李曉建,姜行康,高明,孔佑勝,潘東亮,李寧枕,劉思金
1. 北京大學(xué)首鋼醫(yī)院泌尿外科,北京100144 2. 中國(guó)科學(xué)院生態(tài)環(huán)境研究中心,北京100085 3. 天津醫(yī)科大學(xué)第二醫(yī)院泌尿外科,天津市泌尿外科研究所,天津3002111 4. 北京大學(xué)首鋼醫(yī)院檢驗(yàn)科,北京100144
非毒性劑量重金屬銻通過改變細(xì)胞脂代謝促進(jìn)前列腺癌進(jìn)展
李曉建1,2,姜行康2,3,高明2,孔佑勝4,潘東亮1,*,李寧枕1,#,劉思金2
1. 北京大學(xué)首鋼醫(yī)院泌尿外科,北京100144 2. 中國(guó)科學(xué)院生態(tài)環(huán)境研究中心,北京100085 3. 天津醫(yī)科大學(xué)第二醫(yī)院泌尿外科,天津市泌尿外科研究所,天津3002111 4. 北京大學(xué)首鋼醫(yī)院檢驗(yàn)科,北京100144
本文旨在檢測(cè)健康人群與前列腺癌患者血清中重金屬銻的含量,并對(duì)重金屬銻在前列腺癌發(fā)生發(fā)展中的作用和相關(guān)機(jī)制進(jìn)行初步探索。本實(shí)驗(yàn)使用電感耦合等離子體質(zhì)譜儀(ICP-MS)對(duì)健康人群和前列腺癌患者血清中重金屬銻的含量進(jìn)行了檢測(cè);此外,分別通過MTT和Alamar-Blue方法對(duì)于重金屬銻對(duì)人前列腺癌PC-3細(xì)胞的毒性效應(yīng)進(jìn)行了評(píng)價(jià),并進(jìn)一步探討了非毒性劑量的重金屬銻對(duì)前列腺癌細(xì)胞增殖能力(細(xì)胞計(jì)數(shù)及克隆形成實(shí)驗(yàn))及脂類代謝過程(細(xì)胞內(nèi)甘油三酯)的影響。研究結(jié)果顯示:重金屬銻在前列腺癌組患者血清中含量明顯高于健康人群組且差異具有統(tǒng)計(jì)學(xué)意義;毒性實(shí)驗(yàn)結(jié)果表明高劑量的重金屬銻能夠顯著抑制細(xì)胞活力且呈濃度依賴型方式,而非毒性劑量重金屬銻能夠顯著促進(jìn)前列腺癌細(xì)胞增殖,并導(dǎo)致細(xì)胞內(nèi)甘油三酯的含量增加(P< 0.05)。綜上所述,重金屬銻在前列腺癌患者血清中具有相對(duì)較高水平,其機(jī)制可能是通過影響細(xì)胞脂類代謝從而促進(jìn)前列腺癌的進(jìn)展,這將對(duì)未來前列腺癌的預(yù)防和治療提供一定的理論依據(jù)。
重金屬;銻;前列腺癌;脂代謝
前列腺癌是老年男性群體中最常見的惡性腫瘤之一。根據(jù)2014年的統(tǒng)計(jì)數(shù)據(jù)表明,前列腺癌在美國(guó)的發(fā)病率約為27%,遠(yuǎn)高于其他惡性腫瘤,同時(shí)其死亡率約為10%,在惡性腫瘤性疾病導(dǎo)致的男性死亡率中排行第二位[1]。在中國(guó),雖然前列腺癌的發(fā)病率相對(duì)較低,但仍有逐年增加的趨勢(shì),如,1988-1992、1993-1997、1998-2002年間我國(guó)的前列腺癌發(fā)病率分別為1.96/10萬、3.09/10萬、4.36/10萬人次[2-3]。目前前列腺癌發(fā)病機(jī)制主要?dú)w納為:激素水平失衡、氧化應(yīng)激、環(huán)境因素、衰老、炎癥及遺傳等因素[4]。近些年來,隨著科技的發(fā)展和社會(huì)工業(yè)化水平的不斷加快,環(huán)境污染對(duì)人類健康的影響受到大家越來越多的關(guān)注。其中重金屬對(duì)人類惡性腫瘤的影響也逐漸受到科學(xué)家的重視[5-8]。已有報(bào)道顯示,重金屬與前列腺癌的發(fā)生發(fā)展密切相關(guān)[9]。但是,目前對(duì)重金屬暴露與前列腺癌發(fā)生發(fā)展的相關(guān)研究仍較少,其機(jī)制有待于進(jìn)一步探索。
本實(shí)驗(yàn)借助電感耦合等離子體質(zhì)譜儀(ICP-MS, inductively coupled plasma mass spectrometry)對(duì)健康人群以及前列腺癌患者血清中重金屬銻(Sb, antimony)含量進(jìn)行檢測(cè),此外,通過非毒性劑量重金屬銻對(duì)前列腺癌細(xì)胞增殖以及細(xì)胞內(nèi)脂類代謝進(jìn)行評(píng)價(jià),為重金屬銻對(duì)促進(jìn)前列腺癌進(jìn)展的關(guān)系提供相應(yīng)理論依據(jù)。
1.1試劑與材料
2013年1月至2014年5月北京大學(xué)首鋼醫(yī)院泌尿外科收治前列腺癌患者(PCa, prostate cancer)90例,年齡56~92歲,平均年齡75歲。健康對(duì)照組(HC, healthy control)均來自于體檢中心共60例,年齡22~55歲,平均年齡44歲。標(biāo)本獲取及研究應(yīng)用經(jīng)患者知情同意和醫(yī)學(xué)倫理委員會(huì)批準(zhǔn)。
真空采血管(Beckton-Dickinson,美國(guó)),電阻率≥18.2 MΩ·cm的超純水取自Milli-Q超純水系統(tǒng)(Millipore,美國(guó)),65%分析純硝酸(Merk,德國(guó)),30%優(yōu)純級(jí)H2O2、分析純甲醛溶液(國(guó)藥集團(tuán)化學(xué)試劑有限公司),混合元素標(biāo)準(zhǔn)儲(chǔ)備液(100 μg·mL-1)(Thermo Fisher,美國(guó)),釔(Y)和銦(In)內(nèi)標(biāo)儲(chǔ)備液(中國(guó)地質(zhì)科學(xué)院),調(diào)諧液(Agilent,美國(guó)),聚四氟乙烯消解管(CEM,美國(guó))。
人前列腺癌細(xì)胞株P(guān)C-3(上海中科院細(xì)胞庫),RPMI 1640培養(yǎng)基(Gibco,美國(guó)),10%胎牛血清(FBS)、100 U·mL-1青霉素-鏈霉素(P/S)、0.25%胰蛋白酶(trypsin)購于美國(guó)Hyclone公司,磷酸鹽緩沖液(PBS)、二甲基亞砜(DMSO)、噻唑藍(lán)(MTT)、結(jié)晶紫染色液購于北京索萊寶公司,酒石酸銻鉀(APT)(天津科密歐),甘油三酯試劑盒(南京建成)。
1.2實(shí)驗(yàn)儀器
MARS-X微波消解儀(CEM,美國(guó)),趕酸電熱板(南京瑞尼克科技開發(fā)有限公司),電感耦合等離子體質(zhì)譜儀iCAP Qc(Thermo Fisher,美國(guó)),蔡司金相顯微鏡Axio Scope A1(Carl Zeiss,德國(guó)),光柵型多功能微孔板讀數(shù)儀(Thermo Scientific,美國(guó)),Thermo Scientific CL31多用途離心機(jī)(Thermo Scientific,美國(guó))。
1.3實(shí)驗(yàn)方法
1.3.1血清樣本收集
醫(yī)院專人負(fù)責(zé)收集病人靜脈血并置于含有抗凝劑(肝素鈉)的10 mL真空采血管中,靜置30 min后放入離心機(jī),4 000 g離心30 min,將上清(即血清)轉(zhuǎn)入Eppendorf管內(nèi),置于-80 ℃冰箱長(zhǎng)期保存?zhèn)溆谩?/p>
1.3.2血清消解并測(cè)定銻含量
血清充分解凍后,用移液器準(zhǔn)確吸取400 μL血清樣品并加入聚四氟乙烯消解管中,加入3 mL 65%硝酸和3 mL 30%H2O2,蓋上密封蓋,放入微波消解儀中,微波消解儀的功率和加熱時(shí)間如表1所示。消解結(jié)束后,將聚四氟乙烯消解管置于趕酸電熱板上,調(diào)節(jié)趕酸溫度至200 ℃,待酸液趕至0.5 mL時(shí)停止趕酸,冷卻至室溫,將消解管內(nèi)的消解液移至5 mL離心管內(nèi),并定容至10 mL,混勻后使用ICP-MS檢測(cè)。同時(shí)做空白對(duì)照,即取400 μL超純水同前述處理方法后所得溶液。
1.3.3細(xì)胞培養(yǎng)
人前列腺癌細(xì)胞PC-3培養(yǎng)于RPMI 1640培養(yǎng)基中,并添加10%胎牛血清、1%100 U·mL-1青霉素-鏈霉素,置于37 ℃恒溫、5%CO2的培養(yǎng)箱中常規(guī)傳代培養(yǎng)。
1.3.4細(xì)胞毒性試驗(yàn)
酒石酸銻鉀(APT, antimony potassium tartrate)是一種含銻的水溶性藥物,臨床上常用作抗寄生蟲藥物等。MTT和Alamar-Blue實(shí)驗(yàn)[10]用于APT的細(xì)胞毒性檢測(cè)。PC-3細(xì)胞經(jīng)胰蛋白酶消化后進(jìn)行細(xì)胞計(jì)數(shù),以5 000個(gè)·孔-1的細(xì)胞密度接種于96孔板內(nèi)。細(xì)胞貼壁后,加入不同濃度的酒石酸銻鉀并繼續(xù)培養(yǎng)24 h。每孔加入10 μL 5 mg·mL-1的MTT溶液繼續(xù)孵育4 h,棄去培養(yǎng)基,每孔加入150 μL DMSO,10 min后,利用多功能微孔板讀數(shù)儀在540 nm處檢測(cè)吸光值?;蛘咴谏鲜鯝PT暴露后的PC-3細(xì)胞中加入10 μL·孔-110% Alamar-Blue溶液,37 ℃避光孵育2 h,利用多功能微孔板讀數(shù)儀在激發(fā)波長(zhǎng)為530 nm和發(fā)射波長(zhǎng)為590 nm處檢測(cè)熒光強(qiáng)度。
1.3.5細(xì)胞單克隆形成實(shí)驗(yàn)
PC-3細(xì)胞以600個(gè)·孔-1的密度接種于6孔板內(nèi),待貼壁后加入不同濃度的酒石酸銻鉀。根據(jù)Wang等[11-12]的方法進(jìn)行后續(xù)操作。
1.3.6細(xì)胞計(jì)數(shù)
PC-3細(xì)胞以5 000個(gè)·孔-1的密度接種于24孔板內(nèi),貼壁后加入不同濃度(非毒性劑量)的APT,分別于24 h和72 h后消化細(xì)胞并計(jì)數(shù)。
1.3.7細(xì)胞內(nèi)甘油三酯濃度檢測(cè)
將PC-3細(xì)胞接種于6孔板后,加入不同濃度(非毒性劑量)的APT并繼續(xù)培養(yǎng)24 h,采用南京建成公司的甘油三酯檢測(cè)試劑盒檢測(cè)細(xì)胞內(nèi)甘油三酯含量。
1.4數(shù)據(jù)分析
使用SPSS19.0統(tǒng)計(jì)學(xué)軟件進(jìn)行統(tǒng)計(jì)學(xué)分析,以t檢驗(yàn)比較兩組的平均值;以O(shè)ne Way-Anova進(jìn)行多組數(shù)據(jù)的方差分析;數(shù)據(jù)以x±s形式表示。P<0.05被認(rèn)為有統(tǒng)計(jì)學(xué)意義。
2.1血清檢測(cè)結(jié)果
通過ICP-MS檢測(cè)后發(fā)現(xiàn),PCa組血清中重金屬銻的含量明顯高于HC組(約增加20%)(6.23 μg·L-1,以及5.05 μg·L-1,P<0.05,圖1)。本次檢測(cè)的加
圖1 血清中銻的檢測(cè)結(jié)果(HC: healthy control; PCa: prostate cancer)Fig. 1 Content of antimony in serum(HC: healthy control; PCa: prostate cancer)
表1 微波消解程序
標(biāo)回收率為85%~115%,元素的RSD介于1.7%~10.2%,表明檢測(cè)方法精度良好。
2.2細(xì)胞毒性實(shí)驗(yàn)
采用MTT法和Alamar-Blue法檢測(cè)不同藥物濃度刺激下的細(xì)胞毒性。結(jié)果表明,APT的半數(shù)致死量(IC50)約為32 μg·mL-1;在APT濃度為0.5 μg·mL-1與2 μg·mL-1時(shí),APT對(duì)PC-3細(xì)胞的活力沒有顯著影響,當(dāng)APT濃度大于8 μg·mL-1時(shí),PC-3細(xì)胞的活力受到明顯抑制(P<0.05,圖2)。MTT法和Alamar-Blue法的檢測(cè)結(jié)果基本一致。
2.3細(xì)胞計(jì)數(shù)
分別采用0.5 μg·mL-1和2 μg·mL-1APT(非毒性劑量)處理PC-3細(xì)胞24 h和72 h后進(jìn)行細(xì)胞計(jì)數(shù),結(jié)果顯示0.5 μg·mL-1和2 μg·mL-1APT暴露72 h后暴露組細(xì)胞數(shù)量明顯多于對(duì)照組,增幅分別為20%和26%(P<0.05)(圖3)。
圖2 MTT法和Alamar-Blue法檢測(cè)重酒石酸銻鉀對(duì)PC-3細(xì)胞活力的毒性效應(yīng)Fig.2 The toxicity effect on PC-3 cell viability detected by MTTand Alamar-Blue assay induced by potassium antimony tartrate
圖3 酒石酸銻鉀對(duì)PC-3細(xì)胞暴露后的細(xì)胞計(jì)數(shù)結(jié)果Fig. 3 Result of cell counting of PC-3 cells after the exposure of potassium antimony tartrate
2.4細(xì)胞單克隆形成實(shí)驗(yàn)
腫瘤細(xì)胞單克隆形成實(shí)驗(yàn)結(jié)果表明,0.5 μg·mL-1APT處理PC-3細(xì)胞96 h后,細(xì)胞克隆形成能力與對(duì)照組相比顯著增強(qiáng)(體積明顯增大且細(xì)胞數(shù)量明顯增多)(圖4)。
圖4 酒石酸銻鉀對(duì)PC-3細(xì)胞克隆形成能力的影響(200×)Fig. 4 Effect on PC-3 cells colony formation capability induced by potassium antimony tartrate (200×)
圖5 酒石酸銻鉀對(duì)PC-3細(xì)胞內(nèi)甘油三酯水平的影響Fig. 5 The production of intracellular triglyceride of PC-3 cells induced by potassium antimony tartrate
近些年來,隨著生活水平的提高及生活方式的改變,我國(guó)男性前列腺癌的發(fā)病率逐年增高。環(huán)境污染在前列腺癌發(fā)生發(fā)展過程中的作用也日益受到人們的關(guān)注,其中重金屬誘發(fā)前列腺癌的相關(guān)機(jī)制成為研究熱點(diǎn)[5-8]。目前為止,國(guó)際癌癥研究機(jī)構(gòu)(IARC,international agency for research on cancer)證實(shí)多種重金屬物質(zhì)能夠誘發(fā)癌癥的發(fā)生發(fā)展[13],如鎘的職業(yè)暴露與前列腺癌等多種人類惡性腫瘤性疾病的發(fā)生密切相關(guān)[14-15]。類似的研究還包括砷、銅、鈷、錳、鎳等[16-23]。上述幾種重金屬暴露能夠通過不同的途徑促使前列腺上皮細(xì)胞發(fā)生惡化:如通過調(diào)節(jié)凋亡相關(guān)基因的表達(dá)而導(dǎo)致正常的前列腺上皮細(xì)胞增殖失控;改變癌變的前列腺上皮細(xì)胞表面激素受體數(shù)量進(jìn)而促進(jìn)細(xì)胞增殖[24-29];以及改變正常前列腺上皮細(xì)胞基因組的表觀修飾而引發(fā)其惡性轉(zhuǎn)化[30-31]等。本實(shí)驗(yàn)通過對(duì)健康人群和前列腺癌患者血清中重金屬含量進(jìn)行檢測(cè)后發(fā)現(xiàn),前列腺癌患者血清中重金屬銻的含量顯著高于健康對(duì)照組(P<0.05),表明重金屬銻可能與前列腺癌的發(fā)生發(fā)展存在密切相關(guān)。
銻是一種在地球上廣泛存在的重金屬元素,主要以合金、氧化物、硫化物以及氫氧化物等形式分布于地殼及水體中[32-33]。此外,銻也是世界上產(chǎn)量最大的經(jīng)濟(jì)價(jià)值最高的重金屬之一,并廣泛應(yīng)用于塑料、紡織品、橡膠制品、藥品、剎車片、半導(dǎo)體元件、電池等產(chǎn)品的制造[34]。伴隨著人類采礦和工業(yè)生產(chǎn)等活動(dòng),越來越多的銻也被釋放到環(huán)境中,極大地增加了人類的暴露風(fēng)險(xiǎn)。目前,銻與其化合物已被歐盟和美國(guó)環(huán)境保護(hù)局(EPA,environmental protection agency)列為最受關(guān)注的環(huán)境污染物[35-36]。銻的化合物具有致癌風(fēng)險(xiǎn),并被國(guó)際癌癥研究機(jī)構(gòu)(IARC)列為可能的致癌物質(zhì)[37]。水溶性的銻化合物污染物常見于礦場(chǎng)、射擊場(chǎng)及相應(yīng)的道路旁邊[38-40]。銻也常用于白血病[41]、寄生蟲病[42]等疾病的治療。目前,銻和前列腺癌發(fā)生發(fā)展的相關(guān)研究仍未見明確報(bào)道。
本實(shí)驗(yàn)選取一種水溶性含銻化合物(酒石酸銻鉀)對(duì)于重金屬銻對(duì)前列腺癌發(fā)生發(fā)展機(jī)制進(jìn)行初步探索。首先分別通過MTT和Alamar-Blue實(shí)驗(yàn)篩選對(duì)人前列腺癌細(xì)胞PC-3活力沒有顯著毒性的藥物濃度,進(jìn)而采用非毒性劑量的APT藥物暴露PC-3細(xì)胞后檢測(cè)細(xì)胞增殖及克隆形成能力。結(jié)果顯示在0.5 μg·mL-1和2 μg·mL-1APT暴露72 h后PC-3細(xì)胞增殖(細(xì)胞計(jì)數(shù))顯著增加,96 h后細(xì)胞克隆形成能力(克隆形成)亦顯著增強(qiáng)。表明低劑量、長(zhǎng)期暴露重金屬銻能夠促進(jìn)前列腺癌細(xì)胞的增殖,提示非毒性劑量重金屬銻可能對(duì)前列腺癌的進(jìn)展有一定的促進(jìn)作用。
細(xì)胞的能量代謝方式分為有氧氧化和無氧酵解2種[43]。非腫瘤細(xì)胞大多以有氧氧化為主要的代謝方式,而腫瘤細(xì)胞以無氧酵解為主[44]。在腫瘤細(xì)胞內(nèi),脂類氧化是ATP產(chǎn)生的主要來源[45]。檢測(cè)細(xì)胞內(nèi)甘油三酯濃度的改變能夠反映細(xì)胞脂類代謝方式的變化。將0.5 μg·mL-1和2 μg·mL-1APT暴露于PC-3細(xì)胞培養(yǎng)基中72 h后,結(jié)果顯示APT暴露組細(xì)胞內(nèi)甘油三酯的含量比對(duì)照組增加,增加量分別為45%和72%。因此我們推測(cè),重金屬銻可能通過改變細(xì)胞內(nèi)的脂類代謝的方式進(jìn)而增加其ATP產(chǎn)量,進(jìn)而促進(jìn)前列腺癌細(xì)胞的增殖。
然而,本文仍然存在不足。首先,納入的兩組人群中年齡存在較大差異,不可避免地存在混雜因素的干擾;其次,本文僅初步探討了健康人群和前列腺癌患者血清中重金屬銻的含量,而對(duì)于前列腺癌組內(nèi)是否激素依賴或不同Gleason分級(jí)之間重金屬銻含量的差異并未做深入分析;另外,細(xì)胞實(shí)驗(yàn)方面,僅選用最常用的細(xì)胞系PC-3說明重金屬銻和前列腺癌進(jìn)展的機(jī)制進(jìn)行初步探索,并未利用其它細(xì)胞系(如RWPE-1、LNCaP等)深入探討其激素非依賴、高惡性或轉(zhuǎn)移等其他特性;最后,在關(guān)于細(xì)胞內(nèi)能量代謝物質(zhì)的檢測(cè)中,由于我們只是檢測(cè)了銻暴露后的前列腺癌細(xì)胞內(nèi)的脂代謝過程的變化,關(guān)于糖代謝和氨基酸代謝的過程是否也會(huì)受此影響是我們?cè)谝院蟮难芯恐行枰P(guān)注的問題之一。
綜上所述,本實(shí)驗(yàn)通過檢測(cè)前列腺癌患者和健康人群血清中重金屬含量,發(fā)現(xiàn)重金屬銻在前列腺癌患者血清中的含量顯著高于健康人群。此外,細(xì)胞實(shí)驗(yàn)表明非毒性劑量的重金屬銻能夠明顯促進(jìn)前列腺癌細(xì)胞增殖,而這種效應(yīng)可能是通過細(xì)胞內(nèi)脂代謝方式的改變所實(shí)現(xiàn)的。
致謝:感謝中國(guó)科學(xué)院生態(tài)環(huán)境研究中心徐明老師在文章修改中給予的幫助。
通訊作者簡(jiǎn)介:潘東亮(1971—),男,醫(yī)學(xué)博士,主任醫(yī)師,主要研究方向泌尿外科學(xué),在國(guó)內(nèi)外學(xué)術(shù)雜志發(fā)表過50多篇文章。
共同通訊作者簡(jiǎn)介:李寧忱(1964—),男,醫(yī)學(xué)博士,副教授,主要研究方向泌尿外科學(xué),發(fā)表過多篇國(guó)內(nèi)外學(xué)術(shù)雜志文章。
[1]Siegel R, Ma J, Zou Z, et al. Cancer statistics [J]. CA: A Cancer Journal for Clinicians, 2014, 64(1): 9-29
[2]李鳴, 張思維, 馬建輝, 等. 中國(guó)部分市縣前列腺癌發(fā)病趨勢(shì)比較研究[J]. 中華泌尿外科雜志, 2009, 30(6): 368-370
Li M, Zhang S W, Ma J H, et al. A comparative study on incidence trends of prostate cancer in part of cities and counties in China [J]. Chinese Journal of Urology, 2009, 20(6): 368-370 (in Chinese)
[3]韓蘇軍, 張思維, 陳萬青, 等.中國(guó)前列腺癌發(fā)病現(xiàn)狀和流行趨勢(shì)分析[J]. 臨床腫瘤雜志, 2013, 18(4): 330-334
Han S J, Zhang S W, Chen W Q, et al. Analysis of the status and trends of prostate cancer incidence in China [J]. Chinese Clinical Oncology, 2013, 18(4): 330-334 (in Chinese)
[4]Prajapati A, Gupta S, Mistry B, et al. Prostate stem cells in the development of benign prostate hyperplasia and prostate cancer:Emerging role and concepts [J]. Biomed Research International, 2013, 2013(7): 107954
[5]Lemen R A, Lee J S, Wagoner J K, et al. Cancer mortality among cadmium production workers [J]. Annals of the New York Academy of Sciences, 1976, 271: 273-279
[6]Dubrow R, Wegman D H. Cancer and occupation in Massachusetts: A death certificate study [J]. American Journal of Industrial Medicine, 1984, 6(3): 207-230
[7]Elghany N A, Schumacher M C, Slattery M L, et al. Occupation, cadmium exposure, and prostate cancer [J]. Epidemiology, 1990, 1(2): 107-115
[8]West D W, Slattery M L, Robison L M, et al. Adult dietary intake and prostate cancer risk in Utah: A case-control study with special emphasis on aggressive tumors [J]. Cancer Causes Control, 1991, 2(2): 85-94
[9]李曉建, 潘東亮, 李寧忱, 等. 重金屬暴露與前列腺癌發(fā)生和進(jìn)展的關(guān)系綜述[J]. 環(huán)境化學(xué), 2014, 33(10): 1776-1783
Li X J, Pan D L, Li N C, et al. Research progression on the effects of heavy metal exposure on prostate cancer [J]. Environmental Chemistry, 2014, 33(10): 1776-1783 (in Chinese)
[10]Chen Y, Wang Z, Xu M, et al. Nanosilver incurs an adaptive shunt of energy metabolism mode to glycolysis in tumor and nontumor cells [J]. ACS Nano, 2014, 8(6): 5813-5825
[11]Wang W, Deng Z, Hatcher H, et al. IRP2 regulates breast tumor growth [J]. Cancer Research, 2014, 74(2): 497-507
[12]Cheng X, Holenya P, Alborzinia H, et al. A TrxR inhibiting gold(I) NHC complex induces apoptosis through ASK1-p38-MAPK signaling in pancreatic cancer cells [J]. Molecular Cancer, 2014, 13(1): 221
[13]IARC. Cadmium and cadmium compounds [J]. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 1993, 58: 119-237
[14]Hartwig A. Cadmium and cancer [J]. Metal Ions in Life Sciences, 2013, 11: 491-507
[15]Straif K, Brahim-Tallaa L, Baan R, et al. A review of human carcinogens--Part C: Metals, arsenic, dusts, and fibres [J]. Lancet Oncology, 2009, 10(5): 453-454
[16]IARC. Some drinking-water disinfectants and contaminants, including arsenic [J]. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 2004, 84: 269-477
[17]Ferreccio C, Smith A H, Duran V, et al. Case-control study of arsenic in drinking water and kidney cancer in uniquely exposed northern Chile [J]. American Journal of Epidemiology, 2013, 178(5): 813-818
[18]Tisato F, Marzano C, Porcbia M, et al. Copper in diseases and treatments, and copper-based anticancer strategies [J]. Medicinal Research Review, 2010, 30(4): 708-749
[19]Ozmen H, Erulas F A, Karatas F, et al. Comparison of the concentration of trace metals (Ni, Zn, Co, Cu and Se), Fe, vitamins A, C and E, and lipid peroxidation in patients with prostate cancer [J]. Clinical Chemistry and Laboratory Medicine, 2006, 44(2): 175-179
[20]Lu N, Zhou H, Lin Y H, et al. Oxidative stress mediates CoCl(2)-induced prostate tumour cell adhesion:Role of protein kinase C and p38 mitogen-activated protein kinase [J]. Basic & Clinical Pharmacology & Toxicology, 2007, 101(1): 41-46
[21]Karimi G, Shahar S, Homayouni N, et al. Association between trace element and heavy metal levels in hair and nail with prostate cancer [J]. Asian Pacific Journal of Cancer Prevention, 2012, 13(9): 4249-4253
[22]Tsui K H, Chang P L, Juang H H. Manganese antagonizes iron blocking mitochondrial aconitase expression in human prostate carcinoma cells [J]. Asian Journal of Andrology, 2006, 8(3): 307-315
[23]Yaman M, Atici D, Bakirdere S, et al. Comparison of trace metal concentrations in malign and benign human prostate [J]. Journal of Medical Chemistry, 2005, 48(2): 630-634
[24]Qu W, Ke H, Pi J, et al. Acquisition of apoptotic resistance in cadmium-transformed human prostate epithelial cells: Bcl-2 overexpression blocks the activation of jnk signal transduction pathway [J]. Environmental Health Perspectives, 2007, 115(7): 1094-1100
[25]Aimola P, Carmignani M, Volpe A R, et al. Cadmium induces p53-dependent apoptosis in human prostate epithelial cells [J]. PLoS One, 2012, 7(3): e33647
[26]Benbrahim-Tallaa L, Liu J, Webber M M, et al. Estrogen signaling and disruption of androgen metabolism in acquired androgen-independence during cadmium carcinogenesis in human prostate epithelial cells [J]. Prostate, 2007, 67(2): 135-145
[27]Stoica A, Katzenellenbogen B S, Martin M B. Activation of estrogen receptor-alpha by the heavy metal cadmium [J]. Molecular Endocrinology, 2000, 14(4): 545-553
[28]Johnson M D, Kenney N, Stoica A, et al. Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland [J]. Nature Medicine, 2003, 9(8): 1081-1084
[29]Lai J S, Brown L G, True L D, et al. Metastases of prostate cancer express estrogen receptor-beta [J]. Urology, 2004, 64(4): 814-820
[30]Severson P L, Tokar E J, Vrba L, et al. Agglomerates of aberrant DNA methylation are associated with toxicant-induced malignant transformation [J]. Epidenetics, 2012, 7(11): 1238-1248
[31]Kristensen L S, Nielsen H M, Hansen L L. Epigenetics and cancer treatment [J]. European Journal of Clinical Pharmacology, 2009, 625(1): 131-142
[32]Poon R, Chu I. Effects of potassium antimony tartrate on rat erythrocyte phosphofructokinase activity [J]. Journal of Biochemical and Molecular Toxicology, 1998, 12(4): 227-233
[33]Unqureanu G, Santos S, Boaventura R, et al. Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption [J]. Journal of Environmental Management, 2015, 151C: 326-342
[34]Reimann C, Matschullat J, Birke M, et al. Antimony in the environment:Lessons from geochemical mapping [J]. Applied Geochemistry, 2010, 25(2): 175-198
[35]Shtangeeva I, Bali R, Harris A. Bioavailability and toxicity of antimony [J]. Journal of Geochemical Exploration, 2011, 110(1): 40-45
[36]Sundar S, Chakravarty J. Antimony toxicity [J]. International Journal of Environmental Research and Public Health, 2010, 7(12): 4267-4277
[37]IARC. Overall evaluations of carcinogenicity:An updating of IARC Monographs volumes 1 to 42 [J]. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 1987, 7: 1-440
[38]Filella M, Belzileb N, Chen Y W. Antimony in the environment: A review focused on natural waters: I. Occurrence [J]. Earth-Science Reviews, 2002, 57 (1): 125-176
[39]Vithanage M, Rajapaksha A U, Ahmad M, et al. Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions [J]. Journal of Environmental Management, 2015, 151C: 443-449
[40]Hockmann K, Tandy S, Lenz M, et al. Antimony retention and release from drained and waterlogged shooting range soil under field conditions [J]. Chemosphere, 2015, 134: 536-543
[41]Reis D C, Pinto M C, Souza-Faqundes E M, et al. Antimony(III) complexes with 2-benzoylpyridine-derived thiosemicarbazones: Cytotoxicity against human leukemia cell lines [J]. European Journal of Medicinal Chemistry, 2010, 45(9): 3904-3910
[42]Ewa M D, Donata W, Robert W. Arsenic and antimony transporters in eukaryotes [J]. International Journal of Molecular Sciences, 2012, 13: 3527-3548
[43]Xu X, Duan S, Yi F, et al. Mitochondrial regulation in pluripotent stem cells [J]. Cell Metabolism, 2013, 18(3): 325-332
[44]Moreno-Sánchez R, Marín-Henández A, Saavedra E, et al. Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer energy metabolism [J]. International Journal of Biochemistry Cell & Biology, 2014, 50: 10-23
[45]Cha Y H, Yook J I, Kim H S, et al. Catabolic metabolism during cancer EMT [J]. Archives of Pharmacal Ressearch, 2015, 38(3): 313-320
◆
Non-toxic Dose of Antimony Exposure Could Enhance the Intracellular Energy Metabolism and Promote Prostate Cancer Progression
Li Xiaojian1,2, Jiang Xingkang2,3, Gao Ming2, Kong Yousheng4, Pan Dongliang1,*, Li Ningchen1,#, Liu Sijin2
1. Department of Urology, Peking University Shougang Hospital, Beijing 100144, China 2. Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing 100085, China 3. Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China 4. Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing 100144, China
27 March 2015accepted 18 May 2015
This article was aimed to detect antimony content in the serum of healthy controls (HC) and prostate cancer (PCa) patients, and investigate the role and molecular mechanisms of antimony-induced PCa progression. We analyzed the concentration of antimony in the serum of HC and PCa patients with ICP-MS, and evaluated the toxicity effect of antimony on PC3 cells by MTT and Alamar-blue assay. In addition, the cell proliferation (cell counting and colony formation tests) and lipid metabolism rates (determined by intracellular triglyceride production) of PC-3 cells in response to non-toxic dose of antimony exposures were also analyzed. And our results showed that the serum concentration of antimony in PCa patients were significantly higher than those in healthy controls (P<0.05), and high dose of antimony could markedly inhibit cell viability in a dose dependent manner. However, cell proliferation rates and intracellular triglyceride levels of PC-3 cells were all obviously enhanced in response to non-toxic dose of antimony (P<0.05). Taken together, our results suggested that serum antimony content was relatively higher in PCa patients than in those of healthy controls, and the mechanism may be attributed to that accelerated intracellular lipid metabolism (especially to triglyceride metabolism) rate promoted the progression of PCa when in response to antimony. Thus, our results may provide a promising clue for the prevention and treatment of PCa in the future.Keywords: heavy metals; antimony; prostate cancer; lipid metabolism
中國(guó)科學(xué)院環(huán)境化學(xué)與生態(tài)毒理學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室開放基金(KF2011-12)
李曉建(1986-),男,碩士,研究方向?yàn)槊谀蛲饪茖W(xué),E-mail: xiaojianlee3@126.com;
Corresponding author), E-mail: dongliangpan@hotmail.com
#共同通訊作者(Corresponding author), E-mail: ningchenli@126.com
10.7524/AJE.1673-5897.20150327018
2015-03-27錄用日期:2015-05-18
1673-5897(2015)6-129-07
X171.5
A
李曉建, 姜行康, 高明, 等. 非毒性劑量重金屬銻通過改變細(xì)胞脂代謝促進(jìn)前列腺癌進(jìn)展[J]. 生態(tài)毒理學(xué)報(bào), 2015, 10(6): 129-135
Li X J, Jiang X K, Gao M, et al. Non-toxic dose of antimony exposure could enhance the intracellular energy metabolism and promote prostate cancer progression [J]. Asian Journal of Ecotoxicology, 2015, 10(6): 129-135 (in Chinese)