雷 珽,歐陽(yáng)曾愷,李 征,蔡 旭
(1.國(guó)網(wǎng)上海市電力公司電力科學(xué)研究院,上海 200433;2.上海交通大學(xué) 風(fēng)力發(fā)電研究中心,上海 200240)
隨著風(fēng)電的大規(guī)模開(kāi)發(fā)利用,風(fēng)功率的間歇性和波動(dòng)特性對(duì)電網(wǎng)的沖擊也日益顯著,這將使風(fēng)電的入網(wǎng)受到限制,而利用儲(chǔ)能系統(tǒng)配合風(fēng)電運(yùn)行、平滑風(fēng)功率的波動(dòng),是一種切實(shí)有效的解決方案。
電池儲(chǔ)能系統(tǒng)有快速動(dòng)態(tài)吸收和釋放能量的特點(diǎn),在風(fēng)電場(chǎng)中合理配置儲(chǔ)能設(shè)備可有效彌補(bǔ)風(fēng)電波動(dòng),改善風(fēng)電輸出功率的可控性、電能質(zhì)量等[1-2]。國(guó)內(nèi)外在儲(chǔ)能平滑風(fēng)電波動(dòng)方面已開(kāi)展了較多研究,通常認(rèn)為需要用儲(chǔ)能平滑的風(fēng)電輸出功率隨風(fēng)速波動(dòng)的頻率范圍主要為中頻區(qū),即處于 0.01~1 Hz[3],高頻區(qū)的波動(dòng)可以被風(fēng)力機(jī)的慣量吸收,而低頻區(qū)功率變化較緩慢,可以由與其相連電網(wǎng)中的同步發(fā)電機(jī)補(bǔ)償。平抑風(fēng)功率波動(dòng)最常用的方法是采用一階低通濾波原理[4-11]。研究表明,隨濾波時(shí)間常數(shù)增大,平滑后的風(fēng)電功率變化率會(huì)明顯減小,但同時(shí)所需的儲(chǔ)能容量增大,成本增高。因而要按平滑指標(biāo)[12]來(lái)確定時(shí)間常數(shù)和儲(chǔ)能容量[6]。此外,由于儲(chǔ)能電池過(guò)度充放電均會(huì)降低其使用壽命進(jìn)而增大系統(tǒng)運(yùn)維成本,因此運(yùn)行中一般需要將儲(chǔ)能電池的荷電量(SOC)控制在[20%,80%]之間。 文獻(xiàn)[7,9,11]提出依據(jù)儲(chǔ)能SOC所處區(qū)間改變?yōu)V波常數(shù)以兼顧功率波動(dòng)平滑和SOC控制的濾波算法,并優(yōu)化了儲(chǔ)能的配置容量。但此方法當(dāng)SOC超出限值時(shí)不能較快回到設(shè)定區(qū)間,儲(chǔ)能電池因充放電限制而不能按照給定的平滑指標(biāo)工作。文獻(xiàn)[10,13]提出了基于小波分析理論的功率平滑控制策略,并引入了模型預(yù)測(cè)控制MPC(Model Predictive Control)以提高濾波效果,但未考慮儲(chǔ)能電池的使用壽命。文獻(xiàn)[14]采用實(shí)時(shí)5點(diǎn)滾動(dòng)法制定多時(shí)間尺度風(fēng)電波動(dòng)平滑指標(biāo),同時(shí)引入補(bǔ)償度修正儲(chǔ)能容量,并基于模糊控制原理優(yōu)化SOC,實(shí)現(xiàn)了對(duì)風(fēng)電波動(dòng)的分時(shí)跟蹤平抑;文獻(xiàn)[15]對(duì)電池SOC進(jìn)行分級(jí)優(yōu)化,根據(jù)平滑要求和總體SOC狀態(tài)計(jì)算混合儲(chǔ)能系統(tǒng)總功率并根據(jù)各設(shè)備特性進(jìn)行功率的協(xié)調(diào)分配;文獻(xiàn)[16]基于MPC,以儲(chǔ)能出力最小為目標(biāo)采用約束軟化和能量反饋控制避免過(guò)度充放電。然而,上述文獻(xiàn)的SOC控制本質(zhì)上只進(jìn)行了邊界控制,當(dāng)風(fēng)功率波動(dòng)持續(xù)增大或減小導(dǎo)致SOC達(dá)到邊界時(shí)就要停止充電或放電,導(dǎo)致風(fēng)功率平滑的效果下降。
本文基于低通濾波原理,提出了一種在滿足風(fēng)電并網(wǎng)功率波動(dòng)指標(biāo)[12]前提下,可保證SOC在風(fēng)功率單向持續(xù)變化下不超出波動(dòng)范圍的協(xié)調(diào)控制策略。動(dòng)態(tài)仿真表明該策略可實(shí)現(xiàn)在保證平滑指標(biāo)的前提下保持電池SOC在一定范圍內(nèi),有助于延長(zhǎng)儲(chǔ)能壽命并減小配置容量。該控制策略形式簡(jiǎn)潔,計(jì)算量小,參數(shù)調(diào)節(jié)方便,因而具有較強(qiáng)的可行性和工程實(shí)用性,可用于大型風(fēng)電場(chǎng)接入儲(chǔ)能的相關(guān)示范工程中。
若將風(fēng)電出力的中頻段功率看作是數(shù)字信號(hào)中需要消除的高頻噪聲信號(hào),則可用低通濾波的方法濾除風(fēng)電出力中高頻功率。在濾波過(guò)程中,儲(chǔ)能系統(tǒng)相當(dāng)于一個(gè)離散低通濾波器,通過(guò)蓄電池充、放電,平滑調(diào)整風(fēng)-儲(chǔ)系統(tǒng)的輸出總功率,減小風(fēng)功率的波動(dòng),平滑風(fēng)功率的輸出,從而提高并網(wǎng)風(fēng)電接入率。
圖1是風(fēng)電場(chǎng)配置儲(chǔ)能系統(tǒng)的結(jié)構(gòu)示意圖。現(xiàn)以雙饋風(fēng)力發(fā)電機(jī)為例,儲(chǔ)能系統(tǒng)采用鋰蓄電池組。Pw是風(fēng)電場(chǎng)輸出的原始風(fēng)功率;Pg是經(jīng)過(guò)儲(chǔ)能系統(tǒng)平滑后的并網(wǎng)功率;Pb是儲(chǔ)能系統(tǒng)發(fā)出的功率,Pb為正時(shí)電池放電,Pb為負(fù)時(shí)電池充電。功率關(guān)系為:
圖1 風(fēng)電場(chǎng)配置電池儲(chǔ)能系統(tǒng)示意圖Fig.1 Schematic diagram of wind farm with battery energy storage system
按照一階低通濾波原理:
其中,τ為濾波時(shí)間常數(shù),f=1/(2πτ)為低通濾波器的截止頻率,τ越大,截止頻率越小,濾波帶寬越窄,平滑效果越好;y′為y的一階微分,y為平滑后輸出信號(hào);x為濾波函數(shù)的輸入信號(hào)。對(duì)離散數(shù)字信號(hào)進(jìn)行低通濾波處理時(shí),令信號(hào)采樣周期為Δt,則y′為
其中,n表示第n個(gè)采樣點(diǎn)??山獾茫?/p>
對(duì)風(fēng)功率進(jìn)行平滑時(shí),代入Pw和Pg有:
此時(shí)并網(wǎng)功率即為濾波去除較高頻后的功率。儲(chǔ)能系統(tǒng)發(fā)出的功率Pb(n)為:
風(fēng)-儲(chǔ)協(xié)調(diào)控制器根據(jù)獲得的風(fēng)電功率,算出儲(chǔ)能有功功率指令,發(fā)送給儲(chǔ)能控制器控制電池充放電。風(fēng)、儲(chǔ)及協(xié)調(diào)控制器之間的信號(hào)連接關(guān)系見(jiàn)圖2。
圖2 風(fēng)-儲(chǔ)控制器信號(hào)連接示意圖Fig.2 Signal connections between wind and storage controllers
為延長(zhǎng)儲(chǔ)能系統(tǒng)使用壽命,應(yīng)限制電池的充放電深度,即在儲(chǔ)能運(yùn)行的時(shí)段內(nèi),應(yīng)盡可能讓SOC變化區(qū)間在[20%,80%]之內(nèi)。常規(guī)SOC控制是SOC達(dá)到設(shè)定閾值后,為了不讓其越限,控制電池停止相應(yīng)的充/放電操作。因而為了保證平滑任務(wù)的進(jìn)行就需要配置更多的儲(chǔ)能容量。SOC水平協(xié)調(diào)控制方法是指以保證規(guī)定時(shí)間內(nèi)的風(fēng)功率變化量不越界為控制目標(biāo),通過(guò)電池充/放電控制,保證SOC在一定范圍內(nèi)。其可以在較小的電池容量需要下,兼顧風(fēng)功率波動(dòng)平滑的要求和保持儲(chǔ)能系統(tǒng)SOC的水平。
根據(jù)風(fēng)功率波動(dòng)量的要求,有:
其中,n和n-1分別表示第n個(gè)和上一個(gè)采樣點(diǎn);采樣間隔Δt文中設(shè)為1 s;K為規(guī)定的風(fēng)功率變化量最大值,其值參照文獻(xiàn)[12]推薦的風(fēng)電場(chǎng)1 min內(nèi)有功功率變化最大限值計(jì)算得到。本文仿真所采用的風(fēng)電場(chǎng)額定容量為60 MW,根據(jù)規(guī)定,要求1 min有功功率變化量(任意2個(gè)間隔在1 min以內(nèi)的采樣點(diǎn)功率差值)小于6 MW,則這里認(rèn)為對(duì)應(yīng)到每1 s,有K=0.1 MW/s,利用式(7)對(duì)全部采樣點(diǎn)進(jìn)行判別,則可以保證在任意的1 min區(qū)間內(nèi)有功功率變化量符合要求。極限情況下,式(7)取等號(hào),結(jié)合式(1)有:
按式(8)給出儲(chǔ)能有功指令可保證系統(tǒng)在給定時(shí)間尺度上的有功變化量滿足要求。由式(8)可見(jiàn),KΔt項(xiàng)前的符號(hào)表示是充電還是放電,調(diào)節(jié)K的大小可改變充放電速度,因此當(dāng)SOC超過(guò)上限時(shí)該符號(hào)取“+”,反之當(dāng)SOC處于下限時(shí)取“-”。由于Pw實(shí)際上是實(shí)時(shí)變化的,故當(dāng)儲(chǔ)能系統(tǒng)需放電時(shí),須保證Pb隨n遞增,反之充電時(shí)隨n遞減,故有約束關(guān)系式(9):
由上述可知,SOC水平協(xié)調(diào)控制算法通過(guò)充放電切換控制,在并網(wǎng)功率變化量符合規(guī)定的前提下通過(guò)引入一定的小幅波動(dòng)獲得了更大的SOC調(diào)節(jié)空間。
當(dāng)風(fēng)功率波動(dòng)較大時(shí),風(fēng)-儲(chǔ)協(xié)調(diào)應(yīng)以平滑風(fēng)功率為主,因此系統(tǒng)控制策略要在適當(dāng)?shù)臈l件下,在低通濾波算法和SOC水平協(xié)調(diào)控制算法間合理切換。
可以看出,切換算法的合理時(shí)機(jī)實(shí)際上取決于風(fēng)功率的波動(dòng)情況,在風(fēng)功率波動(dòng)不大的情況下,系統(tǒng)可以進(jìn)行SOC水平控制,當(dāng)風(fēng)功率波動(dòng)較大的情況下,系統(tǒng)應(yīng)該進(jìn)行濾波算法的風(fēng)功率平抑工作。
在本文的研究中,判定風(fēng)功率波動(dòng)越限的極值定為式(7)中的K值。當(dāng)風(fēng)功率的波動(dòng)小于K值時(shí),表示系統(tǒng)有調(diào)節(jié)SOC的空間;而當(dāng)檢測(cè)到風(fēng)功率波動(dòng)大于K值時(shí),表示必須要對(duì)風(fēng)功率進(jìn)行平抑。風(fēng)功率波動(dòng)量的計(jì)算如下:
也可以表示為:
式(10)和式(11)的區(qū)別是用于越限判別的時(shí)間尺度不同,在一定功率變化值下,式(11)中判別步長(zhǎng)l值越大,計(jì)算的Kw值越小,那么系統(tǒng)執(zhí)行時(shí)將更多地切向SOC水平控制,而任意時(shí)刻與前后秒的并網(wǎng)功率差值就越難保證一定滿足式(7)約束。風(fēng)電入網(wǎng)標(biāo)準(zhǔn)中考核的風(fēng)電波動(dòng)時(shí)間段為1min內(nèi)和10 min內(nèi),故在秒級(jí)采樣數(shù)據(jù)中,l最大不可超過(guò)60。
由于風(fēng)-儲(chǔ)協(xié)調(diào)控制的首要目的是保證并網(wǎng)功率變化量符合規(guī)定,因此在SOC處于正常變化區(qū)間時(shí),應(yīng)遵從一階低通濾波算法。由于要保證SOC在[20%,80%]區(qū)間內(nèi)波動(dòng),考慮到風(fēng)功率的波動(dòng)性,若過(guò)于接近限值,可能出現(xiàn)因優(yōu)先平抑風(fēng)電波動(dòng)而造成SOC越限,故應(yīng)留有裕量地設(shè)置控制閾值,一旦采樣到SOC越過(guò)閾值,若檢測(cè)出風(fēng)電波動(dòng)符合規(guī)定,則切換至水平協(xié)調(diào)控制以便為以后的風(fēng)功率平滑保留SOC變動(dòng)空間??紤]到應(yīng)將SOC盡量保持在中值,控制閾值設(shè)為40%和60%。
第n個(gè)采樣點(diǎn)的含SOC控制的風(fēng)-儲(chǔ)協(xié)調(diào)控制策略算法流程如圖3所示。
圖3 控制算法流程圖Fig.3 Flowchart of control algorithm
本文中利用MATLAB/Simulink實(shí)現(xiàn)帶SOC水平控制的風(fēng)-儲(chǔ)協(xié)調(diào)控制仿真驗(yàn)證,仿真系統(tǒng)的參數(shù)如下:風(fēng)電場(chǎng)側(cè)參數(shù),風(fēng)電場(chǎng)額定輸出功率60 MW;儲(chǔ)能側(cè)參數(shù),初始SOC 50%,額定容量6 MW·h;協(xié)調(diào)算法參數(shù),濾波常數(shù)10 s,風(fēng)功率變化量限值6 MW/min,控制閾值 40%、60%;仿真時(shí)間 600 s。
圖4為實(shí)際風(fēng)電場(chǎng)的輸出功率,其1min變化量分布圖(任意1 min區(qū)間內(nèi)風(fēng)功率最大變化量)見(jiàn)圖5,圖中百分比指相應(yīng)點(diǎn)數(shù)占總數(shù)的比例,后同。可見(jiàn)該段功率1 min變化量大于所要求的6 MW/min的點(diǎn)數(shù)占總數(shù)的30%左右,需要對(duì)風(fēng)功率進(jìn)行平滑。
圖4 仿真風(fēng)電場(chǎng)輸出功率Fig.4 Wind power output of simulated wind farm
圖5 風(fēng)電場(chǎng)輸出功率1 min變化量分布圖Fig.5 Minute-variation distribution of wind farm output power
對(duì)不含SOC水平控制的一階低通濾波算法仿真,平滑前后的電網(wǎng)輸出功率如圖6所示。平滑后并網(wǎng)功率1 min變化量分布圖如圖7所示,可見(jiàn)經(jīng)一階低通濾波后輸出的并網(wǎng)功率1 min變化量已經(jīng)全部小于6 MW/min,符合規(guī)定中的要求。
但從圖8可以看出SOC最低已經(jīng)小于20%,屬于過(guò)度放電,對(duì)儲(chǔ)能電池?fù)p耗很大。按照一般儲(chǔ)能系統(tǒng)的要求,SOC小于20%后不再輸出功率,這里為示意取消了該限制才獲得上述的平滑效果。
在同樣風(fēng)功率情況下,采用SOC水平協(xié)調(diào)控制的控制策略進(jìn)行仿真,結(jié)果如圖9和圖10所示,2種控制策略下的SOC變化情況如圖11所示。
圖6 原始風(fēng)功率/平滑后并網(wǎng)功率對(duì)比Fig.6 Comparison between original wind power and smoothed grid-connecting power
圖7 并網(wǎng)功率1 min變化量分布圖Fig.7 Minute-variation distribution ofgrid-connecting power
圖8 原低通濾波算法下的SOC變化曲線Fig.8 SOC curve of LPF algorithm
圖9 輸出功率對(duì)比圖Fig.9 Comparison of output power
圖10 新控制策略下并網(wǎng)功率1min變化量分布圖Fig.10 Minute-variation distribution of grid-connecting power with proposed control strategy
由圖11可以看出,儲(chǔ)能SOC在超出控制閾值后由于切入了SOC水平協(xié)調(diào)控制而盡可能減緩了變化趨勢(shì),通過(guò)調(diào)節(jié)儲(chǔ)能功率較快返回到理想運(yùn)行區(qū)間[40%,60%]內(nèi)。由圖10看出,此時(shí)約99%的1 min有功變化量是符合并網(wǎng)規(guī)定中的要求的,小于限制值的小波動(dòng)有所增加,這即是將大波動(dòng)調(diào)換成小波動(dòng)的現(xiàn)象,也是該算法能夠兼顧平滑風(fēng)功率和控制SOC在規(guī)定水平內(nèi)的原因。對(duì)于極少數(shù)不合格采樣點(diǎn),考慮到其有功變化量均小于7 MW,與規(guī)定限值較為接近,可以認(rèn)為對(duì)風(fēng)電并網(wǎng)影響很小。
圖11 不同控制策略下SOC變化曲線對(duì)比Fig.11 Comparison of SOC curve between different control strategies
才能啟動(dòng)SOC控制,其認(rèn)為若1 min功率變化量小于6 MW,則必須滿足每秒變化量小于0.1 MW,但前者只是后者的必要條件,l的增大即是逐漸放寬對(duì)前后兩采樣時(shí)刻功率變化量的限制,過(guò)小的l減少了SOC控制次數(shù),降低了調(diào)節(jié)能力,而過(guò)大的l造成功率波動(dòng)較大,啟動(dòng)SOC控制時(shí)已不是調(diào)節(jié)SOC的較佳時(shí)機(jī),反而造成SOC變化范圍變大,因此位于取值區(qū)間中部的l具有較好的調(diào)節(jié)效果。
需要注意的是,上述采用的控制算法中,式(11)中的系數(shù)l取為20,即用于有功變化量越限判別計(jì)算的時(shí)間尺度選為20 s。根據(jù)上文所述,l取值越大,則切向SOC水平控制的次數(shù)就越多,但這不一定意味著整體控制的效果就越好,在本文的仿真條件下,對(duì)全部的 l?[1,60]進(jìn)行考察,以全仿真時(shí)段的 SOC變化范圍作為評(píng)價(jià)標(biāo)準(zhǔn),當(dāng)滿足SOC?[20%,80%]時(shí),令其變化范圍較小的l具有更好的控制效果。
不同l取值下的SOC變化范圍見(jiàn)圖12。當(dāng)l=1時(shí),雖然SOC變化范圍小,但下限小于20%,故不符合要求。從整體變化趨勢(shì)看,若除去風(fēng)功率變化帶來(lái)的偶然性影響,l在中部區(qū)間(20,30)控制效果較好。這可能是由于必須滿足波動(dòng)量判別式
圖12 不同l取值下的SOC變化范圍Fig.12 Curve of SOC variation range vs.l
對(duì)上海崇明島某風(fēng)-儲(chǔ)示范工程中接入的電池儲(chǔ)能系統(tǒng)進(jìn)行所提控制策略的現(xiàn)場(chǎng)實(shí)測(cè),儲(chǔ)能并網(wǎng)系統(tǒng)架構(gòu)和電池成組方案如圖13和14所示。
圖13 儲(chǔ)能并網(wǎng)架構(gòu)Fig.13 Structure of energy storage grid-connection system
圖14 電池成組方案Fig.14 Battery pack configuration
儲(chǔ)能系統(tǒng)由4組500 kW磷酸鐵鋰電池組、電池管理系統(tǒng) BMS(Battery Management System)、后臺(tái)監(jiān)控系統(tǒng)、通信控制器以及兩級(jí)變換型變流器PCS(Power Convert System)組成。
兩級(jí)變換型PCS基于工頻隔離+AC/DC+多路DC/DC的結(jié)構(gòu)控制儲(chǔ)能電池充放電,并通過(guò)交直流轉(zhuǎn)換完成系統(tǒng)并網(wǎng);BMS實(shí)時(shí)監(jiān)控電池組運(yùn)行信息,如端電壓、電流、SOC等;通信控制器負(fù)責(zé)PCS、BMS、監(jiān)控系統(tǒng)間的通信,確保功率指令能正常下放至PCS;監(jiān)控系統(tǒng)兼顧實(shí)時(shí)數(shù)據(jù)監(jiān)測(cè)、采集、處理、運(yùn)算及波形顯示等,涵蓋了儲(chǔ)能控制器的功能?;趯?shí)測(cè)的風(fēng)電場(chǎng)輸出功率數(shù)據(jù),對(duì)儲(chǔ)能系統(tǒng)著重進(jìn)行了平抑風(fēng)功率波動(dòng)的功能測(cè)試,測(cè)試時(shí)間為 22∶05—22∶50,演示截圖如圖15和16所示。
由此可見(jiàn)控制策略確實(shí)可以起到平抑風(fēng)功率波動(dòng)的效果,但由于現(xiàn)場(chǎng)BMS通信和數(shù)據(jù)連接問(wèn)題,未能顯示出SOC運(yùn)行曲線,后期將結(jié)合電池狀態(tài)對(duì)綜合控制效果進(jìn)行評(píng)估。
圖15 平滑前后風(fēng)功率對(duì)比Fig.15 Comparison between original and smoothed wind power outputs
本文提出了基于一階低通濾波的帶SOC水平協(xié)調(diào)控制的風(fēng)功率波動(dòng)平抑控制策略,在進(jìn)行風(fēng)功率變化量和SOC越限判別的基礎(chǔ)上通過(guò)策略切換,兼顧了維持SOC水平和平滑風(fēng)功率波動(dòng)的目標(biāo)?;贛ATLAB/Simulink平臺(tái),與傳統(tǒng)平滑策略進(jìn)行了對(duì)比分析,得出如下結(jié)論:
a.通過(guò)將風(fēng)功率中的大幅波動(dòng)有條件地置換為小幅波動(dòng),所提策略實(shí)現(xiàn)了兼顧SOC控制和平抑風(fēng)功率波動(dòng)的功能,有助于延長(zhǎng)設(shè)備壽命并減少其需求容量;
b.調(diào)節(jié)用于計(jì)算風(fēng)功率波動(dòng)量的判別時(shí)間尺度(l值),可以改變總體控制的效果,并發(fā)現(xiàn)取值適中的l具有更好的調(diào)節(jié)能力。
最后在風(fēng)-儲(chǔ)示范工程的儲(chǔ)能系統(tǒng)樣機(jī)上進(jìn)行了控制策略的實(shí)測(cè)模擬,驗(yàn)證了策略的可行性和有效性。