• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      Co-splitting of Simple Lie Algebras of Type A,D,E

      2015-11-03 11:42:39ZhaoYu
      關(guān)鍵詞:深港金融中心內(nèi)陸

      Zhao Yu-e

      (School of Mathematics,Qingdao University,Qingdao,Shandong,266071)

      Communicated by Du Xian-kun

      Co-splitting of Simple Lie Algebras of Type A,D,E

      Zhao Yu-e

      (School of Mathematics,Qingdao University,Qingdao,Shandong,266071)

      Communicated by Du Xian-kun

      In this paper,through a meticulous description of finite root system,a concrete comultiplication with an explicit action on the basis elements of finite dimensional simple Lie algebras of type A,D,E is constructed.Then any finite dimensional simple Lie algebra of type A,D,E is endowed with a new generalized Lie coalgebra splitting.This construction verifies the known existence of a co-split Lie structure on any finite dimensional complex simple Lie algebra.

      Lie coalgebra,co-splitting,finite-dimensional simple Lie algebra

      2010 MR subject classification:17B62,17B05

      Document code:A

      Article ID:1674-5647(2015)03-0229-13

      1 Introduction

      During the past decade,a great number of papers study Lie bialgebras.It is well-known that a Lie bialgebra is a vector space endowed simultaneously with a Lie algebra structure and a Lie coalgebra structure,together with a certain compatibility condition,which was suggested by a study of Hamiltonian mechanics and Poisson Lie groups(see[1]).

      Recently,Xia and Hu[2]introduced a new concept“co-split Lie algebra”which is a new[Lie algebra]-[Lie coalgebra]structure,and proved that any finite dimensional complex simple Lie algebra L can be endowed with a co-split Lie structure,i.e.,a co-splitting Lie coalgebra structure such that the composition[·,·]?δ of the two structure maps δ:L→L?CL and[·,·]:L?CL→ L coincides with the identity.Using the concept“co-split Lie algebra”,the Lie algebra structure on the dual space of a semi-simple Lie algebra can be easily studied from another point of view.Moreover,F(xiàn)arnsteiner[3]elicited the conceptual sources of[2],starting from the observation that the coalgebra maps defined in[2]are infact homomorphisms of L-modules,and for Lie algebras affording non-degenerate symmetric associative forms,such coalgebra maps naturally arise by dualizing the Lie multiplication,also several equivalent characterizations of co-splitting of a Lie algebra are given.For the cosplit Lie algebra L of type Al,Xia and Hu[2]have shown an explicit action of the coalgebra map δ on the basis elements of L.For the co-split Lie algebra L of another type,δ is obtained via embedding L→sln(C)and the action of δ on the basis elements of L is not explicitly shown,and may be complicated.In this paper,a co-split Lie algebra structure is given,which generalizes the construction in Theorem 4.2 in[2],on any complex simple Lie algebra L of type Al(l≥1),Dl(l≥4)or Ek(k=6,7,8),and the coalgebra map δ has an explicit action on the basis elements of L.See Theorem 4.1 in this paper for details.

      2 Basic Definitions and Notations

      A Lie algebra is a pair(L,[·,·]),where L is a linear space and[·,·]:L?CL→L is a bilinear map(in fact,it is a linear map from L?CL to L)satisfying

      (L1)[a,b]+[b,a]=0;

      (L2)[a,[b,c]+[b,[c,a]+[c,[a,b]=0.

      For any spaces U,V,W,define linear maps τ:U?CV→V?CU by τ(u?v)=v?u,and ξ:U?CV?CW→V?CW?CU by ξ(u?v?w)=v?w?u.A Lie coalgebra is a pair(L,δ),where L is a linear space and δ:L→L?CL is a linear map satisfying

      (Lc1)(1+τ)?δ=0;

      (Lc2)(1+ξ+ξ2)?(1?δ)?δ=0.

      A Lie bialgebra is a triple(L,[·,·],δ)such that

      (Lb1)(L,[·,·])is a Lie algebra;

      (Lb2)(L,δ)is a Lie coalgebra;

      (Lb3)For any x,y∈L,δ([x,y])=x·δ(y)-y·δ(x).

      The compatibility condition(Lb3)shows that δ is a derivation map.In this case,[·,·]?δ is a derivation of L.Xia and Hu[2]replaced the above(Lb3)with the condition[·,·]?δ=idLand give the following new concept“co-split Lie algebra”.

      Definition 2.1Suppose that(L,[·,·])is a Lie algebra and(L,δ)is a Lie coalgebra. A triple(L,[·,·],δ)is called a co-split Lie algebra if[·,·]?δ=idL.

      3 Several Properties of Simple Lie Algebras of Type A,D,E

      Let Q be the root lattice of type Al,Dl,or El,and let(·|·)be the bilinear symmetric form on Q such that the root system Φ={α∈Q|(α|α)=2}.Let ε:Q×Q→{±1}be an asymmetry function satisfying the bimultiplicativity condition

      and the condition

      An asymmetry function ε can be constructed as follows:choose an orientation of the Dynkin diagram,and let

      Define a bracket on L as follows:

      By Proposition 7.8 in[4],L is the simple Lie algebra of type Al,Dl,or El.Denote Π ={α1,α2,···,αl}by a simple root system of Φ.For any i=1,2,···,l,there is a fundamental reflection rαion Φ defined by rαi(β)=β-(β|αi)αifor any β∈Φ.

      Lemma 3.1If α,β∈Q,and(α|β)=±1,then

      (1)ε(α,β)=-ε(β,α);

      (2)ε(β,α-β)ε(α,-β)=1,and ε(β,α-β)ε(-β,α)=-1;

      (3)ε(β,α-β)=ε(-α,β)=ε(α-β,-α).

      (2)Let g denote the dual Coxeter number of the simple root system Φ.Then

      Lemma 3.2For any α∈Φ,the following statements hold:

      (1)If α1∈P1α,then α,-α1∈,α,α1-α∈,and-α,-α1+α∈

      (2)Define Υα={(α1,α2)|α1∈,α2∈-{α,-α1}}.If(β,γ)∈Υα,then(β,α-β-γ)∈Υα.Moreover,either(γ,α-β-γ),(γ,β)∈Υα,or(α-β-γ,β),(α-β-γ,γ)∈Υα;

      (3)Define Ξα={(α1,α2)|α1∈,α2∈-{-α,α-α1}},={(α1,α2)| α1∈,α2∈-{α,α1-α}}.If(β,γ)∈Ξα,then(β,-γ)∈.Moreover,either(β+γ,-β)∈Ξα,(β+γ,β)∈,or(-γ,β+γ)∈Ξα,(-γ,-β-γ)∈

      Proof.(1)By easy calculation,we omit the details.

      (2)If(β,γ)∈Υα,then(α|β)=(γ|α-β)=1,and γ/=α,-β.Since(α-β-γ| α-β)=1,then α-β-γ∈.Assume that α-β-γ=α(resp.,-β).Then γ=-β(resp.,γ=α),a contradiction.Thus(β,α-β-γ)∈Υα.

      Next we consider(α|γ).At first,γ/=α implies that(α|γ)/=2.Assume that(α|γ)=-2(resp.,-1).Then(γ|β)=(γ|α)-(γ|α-β)=-3(resp.,-2),a contradiction.So(α|γ)/=-2 or-1.Therefore(α|γ)must be equal to 1 or 0.We prove(2)in the following two cases:

      5.加強(qiáng)深港金融業(yè)的合作。隨著CEPA的深入實(shí)施,內(nèi)陸與港澳地區(qū)的聯(lián)系不斷加強(qiáng),尤其是深港兩地通關(guān)能力不斷提高,深港金融一體化趨勢(shì)越來(lái)越明顯。深圳可以借助毗鄰香港的地理優(yōu)勢(shì),發(fā)展成為香港國(guó)際金融中心在內(nèi)陸的延伸。因此,深圳應(yīng)積極加快金融創(chuàng)新力度,加強(qiáng)深港金融業(yè)合作,盡快與香港金融業(yè)對(duì)接,在為雙方的貿(mào)易活動(dòng)提供各項(xiàng)金融服務(wù)的同時(shí),合作關(guān)系范圍也應(yīng)積極拓展到保險(xiǎn)、外匯、證券等各個(gè)方面,進(jìn)一步銜接深港兩地的金融市場(chǎng),促使深港金融最終實(shí)現(xiàn)一體化,多渠道、多方面、多層次展開(kāi)深港金融服務(wù)業(yè)合作,從而與香港共建“深港國(guó)際金融中心”。

      Case 1.(α|γ)=1.

      Case 2.(α|γ)=0.

      In this case,(α-β-γ|α)=1,so α-β-γ∈By calculation,(γ|β+γ)=1. Thus γ∈,i.e.,γ∈Since(α|γ)=0,then γ/= α.Assume that γ=-(α-β-γ).Then α=β,a contradiction.Thus γ/=-(α-β-γ).Therefore,(α-β-γ,γ)∈Υα.Moreover,by the preceding proof of(2),(α-β-γ,α-(α-β-γ)-γ)also belongs to Υα,i.e.,(α-β-γ,β)∈Υα.

      (3)By condition,(α|β)=(γ|-β)=1,and γ/=-α,α-β.So(-γ|β)=1,i.e.,-γ∈,and-γ/=α,or β-α.Thus(β,-γ)∈

      Next we consider(α|γ).First γ/=-α implies that(α|γ)/=-2.Assume that(α|γ)=2.Then γ=α,and(γ|-β)=(α|-β)=-1,a contradiction.So(α|γ)/=2. Assume that(α|γ)=1.Then(γ|α-β)=2,and so γ=α-β,a contradiction.So(α|γ)/=1.Therefore,(α|γ)must be equal to-1 or 0.We prove(3)in the following two cases:

      Case 1.(α|γ)=0.

      In this case,(α|β+γ)=1,so β+γ∈.And(-β|-β-γ)=1,so-β∈Since(-α|-β)=1,then-β/=-α.Assume that-β=α-(β+γ).Then α=γ,acontradiction to that(α|γ)=0.Thus-β∈-{-α,α-(β+γ)}.Therefore,(β+γ,-β)∈Ξα,which implies that(β+γ,β)∈by the preceding proof of(3).

      Case 2.(α|γ)=-1.

      4 The Main Result

      Theorem 4.1Let(L,[·,·])be a simple Lie algebra of type Al(l≥1),Dl(l≥4),Ek(k=6,7,8).Define a linear map δ:L→L?CL by

      for any α∈Φ,where Pα1is defined in Proposition 3.1(4).Then the triple(L,[·,·],δ)is a co-split Lie algebra.

      We prove the main theorem via a series of lemmas and propositions.

      Proposition 4.1(1+τ)?δ=0.

      Proof.For any α∈Φ,

      Obviously,α1∈if and only if α-α1∈.Then∑

      For α1∈,(α1|α-α1)=-1,then by Lemma 3.1(1),ε(α1,α-α1)=-ε(α-α1,α1). Thus

      and so

      It is easy to see that

      Thus the proposition holds by the linearity of τ and δ.

      Lemma 4.1((1+ξ+ξ2)?(1?δ)?δ)(eα)=0 for any α∈Φ.

      Proof.For any α∈Φ,

      We prove that the action of 1+ξ+ξ2on the above equality is equal to zero by the following three steps(1)-(3):

      (1)By definition of ξ,for any x,y,z∈L,

      Similarly,

      Thus

      (3)Denote

      By(1)and(2),we need to prove(1+ξ+ξ2)(R)=0.Denote

      where Υαis defined in Lemma 3.2(2).So

      For any α1∈,(α|α1)=1,then by Lemma 3.1(2),

      Then

      In the above equality(4.1),if(β,γ)∈Υα,then by Lemma 3.3(2),either

      or

      Set

      where

      or

      Next we prove that

      in the following two cases:

      Case 1.S={(β,γ),(β,α-β-γ),(γ,α-β-γ),(γ,β)}.

      In the above equality(4.2),there are four summands respectively corresponding to(β,γ),(β,α-β-γ),(γ,α-β-γ),(γ,β),i.e.,

      (i)ε(β,α-β)ε(γ,α-β-γ)eβ?eγ?eα-β-γ;

      (ii)ε(β,α-β)ε(α-β-γ,γ)eβ?eα-β-γ?eγ;

      (iii)ε(γ,α-γ)ε(α-β-γ,β)eγ?eα-β-γ?eβ;

      (iv)ε(γ,α-γ)ε(β,α-β-γ)eγ?eβ?eα-β-γ.

      By calculation,

      then

      Thus

      Case 2.S={(β,γ),(β,α-β-γ),(α-β-γ,β),(α-β-γ,γ)}.

      In the above equality(4.2),there are the following four summands:

      By calculation,

      then

      Thus

      Since Υαis a finite set,we have

      Lemma 4.2((1+ξ+ξ2)?(1?δ)?δ)(hα)=0 for any α∈Φ.

      Proof.For any α∈Φ,

      By definition of ξ,

      Denote

      Then

      We only need to prove that(1+ξ+ξ2)(R′)=0.For convenience,we denote

      where Ξα,are defined in Lemma 3.2(3),and denote

      By calculation,ε(-α,α1)=ε(α-α1,-α)=ε(α1,α-α1),then

      Similarly,

      By computation,ε(α,α1)=ε(-α1-α,α)=ε(α1,-α-α1),then

      So it remains to show that(1+ξ+ξ2)(?R′)=0.

      If(β,γ)∈Ξα,then by Lemma 3.2(3),either

      or

      So

      where either

      or

      Next we prove that

      in the following two cases:

      Case 1.S1={(β,γ),(β+γ,-β)},and S2={(β,-γ),(β+γ,β)}.

      In this case,ε(γ,-β-γ)=ε(β,γ),ε(-β,-γ)=ε(-γ,β+γ).Therefore,

      Case 2.S1={(β,γ),(-γ,β+γ)},and S2={(β,-γ),(-γ,-β-γ)}.

      It is easy to see that ε(γ,-β-γ)=ε(-β-γ,β),ε(-γ,β+γ)=ε(β+γ,-β).Thus

      Therefore

      by induction.

      Proof of Theorem 4.1By Lemmas 4.1,4.2 and Proposition 4.1,(L,δ)is a Lie coalgebra.

      For any α∈Φ,

      By Lemma 3.2(3),([·,·]?δ)(eα)=eα.And

      By Proposition 3.1(4),

      So

      Therefore,(L,[·,·],δ)is a co-split Lie algebra.

      Remark 4.1We give an example to explain that the construction in Section 4 in[2]is a special case of our construction.Suppose that L is a complex simple Lie algebra of type Al,l≥1.It can be realized as the special linear Lie algebra sll+1(C)with basis{Ei,j,-Ej,i,Ei,i-Ej,j|1≤i<j≤l+1}.Set η be the set spanned by the basis elements{Ei,i-Ej,j|1≤i<j≤l+1}.Then η is a Cartan subalgebra of L.Correspondingly,

      We choose a fixed Chevalley basis as follows:

      Then the action of the comultiplication δ on eα,e-α,hαunder our definition in Theorem 4.1 is exactly that in Theorem 4.2 in[2].

      References

      [1]Etingof P,Schiffmann O.Lectures on Quantum Groups.Boston:Internat.Press,1998.

      [2]Xia L,Hu N.Introduction to co-split Lie algebras.Algebra Represent.Theory,2011,14:191-199.

      [3]Farnsteiner R.Lie algebras with a coalgebra splitting.Algebra Represent.Theory,2011,14:87-96.

      [4]Kac V G.Infinite Dimensional Lie Algebras(third edition).Combridge:Cambridge Univ.Press,1990.

      [5]Suter R.Coxeter and dual coxeter number.Comm.Algebra,1999,26:147-153.

      10.13447/j.1674-5647.2015.03.05

      date:Sept.8,2013.

      The Anhui Province College Excellent Young Talents Fund(2013SQRL071ZD).

      E-mail address:blueskyyu2004@aliyun.com(Zhao Y E).

      猜你喜歡
      深港金融中心內(nèi)陸
      佛山萬(wàn)科金融中心
      解讀:70年,重慶從內(nèi)陸變?yōu)橹袊?guó)對(duì)外開(kāi)放的前沿
      上海外灘金融中心空中健身會(huì)館
      滬港通、深港通統(tǒng)計(jì)
      滬港通、深港通5日統(tǒng)計(jì)
      滬港通、深港通5日統(tǒng)計(jì)
      滬港通、深港通統(tǒng)計(jì)
      內(nèi)陸移民(外二首)
      100噸吸內(nèi)陸漁政船
      構(gòu)建昆明市面向沿邊離岸金融中心的探究
      垦利县| 呼伦贝尔市| 洛隆县| 固原市| 柏乡县| 晋江市| 随州市| 九江市| 巩义市| 广安市| 鲁甸县| 冕宁县| 乐至县| 淮阳县| 湘乡市| 格尔木市| 荣成市| 惠安县| 东城区| 乌恰县| 丹寨县| 永顺县| 富宁县| 武汉市| 苏州市| 喀喇| 平江县| 进贤县| 综艺| 宾川县| 信丰县| 清河县| 太仓市| 竹山县| 拉孜县| 闵行区| 黄龙县| 临安市| 桂平市| 安新县| 安阳市|