• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      缺氧環(huán)境下微RNA對腫瘤的調(diào)節(jié)作用

      2015-12-09 16:35:21王宇競綜述敖敏高娃劉恩才審校
      醫(yī)學(xué)綜述 2015年19期
      關(guān)鍵詞:低氧調(diào)節(jié)誘導(dǎo)

      王宇競(綜述),敖敏高娃,劉恩才(審校)

      (呼倫貝爾市人民醫(yī)院檢驗(yàn)科,內(nèi)蒙古呼倫貝爾021008)

      眾所周知,缺氧是惡性實(shí)體腫瘤的重要生物學(xué)特征之一,與腫瘤的生長、侵襲、凋亡密切相關(guān)。腫瘤組織氧濃度顯著低于周圍其他正常組織,例如,在乳腺腫瘤中,平均氧分壓大約為10 mmHg(1 mmHg=0.133 kPa),而在正常乳腺組織氧分壓大約為60 mmHg[1]。缺氧時,通過對氧分壓敏感基因的調(diào)控來改變腫瘤細(xì)胞的表型。而缺氧誘導(dǎo)因子1(hypoxia inducible factor 1,HIF1)在此過程中起重要作用。低氧除能干擾正常細(xì)胞新陳代謝外,還會導(dǎo)致缺氧相關(guān)基因失調(diào),這種失調(diào)可產(chǎn)生大量致癌因素,包括腫瘤細(xì)胞的轉(zhuǎn)化、入侵和轉(zhuǎn)移、化療和放療治療抵抗[2]。微 RNAs(microRNAs,miRNAs)是一類內(nèi)源性的,由18~24個核苷酸組成的非編碼的小RNA分子,其在轉(zhuǎn)錄翻譯水平調(diào)節(jié)真核生物的基因表達(dá)。它們廣泛參與許多正常的和病理的細(xì)胞過程,參與轉(zhuǎn)錄后基因調(diào)控,與細(xì)胞分化、代謝和癌變、臨床分期及預(yù)后密切相關(guān)[3]。在眾多的研究中已經(jīng)證實(shí),miRNAs在腫瘤發(fā)生過程中所起的作用類似于致癌基因和抑癌基因的功能。然而,對于miRNAs在惡性疾病中所扮演的角色并不是十分了解。特別指出的是,對于腫瘤微環(huán)境下miRNAs與缺氧是如何相互作用的缺乏相關(guān)明確研究。近期一些研究表明,miRNAs的幾個關(guān)鍵的信號通路與低氧反應(yīng)相關(guān)聯(lián),并為適應(yīng)低氧環(huán)境發(fā)揮了重要作用?,F(xiàn)對這些缺氧條件下miRNAs與腫瘤相關(guān)性進(jìn)行綜述,說明miRNAs與低氧之間的相互作用機(jī)制,以便更好地理解其在腫瘤發(fā)生中的作用。

      1 缺氧調(diào)節(jié)miRNAs的表達(dá)

      以往研究已經(jīng)通過芯片法發(fā)現(xiàn)一些miRNAs對于缺氧的差異性表達(dá),此類miRNAs稱為缺氧調(diào)節(jié)miRNAs(hypoxia regulator miRNAs,HRMs)。例如miR-210、miR-155、miR-372/373、miR-10b、miR-185-3P 和 miR-216a-5P認(rèn)為是上調(diào)的 miRNAs,而miR-20b、miR-200b、miR-625-5P是 下 調(diào) 的 miRNAs[4-13]。 除 了HRMs miR-210外,其他大部分HRMs缺少相關(guān)表型一致性的研究,這種缺乏一致性的研究可能歸因于技術(shù)變量因素,包括敏感性篩選方法中所述的持續(xù)時間和缺氧嚴(yán)重程度的劃分[14]。除外種類繁多的miRNA表達(dá)譜平臺外,研究認(rèn)為,對于miRNA的檢測缺乏適當(dāng)?shù)臉?biāo)準(zhǔn)化的方法,也是造成miRNA測量誤差的重要原因[15-19]。目前為止,大約有3000種人類miRNA被命名,而大部分用于miRNA的分析方法均建立在這樣的假設(shè)情況下,即該芯片技術(shù)標(biāo)準(zhǔn)化方法所用的陣列探針數(shù)足夠大(>5000),并能夠獲得高通量的結(jié)果,但事實(shí)上,信息量大并不等同于質(zhì)量高。因此顯然目前建立的方法不能滿足miRNA表達(dá)譜的分析要求,如miR-210-3P僅通過微陣列平臺不能檢測到,需要即時聚合酶鏈反應(yīng)可探測到[5],所以除外有具體的標(biāo)準(zhǔn)化檢測作業(yè)體系外,從陣列數(shù)據(jù)庫中準(zhǔn)確、有效地識別出有功能的 HRMs也十分重要。自從 Kulshreshtha等[20]在2007年第1次報(bào)道m(xù)iRNA可被缺氧誘導(dǎo)后,隨后其他大量關(guān)于HRMs的研究也相繼展開。目前已知報(bào)道的缺氧誘導(dǎo)上調(diào)的 miRNAs 如 下:miR-10b,miR-152,miR-191,miR-206,miR-224,miR-103,miR-155,miR-193b,miR-21,miR-23,miR-107,miR-125a,miR-181b,miR-188,miR-203,miR-205,miR-210,miR-213,miR-24,miR-26,miR-27,miR-30a-5p,miR-30c,miR-30d,miR-322,miR-333,miR-335,miR-339,miR-373,miR-451,miR-491,miR-497,miR-185-3P,miR-216a-5P。下調(diào)的 miRNAs 有 miR-22,miR-25,miR-30,miR-424,miR-449,miR-489,let-7f,miR-128b,miR-150,miR-159,miR-17-92,miR-181d, miR-196a, miR-196b, miR-199a, miR-199b,miR-200a,miR-200b,miR-20b,miR-625-5P。

      缺氧反應(yīng)原件(hypoxic response element,HRE)位于HRM啟動子區(qū),能與HIF1的α和β亞基結(jié)合,同時缺氧又增強(qiáng)此復(fù)合物的親和力,繼而促使 HRM轉(zhuǎn)錄。許多 HRMs,miR-210,miR-155,miR-373,已被證實(shí)含有 HRE,并通過 HIF1調(diào)節(jié) HRMs 的表達(dá)[4,6,11]。

      2 miRNA參與調(diào)控

      類似于蛋白編碼基因,miRNA的轉(zhuǎn)錄也同樣遵循RNA聚合酶參與的傳統(tǒng)轉(zhuǎn)錄機(jī)制,因而轉(zhuǎn)錄因子在調(diào)節(jié)miRNA表達(dá)中起決定作用。如TWIST、過氧化物增殖物激活受體γ和轉(zhuǎn)錄因子GATA1在轉(zhuǎn)錄水平均可被HIF1所調(diào)節(jié)[21-23],其結(jié)果是,HIF1可以通過這些轉(zhuǎn)錄因子參與miRNA表達(dá)調(diào)控。例如,在低氧時HIF1參與調(diào)控下,TWIST可誘導(dǎo)上調(diào)miR-10b。miR-10b是一個眾所周知的介導(dǎo)不同種人類癌癥轉(zhuǎn)移的致癌miRNA[8]。相反,Lei等[12]發(fā)現(xiàn)敲除HIF1后導(dǎo)致miR-20b表達(dá)增加,同時Chan等[13]則報(bào)道m(xù)iR-200b表達(dá)則降低。由低氧激活的復(fù)雜性分子鉸鏈機(jī)制中,miRNA不僅直接受缺氧調(diào)控,還能調(diào)節(jié)缺氧相關(guān)基因的表達(dá)。例如,Kelly等[24]發(fā)現(xiàn)缺氧誘導(dǎo)miR-210抑制甘油醛-3-磷酸脫氫酶1表達(dá),進(jìn)而通過降低超羥化穩(wěn)定HIF1α的表達(dá),同理cullin2,泛素連接酶系統(tǒng)的一個支架蛋白,可以被miR-424所抑制。假設(shè)缺氧能誘導(dǎo)人類內(nèi)皮細(xì)胞中miR-424表達(dá),cullin2的表達(dá)下降則可能穩(wěn)定 HIF1α[25]。因此在低氧誘導(dǎo)的HRMs中,一些miRNAs靶基因通過形成正反饋環(huán)穩(wěn)定HIF1,此外一些缺氧下調(diào)的HRMs,如miR-18a、miR-20b、miR-199、miR-17-92則通過直接靶向作用抑制HIF1表達(dá)[26-29]。Brunning等[6]也研究指出在體內(nèi)和體外模型中,缺氧誘導(dǎo)的miR-155可能對HIF1α的穩(wěn)定性和活性有負(fù)面作用。另外,一些非HRMs,miR-519c和miR-107分別以HIF1α和HIF1β為靶位點(diǎn)。目前,HIF2作為另一種重要的亞基,在缺氧方面已廣泛研究,但很少有報(bào)道HIF2與miRNA之間的關(guān)聯(lián)性。最新研究表明,含有3-非編碼區(qū)的 HIF-3α包含miR-485-5P和miR-210-3P的靶點(diǎn),并因缺氧而表達(dá)上調(diào)[5]。除HIF1外,其他基因和信號通路也可能有助于增加腫瘤細(xì)胞對缺氧的適應(yīng)性。如缺氧可經(jīng)由AKT2依賴性過程誘導(dǎo)miR-21,由AKT2轉(zhuǎn)導(dǎo)的低氧誘導(dǎo)信號能提高核因子κB和環(huán)磷腺苷效應(yīng)原件結(jié)合蛋白活性,繼而轉(zhuǎn)錄上調(diào)miR-21的表達(dá)[29]。缺氧還參與 miRNA的生物源性,蛋白 Argonaute2(Ago2)是RNA誘導(dǎo)沉寂復(fù)合物的核心元件,而Ago2蛋白羥化是Ago2蛋白聚集成RNA誘導(dǎo)沉寂復(fù)合物中的熱激蛋白90的關(guān)鍵一步。以往研究表明低氧能增加Ⅰ型膠原脯氨酸-4-羥化酶水平,這可能導(dǎo)致脯氨酸羥基化和Ago2的累積,因此通過任意HIF1獨(dú)立或依賴途徑均可增加Ago2核酸內(nèi)切酶活性[30-31]。

      3 HRMs在人類腫瘤中的作用

      血管生成是通過組織重塑的高度協(xié)調(diào)導(dǎo)致新生血管生成,缺氧區(qū)域通過促血管生成因子誘導(dǎo)血管生成[32-33]。當(dāng)細(xì)胞缺氧時,HIF1通過轉(zhuǎn)錄調(diào)控機(jī)制上調(diào)多種血管因子生成,包括血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)和血管生成素2,基質(zhì)細(xì)胞衍生因子和干細(xì)胞因子[32-35]。這些因子與血管內(nèi)皮與平滑肌細(xì)胞表面的特殊受體結(jié)合時,在原有血管上開始有新生毛細(xì)血管生成,而血管生成對于腫瘤生長和轉(zhuǎn)移具有重要作用。近期研究揭示,特殊的HRMs在血管生成調(diào)控中具有輔助作用,研究指出miR-210以酪氨酸激酶的配體肝配蛋白A3為靶點(diǎn),并促進(jìn)人臍靜脈內(nèi)皮細(xì)胞分化[36]。同時缺氧誘導(dǎo)miR-424通過靶基因CUL2促進(jìn)血管生成,CUL2是支架蛋白泛素連接酶系統(tǒng)的關(guān)鍵組成成分,這個過程穩(wěn)定了 HIF1α活性,并同時轉(zhuǎn)錄激活VEGF[25]。相反的,miR-20b則通過VEGF和HIF1α對血管生成有負(fù)向調(diào)節(jié)作用[12,37]。在低氧環(huán)境下,miR-20b 經(jīng)由HIF1α使miR-20b表達(dá)下調(diào),并減弱對VEGF和HIF1α的抑制作用。這種miR-20b、HIF1α和VEGF之間的相互調(diào)節(jié)作用可使腫瘤細(xì)胞適應(yīng)不同的缺氧濃度[12,37]。此外,miR-519c也直接以HIF1α為靶點(diǎn)抑制血管生成,miR-21也已證實(shí)能夠以抑癌基因?yàn)榘悬c(diǎn),激活 AKT2和 ERK1/2信號通路,繼而HIF1α和VEGF表達(dá)增加,以誘導(dǎo)腫瘤血管生成[38]。在體外培養(yǎng)的富含miR-200b的人微血管內(nèi)皮細(xì)胞模型中,表現(xiàn)出抑制血管生長反應(yīng)性的特性,相反在miR-200b缺乏的人微血管內(nèi)皮細(xì)胞模型中則出現(xiàn)血管生成反應(yīng)性升高的特性,而氧含量不足和HIF1α穩(wěn)定的活性亦可抑制miR-200b的表達(dá)[13]。此外,缺氧環(huán)境下miR-107表達(dá)下調(diào)則可促進(jìn)腫瘤血管生成,其原因可能是由于miR-107對HIF1α抑制減少造成的[39]。

      4 細(xì)胞周期和增殖

      miR-210基因被證實(shí)抑制E2F3和MNT表達(dá)。E2F3屬于E2F家族,是通過影響G1/S期所需DNA合成控制細(xì)胞周期的進(jìn)程。MNT是已知c-myc的拮抗劑,參與細(xì)胞周期的調(diào)控和增殖。通過誘導(dǎo)miR-210使MNT表達(dá)抑制,進(jìn)而加快G1/S期轉(zhuǎn)換,促進(jìn)腫瘤細(xì)胞增殖[40]。因此,缺氧誘導(dǎo)miR-210可能參與腫瘤細(xì)胞的一些重要的細(xì)胞過程。

      5 代謝和凋亡

      當(dāng)氧水平不足時,細(xì)胞新陳代謝由線粒體的氧化磷酸化轉(zhuǎn)變?yōu)樘墙徒庑问?,同時HIF1可能參與對新陳代謝水平改變起關(guān)鍵作用的激酶和酶的誘導(dǎo)。研究表明,miRNA-126以胰島素受體底物1為靶基因,抑制惡性間皮瘤并妨礙線粒體功能[41]。最近一些研究小組也已證實(shí)miR-210通過抑制線粒體代謝中若干個步驟,特別是電子傳遞鏈復(fù)合物來協(xié)助這種代謝轉(zhuǎn)變[42-45]。miR-210以鐵硫簇同源支架和細(xì)胞色素C氧化酶聚集因子為靶點(diǎn)抑制線粒體呼吸。此外,miR-210還以在細(xì)胞代謝中起重要作用的還原型煙酰胺腺嘌呤二核苷酸脫氫酶(輔酶)1α-復(fù)型4(NDUFA4)和琥珀酸復(fù)合物以及GDP-1為靶點(diǎn)[44],參與細(xì)胞代謝。

      Ma等[46]在近期在對前列腺癌細(xì)胞的研究中指出缺氧誘導(dǎo)的自噬作用在一定程度上受控于miR-96,miR-96能通過哺乳動物雷帕霉素靶蛋白或自噬相關(guān)蛋白7起到抑制或促進(jìn)自噬的作用。而此相反作用取決于miR-96的表達(dá)水平:miR-96通過抑制雷帕霉素靶蛋白而刺激自噬,當(dāng)抑制miR-96時會消除缺氧誘導(dǎo)的自噬;相反高表達(dá)的miR-96則通過抑制自噬相關(guān)蛋白7來抑制自噬。而自噬作用在腫瘤中則使腫瘤細(xì)胞失去活力,從而抑制腫瘤的生長。此外,F(xiàn)asanaro等[36]發(fā)現(xiàn)在正常和缺氧條件下,以肝配蛋白A3為靶基因的miR-210抑制內(nèi)皮細(xì)胞凋亡,另外 Kim等[47]發(fā)現(xiàn)miR-210表達(dá)凋亡組分CASP8AP2通過缺血預(yù)處理可以增加間充質(zhì)干細(xì)胞的存活性。近期發(fā)現(xiàn),miR-497是一種與細(xì)胞凋亡相關(guān)的miRNAs。在缺氧的環(huán)境下,神經(jīng)膠質(zhì)瘤細(xì)胞中,過表達(dá)的miR-497通過程序性細(xì)胞凋亡因子4對因缺氧誘導(dǎo)的細(xì)胞凋亡表現(xiàn)出保護(hù)性機(jī)制[48]。其他研究也表明miR-21可能通過人第10號染色體缺失的磷酸酶及張力蛋白同源基因和Fas配體調(diào)節(jié)細(xì)胞凋亡[49]。

      6 癌癥轉(zhuǎn)移和治療

      Ying等[50]報(bào)道在肝細(xì)胞癌細(xì)胞中,缺氧誘導(dǎo)的miR-210可促進(jìn)肝細(xì)胞癌轉(zhuǎn)移。液泡膜蛋白1被確定為miR-210的直接靶基因,在缺氧條件下,液泡膜蛋白1的下調(diào)與肝細(xì)胞癌細(xì)胞的轉(zhuǎn)移有關(guān)。Chen等[51]發(fā)現(xiàn)缺氧時,miR103/107在結(jié)腸腫瘤細(xì)胞中表達(dá)升高,并抑制了腫瘤轉(zhuǎn)移的抑制物-凋亡相關(guān)蛋白酶和Kruppel樣因子。Loayza-Puch等[11]研究指出,在缺氧條件下,miR372/373通過HIF1α和TWIST的轉(zhuǎn)錄調(diào)節(jié)和表達(dá)上調(diào),而 miR-210則通過 RAS/ERK信號上調(diào),這些HRMs相繼降低膜錨定金屬蛋白酶調(diào)節(jié)物RECK基因表達(dá),而RECK則是腫瘤細(xì)胞轉(zhuǎn)移的抑制物。缺氧是腫瘤微環(huán)境的標(biāo)志,缺氧與抗癌療法中放/化療相關(guān)已經(jīng)明確。但是在缺氧條件下,癌細(xì)胞如何抵抗抗癌治療的機(jī)制還不十分明確。Gee等[52]通過大量數(shù)據(jù)說明miRNAs是腫瘤適應(yīng)低氧反應(yīng)的重要成分,超表達(dá)的miR-210,典型的缺氧相關(guān)基因轉(zhuǎn)與腫瘤的不良預(yù)后相關(guān)。通過反義基因療法,穩(wěn)定轉(zhuǎn)染的miR-210反義寡核苷酸能顯著增強(qiáng)人肝癌細(xì)胞對放射性的敏感性,從而抑制細(xì)胞增殖和促進(jìn)細(xì)胞凋亡。如前所述,神經(jīng)膠質(zhì)瘤細(xì)胞中,異常過表達(dá)miR-497以程序性細(xì)胞凋亡因子4為靶基因增強(qiáng)對化療藥物的抵抗性,相反,抑制其會促進(jìn)腫瘤細(xì)胞的凋亡,并提高神經(jīng)膠質(zhì)瘤細(xì)胞對 TMZ的敏感性[48]。因此HRMs可能成為未來放/化療治療中關(guān)鍵的生物標(biāo)志物和治療靶點(diǎn)。

      7 結(jié)語

      雖然目前有許多關(guān)于缺氧和人類癌癥的報(bào)道,但缺氧對于生理學(xué)和病理生理學(xué)上的調(diào)節(jié)機(jī)制還知之甚少。而對于miRNAs的研究有望揭示缺氧條件下的調(diào)節(jié)機(jī)制,原因有:①細(xì)胞水平上,miRNAs通過轉(zhuǎn)錄和翻譯調(diào)節(jié)對由缺氧引起的壓力反應(yīng)快速響應(yīng);②miRNAs能同時調(diào)節(jié)大量基因并影響到多個組件的信號通路。因此,針對未來HRMs的研究,可能側(cè)重于以下幾個方面:①新的HRMs的發(fā)現(xiàn)及其靶基因的識別;②驗(yàn)證新發(fā)現(xiàn)的HRMs及其在缺氧條件下的功能;③以HRMs為靶位點(diǎn)的新型治療和預(yù)防藥物的發(fā)展。近期人類癌癥中關(guān)于缺氧調(diào)節(jié)miRNAs的研究,以及癌癥微環(huán)境中miRNAs所扮演調(diào)節(jié)角色的闡述會對今后抗癌藥物的發(fā)展有所幫助。

      [1]Marxsen JH,Schmitt O,Metzen E,et al.Vascular endothelial growth factor gene expression in the human breast cancer cell line MX-1 is controlled by O2availability in vitro and in vivo[J].Ann Anat,2001,183(3):243-249.

      [2]Semenza GL.HIF-1 and tumor progression:pathophysiology and therapeutics[J].Trends Mol Med,2002,8(4 Suppl):S62-67.

      [3]Greco S,Martelli F.MicroRNAs in Hypoxia Response[J].Antioxid Redox Signal,2014,21(8):1164-1166.

      [4]Huang X,Ding L,Bennewith KL,et al.Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation[J].Mol Cell,2009,35(6):856-867.

      [5]Gits CM,van Kuijk PF,de Rijck JC,et al.MicroRNA response to hypoxic stress in soft tissue sarcoma cells:microRNA mediated regulation of HIF3α[J].BMC Cancer,2014,14:429.

      [6]Bruning U,Cerone L,Neufeld Z,et al.MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia[J].Mol Cell Biol,2011,31(19):4087-4096.

      [7]Crosby ME,Kulshreshtha R,Ivan M,et al.MicroRNA regulation of DNA repair gene expression in hypoxic stress[J].Cancer Res,2009,69(3):1221-1229.

      [8]Haque I,Banerjee S,Mehta S,et al.Cysteine-rich 61-connective tissue growth factor-nephroblastoma-overexpressed 5(CCN5)/Wnt-1-induced signaling protein-2(WISP-2)regulates microRNA-10b via hypoxia-inducible factor-1α-TWIST signaling networks in human breast cancer cells[J].J Biol Chem,2011,286(50):43475-43485.

      [9]Mathieu J,Zhang Z,Zhou W,et al.HIF induces human embryonic stem cell markers in cancer cells[J].Cancer Res,2011,71(13):4640-4652.

      [10]Neal CS,Michael MZ,Rawlings LH,et al.The VHL-dependent regulation of microRNAs in renal cancer[J].BMC Med,2010,8:64.

      [11]Loayza-Puch F,Yoshida Y,Matsuzaki T,et al.Hypoxia and RAS-signaling pathways converge on,and cooperatively downregulate,the RECK tumor-suppressor protein through microRNAs[J].Oncogene,2010,29(18):2638-2648.

      [12]Lei Z,Li B,Yang Z,et al.Regulation of HIF-1alpha and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration[J].PLoS One,2009,4(10):e7629.

      [13]Chan YC,Khanna S,Roy S,et al.miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells[J].J Biol Chem,2011,286(3):2047-2056.

      [14]Chan SY,Loscalzo J.MicroRNA-210:a unique and pleiotropic hypoxamir[J].Cell Cycle,2010,9(6):1072-1083.

      [15]Huang X,Le QT,Giaccia AJ.MiR-210--micromanager of the hypoxia pathway[J].Trends Mol Med,2010,16(5):230-237.

      [16]Wang B,Howel P,Bruheim S,et al.Systematic evaluation of three microRNA profiling platforms:microarray,beads array,and quantitative real-time PCR array[J].PLoS One,2011,6(2):e17167.

      [17]Wang B,Wang XF,Howell P,et al.A personalized microRNA microarray normalization method using a logistic regression model[J].Bioinformatics,2010,26(2):228-234.

      [18]Wang B,Wang XF,Xi Y.Normalizing bead-based microRNA expression data:a measurement error model-based approach[J].Bioinformatics,2011,27(11):1506-1512.

      [19]Wang B,Zhang SG,Wang XF,et al.Testing for differentiallyexpressed microRNAs with errors-in-variables nonparametric regression[J].PLoS One,2012,7(5):e37537.

      [20]Kulshreshtha R,F(xiàn)erracin M,Wojcik SE,et al.A microRNA signature of hypoxia[J].Mol Cell Biol,2007,27(5):1859-1867.

      [21]Yang MH,Wu MZ,Chiou SH,et al.Direct regulation of TWIST by HIF-1alpha promotes metastasis[J].Nat Cell Biol,2008,10(3):295-305.

      [22]Krishnan J,Suter M,Windak R,et al.Activation of a HIF1alpha-PPARgamma axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy[J].Cell Metab,2009,9(6):512-524.

      [23]Zhang FL,Shen GM,Liu XL,et al.Hypoxia-inducible factor 1-mediated human GATA1 induction promotes erythroid differentiation under hypoxic conditions[J].J Cell Mol Med,2012,16(8):1889-1899.

      [24]Li X,Gao L,Cui Q,et al.Sulindac inhibits tumor cell invasion by suppressing NF-κB-mediated transcription of microRNAs[J].Oncogene,2012,31(48):4979-4986.

      [25]Ma L.Role of miR-10b in breast cancer metastasis[J].Breast Cancer Res,2010,12(5):210.

      [26]Taguchi A,Yanagisawa K,Tanaka M,et al.Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster[J].Cancer Res,2008,68(14):5540-5545.

      [27]Rane S,He M,Sayed D,et al.Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes[J].Circ Res,2009,104(7):879-886.

      [28]Krutilina R,Sun W,Sethuraman A,et al.MicroRNA-18a inhibits hypoxia-inducible factor 1-alpha activity and lung metastasis in basal breast cancers[J].Breast Cancer Res,2014,16(4):R78.

      [29]Polytarchou C,Iliopoulos D,Hatziapostolou M,et al.Akt2 regulates all Akt isoforms and promotes resistance to hypoxia through induction of miR-21 upon oxygen deprivation[J].Cancer Res,2011,71(13):4720-4731.

      [30]Wu C,So J,Davis-Dusenbery BN,et al.Hypoxia potentiates microRNA-mediated gene silencing through posttranslational modi-fication of Argonaute2[J].Mol Cell Biol,2011,31(23):4760-4774.

      [31]Hofbauer KH,Gess B,Lohaus C,et al.Oxygen tension regulates the expression of a group of procollagen hydroxylases[J].Eur J Biochem,2003,270(22):4515-45122.

      [32]Forsythe JA,Jiang BH,Iyer NV,et al.Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1[J].Mol Cell Biol,1996,16(9):4604-4013.

      [33]Simon MP,Tournaire R,Pouyssegur J.The angiopoietin-2 gene of endothelial cells is up-regulated in hypoxia by a HIF binding site located in its first intron and by the central factors GATA-2 and Ets-1[J].J Cell Physiol,2008,217(3):809-818.

      [34]Ceradini DJ,Kulkarni AR,Callaghan MJ,et al.Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1[J].Nat Med,2004,10(8):858-864.

      [35]Kelly BD,Hackett SF,Hirota K,et al.Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1[J].Circ Res,2003,93(11):1074-1081.

      [36]Fasanaro P,D'Alessandra Y,Di Stefano V,et al.MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3[J].J Biol Chem,2008,283(23):15878-15883.

      [37]Cascio S,D'Andrea A,F(xiàn)erla R,et al.miR-20b modulates VEGF expression by targeting HIF-1 alpha and STAT3 in MCF-7 breast cancer cells[J].J Cell Physiol,2010,224(1):242-249.

      [38]Liu LZ,Li C,Chen Q,et al.MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression[J].PLoS One,2011,6(4):e19139.

      [39]Yamakuchi M,Lotterman CD,Bao C,et al.P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis[J].Proc Natl Acad Sci U S A,2010,107(14):6334-6339.

      [40]Zhang Z,Sun H,Dai H,et al.MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT[J].Cell Cycle,2009,8(17):2756-2768.

      [41]Tomasetti M,Nocchi L,Staffolani S,et al.MicroRNA-126 suppresses mesothelioma malignancy by targeting IRS1 and interfering with the mitochondrial function[J].Antioxid Redox Signal,2014,21(15):2109-2125.

      [42]Chan SY,Zhang YY,Hemann C,et al.MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the ironsulfur cluster assembly proteins ISCU1/2[J].Cell Metab,2009,10(4):273-284.

      [43]Fasanaro P,Greco S,Lorenzi M,et al.An integrated approach for experimental target identification of hypoxia-induced miR-210[J].J Biol Chem,2009,284(50):35134-35143.

      [44]Favaro E,Ramachandran A,McCormick R,et al.MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU[J].PLoS One,2010,5(4):e10345.

      [45]Chen Z,Li Y,Zhang H,et al.Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression[J].Oncogene,2010,29(30):4362-4368.

      [46]Ma Y,Yang HZ,Dong BJ,et al.Biphasic regulation of autophagy by miR-96 in prostate cancer cells under hypoxia[J].Oncotarget,2014,5(19):9169-9182.

      [47]Kim HW,Haider HK,Jiang S,et al.Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 2[J].J Biol Chem,2009,284(48):33161-33168.

      [48]Lan J,Xue Y,Chen H,et al.Hypoxia-induced miR-497 decreases glioma cell sensitivity to TMZ by inhibiting apoptosis[J].FEBS Lett,2014,588(18):3333-3339.

      [49]Sayed D,He M,Hong C,et al.MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression ofFas ligand[J].JBiolChem,2010,285(26):20281-20290.

      [50]Ying Q,Liang L,Guo W,et al.Hypoxia-inducible microRNA-210 augments the metastatic potential of tumor cells by targeting vacuole membrane protein 1 in hepatocellular carcinoma[J].Hepatology,2011,54(6):2064-2075.

      [51]Chen HY,Lin YM,Chung HC,et al.miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4[J].Cancer Res,2012,72(14):3631-3641.

      [52]Gee HE,Ivan C,Calin GA,et al.HypoxamiRs and cancer:from biology to targeted therapy[J].Antioxid Redox Signal,2014,21(8):1220-1238.

      猜你喜歡
      低氧調(diào)節(jié)誘導(dǎo)
      方便調(diào)節(jié)的課桌
      齊次核誘導(dǎo)的p進(jìn)制積分算子及其應(yīng)用
      間歇性低氧干預(yù)對腦缺血大鼠神經(jīng)功能恢復(fù)的影響
      2016年奔馳E260L主駕駛座椅不能調(diào)節(jié)
      同角三角函數(shù)關(guān)系及誘導(dǎo)公式
      續(xù)斷水提液誘導(dǎo)HeLa細(xì)胞的凋亡
      中成藥(2017年12期)2018-01-19 02:06:52
      大型誘導(dǎo)標(biāo)在隧道夜間照明中的應(yīng)用
      Wnt/β-catenin信號通路在低氧促進(jìn)hBMSCs體外增殖中的作用
      可調(diào)節(jié)、可替換的takumi鋼筆
      裸鼴鼠不同組織中低氧相關(guān)基因的表達(dá)
      南投县| 微山县| 略阳县| 靖江市| 绥江县| 隆回县| 海门市| 七台河市| 鄂托克前旗| 隆回县| 临洮县| 肃北| 杭锦后旗| 永兴县| 扶沟县| 神木县| 绥棱县| 漾濞| 宣威市| 江阴市| 衡山县| 从化市| 阿合奇县| 临颍县| 五莲县| 东台市| 灌阳县| 宁明县| 平安县| 卓尼县| 万山特区| 漳平市| 曲阜市| 湘阴县| 渭南市| 滨州市| 兰州市| 宜君县| 当雄县| 青岛市| 济宁市|