何燈,李云杰
(福清第三中學,福建福清350315)
關于雙曲函數的Cusa-Huygens型不等式的改進
何燈,李云杰
(福清第三中學,福建福清350315)
本文將雙曲函數的Cusa-Huygens型不等式作了進一步的改進,所建立的雙邊不等式優(yōu)于現有的諸多結果,文末導出一條涉及算術平均、幾何平均、對數平均的不等式鏈.
雙曲函數;Cusa-Huygens型不等式;Seiffert平均;不等式
文獻[1-2]建立了著名的Cusa-Huygens不等式,文獻[3]給出了雙曲函數的Cusa-Huygens不等式,針對文獻[3]所建立的不等式的改進與推廣,現有諸多結果[4-13].本文研究sh x/x更優(yōu)的上下界形式,從而可將雙曲型Cusa-Huygens不等式作進一步的推廣和改進,并由此建立了涉及算術平均、幾何平均、對數平均的一條不等式鏈.
Cusa-Huygens不等式[1-2]:設,則有.
雙曲函數的Cusa-Huygens不等式[3]:設x∈(0,+∞),則有
朱靈[7]將式(1)推廣為:設x>0,,則有.
E.Neuman與J.Sándor改進式(1)為:設x>0,則.
成立當且僅當q≥3.
朱靈[15]將式(2)推廣為:設x>0,p>1或p≤8/15,則當且僅當q≥3(1-p).特別地,令p=1/2,q=3/2,可得
楊鎮(zhèn)杭[11]將式(3)推廣為:
最近,楊鎮(zhèn)杭[16]證得如下兩個結論:
結論1設p,x>0,雙邊不等式
結論2設x>0,則
綜合上述結論,可得不等式鏈
引理1設n∈N*,n≥7,則22n>(1+p)2n+0.57n(1+p)2n,其中(下同).
引理2設an=89×22n+121-(2n+1)[25(1+p)2n+25(1-p)2n+34+75p2n],n∈N*,則an≥0.
證明當n=1,2,3,可求an=0.可求.
當n≥7,由引理1得
綜上,引理2成立.
從而式(5)右端不等式成立.又
由引理2可證最后一個不等式成立,則有式(5)左端不等式成立.
結合式(4),可得式(6)成立.
兩個正數a,b的冪平均定義為[17]
A2,A1,A0分別稱為這兩個數的平方根平均,算術平均及幾何平均.
四類Seiffert平均分別定義為
從而定理2等價于下定理3.
定理3設a,b>0,a≠b,則如下不等式鏈成立
[1]Cajori F.A history of mathematics[M].2nd ed,New York:BibioLife,1929.
[2]Campan F T.The story of number[M].Romania:Ed Albatros,1977.
[3]Neuman E,Sándor J.On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens,Wilker and Huygens inequalities[J].Math Inequal Appl,2010,13(4):715-723.
[4]Zhu L.New inequalities for means in two variables[J].Math Inequal Appl,2008,11(2):229-235.
[5]Zhu L.Some new inequalities for means in two variables[J].Math Inequal Appl,2008,11(3):443-448.
[6]Zhu L.Some new inequalities of the Huygens type[J].Comput Math Appl,2009,58(6):1180-1182.
[7]Zhu L.Inequalities for hyperbolic functions and their applications[J/OL].J Inequal Appl,2010. [2013-10-10].http://www.journalofinequalitiesandapplications.com/content/2010/1/130821.
[8]Neuman E,Sándor J.Inequalities for hyperbolic functions[J].Appl Math Comp,2012,218(18):9291-9295.
[9]Wu S H,Debnath L.Wilker-type inequalities for hyperbolic functions[J].Appl Math Lett,2012,25(5):837-842.
[10]Zhu L.New inequalities for hyperbolic functions and their applications[J/OL].J Inequal Appl,2012.[2013-10-20].http://www.journalo?nequalitiesandapplications.com/content/2012/1/303.
[11]Yang Z H.New sharp bounds for logarithmic mean and identric mean[J/OL].J Inequal,Appl,2013. http://www.journalo?nequalitiesandapplications.com/content/2013/1/116.
[12]Chen C P,Sándor J.Inequality chains for Wilker,Huygens and Lazarevitype inequalities[J].J Math Inequal,2014,8(1):55-67.
[13]Yang Z H.Three families of two-parameter means constructed by trigonometric functions[J/OL].J Inequal Appl,2013.[2014-1-10].http://www.journalofinequalitiesandapplications.com/content/2013/1/541.
[15]Zhu L.Generalized Lazarevic’s inequality and its applications-Part II[J/OL].J Inequal Appl,2009. [2014-1-20].http://www.journalofinequalitiesandapplications.com/content/2009/1/379142.
[16]Yang Z H,Chu Y M.Jordan type inequalities for hyperbolic functions and their applications[J/OL]. Journal of Function Spaces.2014.[2014-3-10].http://www.hindawi.com/journals/jfs/aip/370979/.
[17]匡繼昌.常用不等式[M].第四版.濟南:山東科學技術出版社,2010.
[18]Seiffert H J.Werte zwischen dem geometrischen und dem arithmetischen Mittel zweier Zahlen[J]. Elemente der Mathematik,1987,42(4):105-107.
[19]Seiffert H J.Aufgabe 16[J].Die Wurzel,1995,29:221-222.[20]Neuman E,Sándor J.On the Schwab-Borchardt mean[J].Math Pannon,2003,14(2):253-266.
[21]Neuman E.Bounds for symmetric elliptic integrals[J].J Approx Theory,2003,12(2):249-259.
Im provement of Cusa-Huygens Type Inequality for Hyperbolic Functions
HE Deng,LI Yunjie
(Number 3 Middle School,Fuqing 350315,Fujian,China)
In this paper,Cusa-Huygens type inequalities for Hyperbolic Functions are improved.The double inequality is obtained.An inequality chain about arithmetic mean,geometric mean,logarithmic mean is derived.
Hyperbolic functions;Cusa-Huygens type inequality;Seiffert mean;inequality
O 178
A
1001-4217(2015)02-0028-07
2014-09-08
何燈(1984-),男,福建福清人,學士,全國不等式研究會成員.研究方向:解析不等式及不等式機器證明.E-mail:hedeng123@163.com.