靳紅芬
直覺(jué)思維與邏輯思維同等重要,偏離任何一方都會(huì)制約一個(gè)人思維能力的發(fā)展,有人曾說(shuō):“數(shù)學(xué)的全部力量就在于直覺(jué)和嚴(yán)格性巧妙地結(jié)合在一起,受控制的精神和富有靈感的邏輯?!笔芸刂频木窈透挥忻栏械倪壿嬚菙?shù)學(xué)的魅力所在,也是數(shù)學(xué)教育者努力的方向。
一、直覺(jué)與邏輯的關(guān)系
從思維方式上來(lái)看,思維可以分為邏輯思維和直覺(jué)思維。長(zhǎng)期以來(lái),人們刻意地把兩者分離開(kāi)來(lái),其實(shí)這是一種誤解,邏輯思維與直覺(jué)思維從來(lái)就不是割離的。有一種觀點(diǎn)認(rèn)為邏輯重于演繹,而直觀重于分析,從側(cè)重角度來(lái)看,此話不無(wú)道理,但側(cè)重并不等于完全,數(shù)學(xué)邏輯中是否會(huì)有直覺(jué)成分?數(shù)學(xué)直覺(jué)是否具有邏輯性?比如在日常生活中有許多說(shuō)不清道不明的東西,人們對(duì)各種事件作出判斷與猜想離不開(kāi)直覺(jué),甚至可以說(shuō)直覺(jué)無(wú)時(shí)無(wú)刻不在起作用。數(shù)學(xué)也是對(duì)客觀世界的反映,它是人們對(duì)生活現(xiàn)象與世界運(yùn)行的秩序直覺(jué)的體現(xiàn),再以數(shù)學(xué)的形式將思考的理性過(guò)程格式化。數(shù)學(xué)最初的概念都是基于直覺(jué),數(shù)學(xué)在一定程度上就是在問(wèn)題解決中得到發(fā)展的,問(wèn)題解決也離不開(kāi)直覺(jué)。笛卡爾認(rèn)為在數(shù)學(xué)推理中的每一步,直覺(jué)力都是不可缺少的。就好似我們平時(shí)打籃球,要靠球感一樣,在快速運(yùn)動(dòng)中來(lái)不及作邏輯判斷,動(dòng)作只是下意識(shí)的,而下意識(shí)的動(dòng)作正是在平時(shí)訓(xùn)練中產(chǎn)生的一種直覺(jué)。
在教育過(guò)程中,老師由于把證明過(guò)程過(guò)分地嚴(yán)格化、程序化。學(xué)生只是見(jiàn)到一個(gè)僵硬的邏輯外殼,直覺(jué)的光環(huán)被掩蓋住了,而把成功往往歸功于邏輯的功勞,對(duì)自己的直覺(jué)反而不覺(jué)得。學(xué)生的內(nèi)在潛能沒(méi)有被激發(fā)出來(lái),學(xué)習(xí)興趣沒(méi)有被調(diào)動(dòng)起來(lái),得不到思維的真正樂(lè)趣?!吨袊?guó)青年報(bào)》曾報(bào)道“約30%的初中生學(xué)習(xí)了平面幾何推理之后,喪失了對(duì)數(shù)學(xué)學(xué)習(xí)的興趣”,這種現(xiàn)象應(yīng)該引起數(shù)學(xué)教育者的重視與反思。
二、直覺(jué)思維的主要特點(diǎn)
直覺(jué)思維具有自由性、靈活性、自發(fā)性、偶然性、不可靠性等特點(diǎn),從培養(yǎng)直覺(jué)思維的必要性來(lái)看,筆者認(rèn)為直覺(jué)思維有以下三個(gè)主要特點(diǎn)。
(1)簡(jiǎn)約性
直覺(jué)思維是對(duì)思維對(duì)象從整體上考察,調(diào)動(dòng)自己的全部知識(shí)經(jīng)驗(yàn),通過(guò)豐富的想象作出的敏銳而迅速的假設(shè),猜想或判斷。它省去了一步一步分析推理的中間環(huán)節(jié),而采取了“跳躍式”的形式。它是一瞬間的思維火花,是長(zhǎng)期積累上的一種升華,是思維者的靈感和頓悟,是思維過(guò)程的高度簡(jiǎn)化,但是它卻清晰地觸及到事物的“本質(zhì)”。
(2)創(chuàng)造性
現(xiàn)代社會(huì)需要?jiǎng)?chuàng)新型的人才,我國(guó)的教材由于長(zhǎng)期以來(lái)借鑒國(guó)外的經(jīng)驗(yàn),過(guò)多地注重培養(yǎng)邏輯思維,培養(yǎng)的人才大多數(shù)習(xí)慣于按部就班、墨守成規(guī),缺乏創(chuàng)新能力和開(kāi)拓精神。直覺(jué)思維是基于研究對(duì)象整體上的把握,不專意于細(xì)節(jié)的推敲,是思維的大手筆。正是由于思維的無(wú)意識(shí)性,它的想象才是豐富的、發(fā)散的,使人的認(rèn)知結(jié)構(gòu)向外無(wú)限擴(kuò)展,因而具有反常規(guī)的獨(dú)創(chuàng)性。
(3)自信力
學(xué)生對(duì)數(shù)學(xué)產(chǎn)生興趣的原因有兩種,一種是教師的人格魅力,其二是來(lái)自數(shù)學(xué)本身的魅力。不可否認(rèn)情感的重要作用,但筆者的觀點(diǎn)是,興趣更多來(lái)自數(shù)學(xué)本身。成功可以培養(yǎng)一個(gè)人的自信,直覺(jué)發(fā)現(xiàn)伴隨著很強(qiáng)的“自信心”。相比其他的物質(zhì)獎(jiǎng)勵(lì)和情感激勵(lì),這種自信更穩(wěn)定、更持久。當(dāng)一個(gè)問(wèn)題不用通過(guò)邏輯證明的形式而是通過(guò)自己的直覺(jué)獲得,那么成功帶給他的震撼是巨大的,內(nèi)心將會(huì)產(chǎn)生一種強(qiáng)大的學(xué)習(xí)鉆研動(dòng)力,從而更相信自己的能力。
高斯在小學(xué)時(shí)就能解決問(wèn)題“1+2+…+99+100=?”,這是基于他對(duì)數(shù)的敏感性的超常把握,這對(duì)他一生的成功產(chǎn)生了不可磨滅的影響。而現(xiàn)在的中學(xué)生極少具有直覺(jué)意識(shí),對(duì)有限的直覺(jué)也半信半疑,不能從整體上駕馭問(wèn)題,也就無(wú)法形成自信。
三、直覺(jué)思維的培養(yǎng)
一個(gè)人的數(shù)學(xué)思維,判斷能力的高低主要取決于直覺(jué)思維能力的高低。數(shù)學(xué)直覺(jué)是可以通過(guò)訓(xùn)練提高的。
(1)扎實(shí)的基礎(chǔ)是產(chǎn)生直覺(jué)的源泉
直覺(jué)不是靠“機(jī)遇”,直覺(jué)的獲得雖然具有偶然性,但絕不是無(wú)緣無(wú)故的憑空臆想,而是以扎實(shí)的知識(shí)為基礎(chǔ)。沒(méi)有深厚的功底,是不會(huì)迸發(fā)出思維的火花的。阿提雅說(shuō):“一旦你真正感到弄懂一樣?xùn)|西,而且你通過(guò)大量例子及通過(guò)與其他東西的聯(lián)系取得了處理那個(gè)問(wèn)題的足夠多的經(jīng)驗(yàn),對(duì)此你就會(huì)產(chǎn)生一種關(guān)于正在發(fā)展的過(guò)程是怎么回事,以及什么結(jié)論應(yīng)該是正確的直覺(jué)?!卑⑦_(dá)瑪曾風(fēng)趣地說(shuō):“難道一只猴了也能應(yīng)機(jī)遇而打印成整部美國(guó)憲法嗎?”
(2)滲透數(shù)學(xué)的哲學(xué)觀點(diǎn)及審美觀念
美感和美的意識(shí)是數(shù)學(xué)直覺(jué)的本質(zhì),提高審美能力有利于培養(yǎng)數(shù)學(xué)事物間所有存在著的和諧關(guān)系及秩序的直覺(jué)意識(shí),審美能力越強(qiáng),則數(shù)學(xué)直覺(jué)能力越強(qiáng)。狄拉克于1931年從數(shù)學(xué)對(duì)稱的角度考慮,大膽地提出了反物質(zhì)的假說(shuō),他認(rèn)為真空中的反電子就是正電子。他還對(duì)麥克斯韋方程組提出質(zhì)疑,他說(shuō)過(guò),如果一個(gè)物理方程在數(shù)學(xué)上看上去不美,那么這個(gè)方程的正確性是可疑的。
(3)重視解題教學(xué)
教學(xué)中選擇適當(dāng)?shù)念}目類型,有利于培養(yǎng)和考察學(xué)生的直覺(jué)思維。例如選擇題,由于只要求從四個(gè)選擇支中挑選出來(lái),省略解題過(guò)程,容許合理的猜想,有利于直覺(jué)思維的發(fā)展。實(shí)施開(kāi)放性問(wèn)題教學(xué),也是培養(yǎng)直覺(jué)思維的有效方法。開(kāi)放性問(wèn)題的條件或結(jié)論不夠明確,可以從多個(gè)角度由果尋因,由因索果,提出猜想,由于答案的發(fā)散性,有利于直覺(jué)思維能力的培養(yǎng)。
(4)設(shè)置直覺(jué)思維的意境和動(dòng)機(jī)誘導(dǎo)
這就要求教師轉(zhuǎn)變教學(xué)觀念,把主動(dòng)權(quán)還給學(xué)生。對(duì)于學(xué)生的大膽設(shè)想給予充分肯定,對(duì)其合理成分及時(shí)給予鼓勵(lì),愛(ài)護(hù)、扶植學(xué)生的自發(fā)性直覺(jué)思維,以免挫傷學(xué)生直覺(jué)思維的積極性和學(xué)生直覺(jué)思維的悟性。
跟著感覺(jué)走是教師經(jīng)常講的一句話,其實(shí)這句話里已蘊(yùn)涵著直覺(jué)思維的萌芽,只不過(guò)沒(méi)有把它上升為一種思維觀念。教師應(yīng)該把直覺(jué)思維冠冕堂皇的在課堂教學(xué)中明確地提出,制定相應(yīng)的活動(dòng)策略,從整體上分析問(wèn)題的特征;重視數(shù)學(xué)思維方法的教學(xué),諸如:換元、數(shù)形結(jié)合、歸納猜想、反證法等,對(duì)滲透直覺(jué)觀念與思維能力的發(fā)展大有裨益。