, Djinovi? P, et al. Catalytic wet air oxidation of bisphenol A model solution in a trickle-bed reactor over titanate nanotube-based catalysts [J]. Applied Catalysis B:Environmental, 2013,132:342-352.
[35] Torres R A, Pétrier C, Combet E, et al. Ultrasonic cavitation applied to the treatment of bisphenol A. Effect of sonochemical parameters and analysis of BPA by-products [J]. Ultrasonics Sonochemistry, 2008,15(4):605-611.
[36] 趙生培,王東田,周穎,等.超聲波/零價鐵降解水中雙酚 A [J].環(huán)境工程學報, 2012,6(12):4417-4422.
[37] 張可佳,高乃云,黎雷,等.超聲對水中雙酚A的降解動力學及影響因素 [J]. 同濟大學學報(自然科學版), 2011,39(11):1652-1656.
[38] Cybulski A. Catalytic Wet air oxidation: are monolithic catalysts and reactors feasible? [J]. Industrial and Engineering Chemistry Research, 2007,46(12):4007-4033.
[39] Xu X Y, Zeng G M, Peng Y R, et al. Potassium persulfate promoted catalytic wet oxidation of fulvic acid as a model organic compound in landfill leachate with activated carbon [J]. Chemical Engineering Journal, 2012,200-202:25-31.
[40] Erjavec B, Ti?ler T, Kaplan R, et al. Titanate nanotubes as a novel catalyst for removal of toxicity and estrogenicity of bisphenol A in the CWAO Process [J]. Industrial and Engineering Chemistry Research, 2013,52(35):12559-12566.
[41] Bistan M, Ti?ler T, Pintar A. Catalytic and photocatalytic oxidation of aqueous bisphenol A solutions: removal, toxicity, and estrogenicity [J]. Industrial and Engineering Chemistry Research, 2012,51(26):8826-8834.
[42] Fu D M, Peng Y R, Liu R H, et al. Concurrent destruction strategy: NaNO2-catalyzed, trichlorophenol-coupled degradation of p-nitrophenol using molecular oxygen [J]. Chemosphere, 2009, 75(6):701-706.
[43] Wang P, Zeng G M, Peng Y R, et al. 2,4,6-Trichlorophenolpromoted catalytic wet oxidation of humic substances and stabilized landfill leachate [J]. Chemical Engineering Journal , 2014,247:216-222.
[44] Raffainer I I, Von Rohr P P. Promoted wet oxidation of the azo dye orange II under mild conditions [J]. Industrial and Engineering Chemistry Research, 2001,40(4):1083-1089.
[45] Zhao H X, Zhang F F, Qu B C, et al. Wet air co-oxidation of decabromodiphenyl ether (BDE209) and tetrahydrofuran [J]. Journal of Hazardous Materials, 2009,169(1-3):1146-1149.
[46] Ho T T, Chen C Y, Li Z G, et al. Determination of chlorophenols in landfill leachate using headspace sampling with ionic liquid-coated solid-phase microextraction fibers combined with gas chromatography-mass spectrometry [J]. Analytica Chimica Acta, 2012,712:72-77.
[47] Staples C A, Dome P B, Klecka G M, et al. A review of the environmental fate, effects, and exposures of bisphenol A [J]. Chemosphere, 1998,36(10):2149-2173.
[48] Antizar-Ladislao B, Galil N I. Biosorption of phenol and chlorophenols by acclimated residential biomass under bioremediation conditions in a sandy aquifer [J]. Water Research, 2004,38(2):267-276.
[49] Guo J Y, Yang C P, Zeng G M. Treatment of swine wastewater using chemically modified zeolite and bioflocculant from activated sludge [J]. Bioresource Technology. 2013,143:289-297.
[50] Peng Y R, Fu D M, Liu R H, et al. NaNO2/FeCl3dioxygen recyclable activator: An efficient approach to active oxygen species for degradation of a broad range of organic dye pollutants in water [J]. Applied Catalysis B: Environmental, 2008,79(2):163-170.
[51] Chamarro E, Marco A, Esplugas S. Use of fenton reagent to improve organic chemical biodegradability [J]. Water Research, 2001,35(4):1047-1051.
[52] Rivas F J, Kolaczkowski S T, Beltran F J, et al. Hydrogen peroxide promoted wet air oxidation of phenol: influence of operating conditions and homogeneous metal catalysts [J]. Journal of Chemical Technology and Biotechnology, 1999,74(5):390-398.
[53] Robert R, Barbati S, Ricq N, et al. Intermediates in wet oxidation of cellulose: identification of hydroxyl radical and characterization of hydrogen peroxide [J]. Water Research, 2002,36(19):4821-4829.
[54] Radi R, Cassina A, Hodara R, et al. Peroxynitrite reactions and formation in mitochondria [J]. Free Radical Biology and Medicine, 2002,33(11):1451-1464.
[55] Gunaydin H, Houk K N. Molecular dynamics simulation of the HOONO decomposition and the HO/NO2caged radical pair in water [J]. Journal of the American Chemical Society, 2008, 130(31):10036-10037.
Catalytic wet co-oxidation of endocrine disrupting chemical-bisphenol A.
PENG Yan-rong1*, WANG Jiu-ling1, WANG Peng1, ZENG Guang-ming1, LIU Fen1, ZHANG Ling2, HUANG Xiao-ming1(1.Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China;2.Honeywell Integrated Technology (China) Corporation Limited, Shanghai 201203, China).
China Environmental Science, 2015,35(8):2417~2425
The catalytic wet co-oxidation (CWCO) of bisphenol A (BPA) was conducted with NaNO2as catalyst and 2,4,6-trichlorophenol (TCP) as co-oxidizing substance, and the results showed that the addition of TCP could significantly promote the degradation of BPA in the presence of NaNO2: when the mixture of BPA and TCP reacted at 170℃ and 0.5MPa oxygen pressure for 6h, the COD removal reached to 71.2%, while the COD removal was only 24.7% after single BPA reacted at the same experimental conditions. On this basis, the effects of reaction temperature, oxygen pressure, reaction time, TCP concentration and NaNO2concentration on the CWCO of BPA were investigated, and the optimum experimental conditions were selected (170℃ of reaction temperature, 0.5 MPa of oxygen pressure, 6h of reaction time, 0.5mmol/L BPA, 0.5mmol/L TCP and 0.1mmol/L NaNO2). Under the optimized conditions, BPA and TCP removal reached 100% and 96.4%, respectively, meanwhile the biodegradability index of the mixture after the CWCO process was significantly improved with the ratio of BOD5/COD increasing from 0.08 of the raw mixture to 0.95. In addition, the main degradation products determined by GC-MS were some small organic acids, including acetic acid, 2-methylglutaric acid, succinic acid, 3-methyladipic acid, propanetricarboxylic acid and 1-propenyl-1, 2, 3-tricarboxylic acid. The co-oxidation technology for BPA and TCP provides a potential application in treatment of polluted waters.
catalytic wet co-oxidation;bisphenol A;2, 4, 6-trichlorophenol;sodium nitrite;polluted water
X703
A
1000-6923(2015)08-2417-09
2015-01-22
國家自然科學基金青年基金項目(51008121);湖南省自然科學基金項目((11JJ4041);湖南大學“青年教師成長計劃”項目
* 責任作者, 講師, pengyr@hnu.edu.cn
彭艷蓉(1979-),女,湖北公安人,講師,博士,主要從事環(huán)境中難降解有機污染物的高級氧化降解研究.發(fā)表論文9篇.