• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      昆蟲遺傳轉(zhuǎn)化品系的常用標記

      2015-12-17 06:15:19申建茹李建偉張桂芬萬方浩
      生物安全學報 2015年2期

      申建茹, 嚴 盈,2,3, 武 強, 李建偉, 張桂芬, 萬方浩,4*

      1中國農(nóng)業(yè)科學院植物保護研究所,植物病蟲害生物學國家重點實驗室,北京 100193; 2Department of Entomology,

      North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613, USA; 3Genetic Engineering

      and Society Center and W. M. Keck Center for Behavioral Biology, North Carolina State University,

      Raleigh, NC 27695-7613, USA; 4青島農(nóng)業(yè)大學農(nóng)學與植物保護學院,山東 青島 266109

      ?

      昆蟲遺傳轉(zhuǎn)化品系的常用標記

      申建茹1, 嚴盈1,2,3, 武強1, 李建偉1, 張桂芬1, 萬方浩1,4*

      1中國農(nóng)業(yè)科學院植物保護研究所,植物病蟲害生物學國家重點實驗室,北京 100193;2Department of Entomology,

      North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613, USA;3Genetic Engineering

      and Society Center and W. M. Keck Center for Behavioral Biology, North Carolina State University,

      Raleigh, NC 27695-7613, USA;4青島農(nóng)業(yè)大學農(nóng)學與植物保護學院,山東 青島 266109

      摘要:遺傳轉(zhuǎn)化標記是將遺傳修飾昆蟲從野生型種群中分辨出來的根據(jù),遺傳轉(zhuǎn)化昆蟲的鑒定、轉(zhuǎn)化品系的維持及其遺傳穩(wěn)定性的監(jiān)測都依賴于可靠的標記系統(tǒng),發(fā)展易于應用和監(jiān)測的轉(zhuǎn)化標記能夠極大地促進害蟲遺傳防治的相關(guān)研究。用于遺傳修飾昆蟲的轉(zhuǎn)化標記主要有昆蟲眼睛顏色標記基因、抗藥性標記基因和熒光蛋白標記基因等。非果蠅類昆蟲首個遺傳轉(zhuǎn)化品系的鑒定是通過眼睛顏色突變而實現(xiàn),但大多數(shù)昆蟲物種沒有可用的突變體或缺少相應基因的信息,從而限制了眼睛顏色標記的應用??顾幮曰驑擞涬m然能夠通過對轉(zhuǎn)化昆蟲進行集體選擇而大幅度提高篩選轉(zhuǎn)化體的效率,但由于其鑒定的準確性不高且存在安全性問題,未得到廣泛應用。熒光蛋白標記基因的發(fā)展則顯著拓寬了能夠轉(zhuǎn)化的昆蟲種類。從水母分離的綠色熒光蛋白(GFP)經(jīng)突變方法獲得了多種不同熒光性質(zhì)的突變體,經(jīng)人為修飾后與適宜的強啟動子構(gòu)成轉(zhuǎn)化標記載體,能夠有效鑒定更多昆蟲物種的遺傳轉(zhuǎn)化個體,其中應用較多的是增強型綠色熒光蛋白(EGFP)。此外,從珊瑚屬海葵中分離得到的紅色DsRed標記基因提供了多樣化的紅色熒光蛋白選擇,在某些生物中DsRed與GFP聯(lián)合應用的表現(xiàn)明顯優(yōu)于GFP突變體,所以其應用前景也非常廣泛。本文著重從眼睛顏色、抗藥性和熒光蛋白等3個方面闡述了標記基因的發(fā)展歷史與現(xiàn)狀,并對其今后的發(fā)展方向進行了展望。

      關(guān)鍵詞:遺傳修飾昆蟲; 轉(zhuǎn)化標記; 眼睛顏色標記; 抗藥性標記; 熒光蛋白標記

      Commonly used transformation markers in genetically modified insects

      Jian-ru SHEN1, Ying YAN1,2,3, Qiang WU1, Jian-wei LI1, Gui-fen ZHANG1, Fang-hao WAN1,4*

      昆蟲遺傳轉(zhuǎn)化技術(shù)是將攜帶外源基因的轉(zhuǎn)座子導入到目標昆蟲的基因組,使其獲得特定表型的分子生物學操縱手段。昆蟲遺傳轉(zhuǎn)化研究對于深入了解昆蟲生理和行為意義重大,同時已成為一種新型有效的害蟲控制策略。自1982年首次在黑腹果蠅Drosophilamelanogaster中應用P-元件實現(xiàn)胚胎轉(zhuǎn)化(Rubin & Spradling,1982)之后,昆蟲遺傳轉(zhuǎn)化研究逐漸興起并得到廣泛重視,隨后開發(fā)了各種轉(zhuǎn)座元件如Minos、Mariner、Hermes和piggyBac等,并被成功應用于重要醫(yī)學和農(nóng)業(yè)害蟲的遺傳防治研究中。各種轉(zhuǎn)化標記的發(fā)展顯著促進了昆蟲遺傳修飾的研究,大大拓寬了能夠被轉(zhuǎn)化的昆蟲種類(Atkinsonetal.,2001; Handler,2001a; Handler & James,2000)。遺傳轉(zhuǎn)化標記是將遺傳修飾昆蟲從野生型種群中分辨出來的根據(jù),遺傳轉(zhuǎn)化昆蟲的鑒定、轉(zhuǎn)化品系的維持及其遺傳穩(wěn)定性的監(jiān)測都依賴于可靠的標記系統(tǒng),發(fā)展易于應用和監(jiān)測的轉(zhuǎn)化標記能夠極大地促進害蟲遺傳防治的相關(guān)研究。用于遺傳修飾昆蟲的轉(zhuǎn)化標記主要有昆蟲眼睛顏色標記基因、抗藥性標記基因和熒光蛋白標記基因等(Alphey,2002)。

      1 眼睛顏色基因轉(zhuǎn)化標記

      各種控制眼睛顏色基因的發(fā)掘,豐富了昆蟲遺傳修飾研究的眼睛顏色標記。早期對果蠅眼睛顏色突變的研究揭示了編碼色氨酸加氧酶的vermilion基因(Searlesetal.,1990; Whiteetal.,1996)和編碼犬尿氨酸—單加氧酶的cinnabar基因(Corneletal.,1997; Warrenetal.,1996)均參與色素產(chǎn)生的過程。在黑腹果蠅和地中海實蠅Ceratitiscapitata中,white基因負責編碼昆蟲復眼中色素引入和組裝的ABC轉(zhuǎn)運蛋白(Bhalla,1968; Ewartetal.,1994)。通常,這些在復眼中能產(chǎn)生色素的基因如white(w)、vermilion(v)和cinnabar(cn)等均可用作遺傳修飾昆蟲研究的眼睛顏色標記基因。野生型基因突變的等位基因會影響昆蟲復眼的顏色,將這些基因引入適宜的野生昆蟲中,即可產(chǎn)生可見的復眼表現(xiàn)型差異(Rubin & Spradling,1982)。這些基因大多為2~3 kb,其突變基本不會造成昆蟲適合度的降低,過量表達對生物體也無害。同時,對其檢測無需特殊的檢測系統(tǒng),所以眼睛顏色標記基因更易于被接受,從而得到廣泛應用。

      眼睛顏色突變體及其相應基因用作評價性標記體系,促進了果蠅和其他昆蟲遺傳修飾技術(shù)的發(fā)展(Lorenzenetal.,2002),黑腹果蠅的首次胚胎轉(zhuǎn)化和黑果蠅Drosophilavirilis轉(zhuǎn)化品系的獲得均依賴于可見眼睛顏色標記系統(tǒng)的應用(Gomez & Handler,1997; Rubin & Spradling,1982)。地中海實蠅(Handleretal.,1998; Loukerisetal.,1995; Micheletal.,2001)和埃及伊蚊Aedesaegypti(Coatesetal.,1998; Jasinskieneetal.,1998)的首次成功轉(zhuǎn)化很大程度上得益于眼睛顏色突變體的存在和用于突變—拯救選擇的野生型基因的克隆及可用性。在地中海實蠅中,白色眼睛基因座中的一個無效突變可被克隆的野生型拷貝所補充(Zwiebeletal.,1995),隨后相似的基因也用于轉(zhuǎn)化同樣存在白色眼睛品系的橘小實蠅Bactroceradorsalis(Handler & McCombs,2000)。黑腹果蠅cn基因可以拯救埃及伊蚊突變品系的白色眼睛表型品系。對于赤擬谷盜Triboliumcastaneum,通過克隆其v和c基因建立了基于攜帶眼睛顏色突變vermillionwhite拯救的轉(zhuǎn)化體系。應用眼睛顏色標記基因進行遺傳修飾的昆蟲物種如表1所示。

      表1 采用眼睛顏色標記的遺傳修飾昆蟲

      2 抗藥性基因轉(zhuǎn)化標記

      最初對單獨發(fā)揮作用的顯性選擇標記的研究主要集中于抗藥性基因,如對新霉素類似物有抗性的磷酸轉(zhuǎn)移酶基因NPTII(Steller & Pirrotta,1985)、對對硫磷有抗性的有機磷脫氫酶基因opd(Benedictetal.,1995; Phillipsetal.,1990),以及對有機氯殺蟲劑狄氏劑dieldrin有抗性的Rdl基因(Ffrench-Constantetal.,1991)等??顾幮詷擞浕蜃钤缭趯葋啺次肁nophelesgambiae中得以應用,岡比亞按蚊的第一個轉(zhuǎn)化品系是應用編碼新霉素羧酸酯酶的neo基因作為選擇標記而建立起來(Milleretal.,1987),擁有neo基因的轉(zhuǎn)化品系可以獲得對氨基糖苷類抗生素G418的抗性。然而,由于在黑腹果蠅中能夠確定基于G418抗性篩選的較佳條件,該基因標記只在黑腹果蠅中成功應用(Steller & Pirrotta,1985)。

      對于大部分昆蟲來說,篩選到適宜的抗藥性基因遺傳轉(zhuǎn)化標記,可以對試驗昆蟲進行集體選擇,從而大幅度提高篩選轉(zhuǎn)化體的效率,這種優(yōu)勢使其成為可見眼睛顏色標記之外的另一個重要轉(zhuǎn)化標記。然而,抗藥性標記的廣泛應用還存在諸多問題。首先,轉(zhuǎn)化體篩選的準確性。野生型昆蟲種群對某些藥物或抗生素的抗性具有波動性;同時,轉(zhuǎn)座子介導的遺傳修飾昆蟲并不能將特定的靶基因轉(zhuǎn)化到特定的基因組位置上,所以轉(zhuǎn)化試驗將會得到不同數(shù)量的插入子插入到不同位點的多種轉(zhuǎn)化體;此外,由于位置抑制效應的差異,不同轉(zhuǎn)化體之間轉(zhuǎn)化標記的表達水平也存在明顯差異。因此,在沒有其他可用標記的昆蟲物種中應用抗藥性標記篩選轉(zhuǎn)化體,易篩選出未轉(zhuǎn)化成功的假陽性個體,或誤殺大多數(shù)轉(zhuǎn)化成功的假陰性個體。其次,安全性。很多藥物都具有毒性,且操作過程需要研究人員暴露于藥物中,所以該技術(shù)不被廣泛接受。同時,轉(zhuǎn)化品系的維系傳代需要依靠抗藥性的選擇,轉(zhuǎn)化品系的天然抗性選擇機制會隨世代的增加而加強,而抗藥性標記可能使連鎖的轉(zhuǎn)化基因具有選擇性優(yōu)勢,因此對以釋放遺傳修飾昆蟲為最終目的的害蟲治理項目而言,其將面臨更大的抗性問題。目前,殺蟲劑抗性(Hemingway & Ranson,2000)和抗生素抗性(Monroe & Polk,2000)已成為威脅人類健康的嚴重問題,而抗藥性標記的使用將會使現(xiàn)有的局勢變得更為嚴峻。

      3 熒光蛋白轉(zhuǎn)化標記

      轉(zhuǎn)座子介導的昆蟲遺傳修飾研究方法具有隨機插入的特性,所以要想對轉(zhuǎn)化個體進行準確檢測,就需要應用在不同表達水平均能被穩(wěn)定監(jiān)測的遺傳轉(zhuǎn)化標記。該種標記基因應具有顯性表達、非破壞性、野生型背景中可見等特性。從水母Aequoreavictoria(Prasheretal.,1992)中分離得到的編碼綠色熒光蛋白(green fluorescent protein,GFP)基因具備轉(zhuǎn)化標記的基本特性,GFP在多種不同的有機體中均可顯示出亮綠色的熒光,且在有機體不同組織中表達的綠色熒光易于被監(jiān)測(Tsien,1998)。GFP自被發(fā)現(xiàn)以來,以其良好的熒光特性成為被廣泛使用的報告基因或體內(nèi)蛋白定位的融合標簽(Brand,1999; Chalfieetal.,1994; Cubittetal.,1995; Plautzetal.,1996)。然而,由于野生型GFP的相對不可溶性和位于紫外光譜內(nèi)激發(fā)峰的限制,尤其是長時間暴露在紫外光條件下不適宜篩選活體生物等因素,限制了其在遺傳修飾昆蟲鑒定和篩選中的應用。

      隨著更可溶性GFP突變品系如增強型GFP (EGFP) (Cormacketal.,1996; Yangetal.,1996)的發(fā)展,上述問題基本得以解決。EGFP激發(fā)峰為488 nm,能夠在更無害的藍光下被激發(fā),強度比野生型GFP提高35倍,適合快捷無損傷檢測。在黑腹果蠅中,EGFP標記與眼睛顏色基因標記聯(lián)合應用,驗證了EGFP對該物種的適用性(Handler & Harrell,1999; Hornetal.,2000),并證實EGFP遺傳轉(zhuǎn)化標記比其常規(guī)轉(zhuǎn)化標記即眼睛顏色基因標記“mini”-white更加靈敏、可靠。以埃及伊蚊為靶標的驗證結(jié)果與黑腹果蠅相似(Pinkertonetal.,2000),可能與“mini”-white基因受位置抑制效應更強有關(guān)。此外,由于啟動子的不同,即使基因連鎖插入到相同的染色體位置上,不同基因受位置抑制的效應也可能存在明顯差異(Bhadraetal.,1998)。通常,EGFP基因標記比眼睛顏色基因標記受到完全性抑制的可能性更小(Handler & Harrell,1999; Hornetal.,2000)。EGFP具有可溶性更佳、受藍光激發(fā)、不易受完全性位置抑制等特性,是首個被廣泛應用的熒光變體,也是目前昆蟲遺傳修飾研究的主要轉(zhuǎn)化標記。Higgs & Lewis (2000)詳細綜述了GFP突變品系作為遺傳修飾昆蟲標記的優(yōu)勢,Hornetal.(2002)也指出其優(yōu)勢之一就是能應用野生型生物體,這對于缺少可見型突變品系或突變品系很弱的昆蟲物種至關(guān)重要。雙翅目、鱗翅目和鞘翅目等3個目不同物種的成功轉(zhuǎn)化,表明EGFP可以被用作昆蟲遺傳修飾的轉(zhuǎn)化標記(表2~4)。

      然而,熒光標記在昆蟲遺傳修飾研究中仍存在一些問題。首先,篩選遺傳修飾昆蟲過程中長時間的強光照射可能會導致昆蟲死亡;其次,很多組織器官如馬氏管、幾丁質(zhì)外骨骼或壞死組織的自發(fā)光可能會干擾轉(zhuǎn)化體的檢測;再次,成蟲表皮高強度的黑化會阻礙對其內(nèi)部組織表達的EGFP的監(jiān)測。很多昆蟲的胚胎、幼蟲或蛹期階段比較透明,根據(jù)胚胎的發(fā)育歷期以及遺傳轉(zhuǎn)化標記經(jīng)過內(nèi)部環(huán)化和氧化達到成熟所需的時間(Davisetal.,1995)推測,幼蟲孵化之前的階段可能是篩選遺傳修飾昆蟲的最佳時期。在該階段進行熒光篩選不僅能夠達到快速檢測的目的,而且避免了飼養(yǎng)全部G1代遺傳修飾昆蟲,這對幼蟲食材珍貴但食量大或世代周期很長的物種而言非常重要。為了更準確地監(jiān)測單拷貝插入的轉(zhuǎn)化基因,可以借助強啟動子驅(qū)動EGFP的高效表達。同時,根據(jù)研究的具體需求,組成型和組織特異性的啟動子都可用來構(gòu)建EGFP的獨立標記系統(tǒng)。

      表2 采用熒光蛋白基因作為轉(zhuǎn)化標記的雙翅目昆蟲

      表3 采用熒光蛋白基因作為轉(zhuǎn)化標記的鱗翅目昆蟲

      表4 采用熒光蛋白基因作為轉(zhuǎn)化標記的鞘翅目昆蟲

      3.1 組成型啟動子驅(qū)動的EGFP

      遺傳修飾昆蟲轉(zhuǎn)化載體構(gòu)建程序中應用強啟動子驅(qū)動EGFP的表達,有利于準確檢測單拷貝插入子。組成型啟動子在所有細胞中都有活性,所以能夠在昆蟲發(fā)育的所有階段(包括胚胎、幼蟲和成蟲)篩選轉(zhuǎn)化體。Handler & Harrell (1999、2001a)成功地應用黑腹果蠅polyubiquitin啟動子驅(qū)動EGFP的表達,構(gòu)建了PUbnlsEGFP轉(zhuǎn)化標記,在黑腹果蠅和加勒比按實蠅Anastrephasuspensa整個發(fā)育階段中實現(xiàn)了熒光的表達。該標記載體的EGFP被融合到一核定位信號上,熒光蛋白的亞細胞定位利于準確地從非核定位的自發(fā)熒光背景中鑒定轉(zhuǎn)化體。這對由位置效應而導致EGFP低表達水平的轉(zhuǎn)化體的鑒定尤為重要。

      另一種常用的驅(qū)動EGFP的組成型啟動子來自黑腹果蠅actin5C基因。轉(zhuǎn)化標記actin5C:EGFP在黑腹果蠅、埃及伊蚊和斯氏按蚊Anophelesstephensi各發(fā)育階段的表現(xiàn)均很好(Catterucciaetal.,2000; Pinkertonetal.,2000),但只能介導廄螫蠅Stomoxyscalcitrans低水平非均質(zhì)性的EGFP表達(O′Brochtaetal.,2000),表明actin5C啟動子可能并非應用于各物種的最佳啟動子。鱗翅目的家蠶Bombyxmori(Tamuraetal.,2000)和棉紅鈴蟲Pectinophoragossypiella(Peloquinetal.,2000)的第一次系統(tǒng)的胚胎轉(zhuǎn)化,是選用家蠶actinBmA3作為啟動子驅(qū)動EGFP的表達。雖然通過EGFP的表達成功鑒定了這2個物種的轉(zhuǎn)化體,但在其胚胎期并未檢測到BmA3:EGFP標記的表達。此外,盡管BmA3啟動子在中腸的活性比較明顯(Mangeetal.,1997),但很多昆蟲食物的自發(fā)光現(xiàn)象導致只能檢測到轉(zhuǎn)化基因多重插入的個體中強烈表達的EGFP,因此中腸是轉(zhuǎn)化體難以有效鑒定的組織之一。而其他的熒光標記,如DsRed造成生物組織自發(fā)光的現(xiàn)象則較少(Handler & Harrell,2001b)。

      3.2驅(qū)動眼睛特異性熒光表達的通用轉(zhuǎn)化標記3xP3-EGFP

      多細胞動物的眼睛發(fā)育都受到進化保守遺傳通路的控制,而這個通路受轉(zhuǎn)錄激活因子Pax-6/Eyeless的調(diào)控(Callaertsetal.,1997),Pax-6結(jié)合位點P3調(diào)節(jié)光受體特異性基因的表達(Shengetal.,1997)?;诖?,Berghammeretal.(1999)在單轉(zhuǎn)錄因子激活的人工啟動子的基礎(chǔ)上發(fā)展了一個通用轉(zhuǎn)化標記,即將3個P3位點的串聯(lián)重復序列置于TATA同源物(3xP3)的前邊,驅(qū)動眼睛特異性EGFP的強表達(Hornetal.,2000)。3xP3與EGFP聯(lián)合,最初在赤擬谷盜和果蠅中應用成功(Berghammeretal.,1999)。3xP3-EGFP標記載體主要在赤擬谷盜的眼睛和腦中表達,并且在整個生活周期均能表達EGFP和DsRed(圖1;Lorenzenetal.,2007)。 Shengetal.(1997)應用人工3xP3啟動子構(gòu)建的載體也能夠介導EGFP在其受測昆蟲的幼蟲、蛹和成蟲眼睛中表達,這與Pax-6常規(guī)功能相一致,所以該組織特異性啟動子與組成型啟動子相似,可用于鑒定轉(zhuǎn)化昆蟲的所有發(fā)育階段(Hornetal.,2000)。3xP3-EGFP只有1.3 kb,而較小的轉(zhuǎn)座載體通常能產(chǎn)生更高的轉(zhuǎn)化效率。值得一提的是,3xP3-EGFP標記能夠在G1代轉(zhuǎn)化昆蟲的胚胎發(fā)育末期產(chǎn)生可檢測到的表達(圖1A),從而實現(xiàn)轉(zhuǎn)化個體的鑒定,省卻了將所有實驗昆蟲飼養(yǎng)至成蟲的繁瑣工序,該標記對幼蟲食量較大或人工飼料成本較高的昆蟲具有重要價值。

      圖1 3xP3驅(qū)動EGFP和DsRed在赤擬谷盜中表達

      多細胞動物眼睛發(fā)育中Pax-6的“主調(diào)節(jié)器”功能,揭示3xP3-EGFP標記可以應用到所有具有眼睛的動物中。野生型昆蟲復眼的小眼通常通過眼睛色素相互隔離,所以只能在朝向觀察器的小眼中檢測到熒光(圖1C)。這對于鑒定野生型黑腹果蠅、斯氏按蚊(Itoetal.,2002)、家蠶(Thomasetal.,2002)和赤擬谷盜的轉(zhuǎn)化成蟲難度不大(Berghammeretal.,1999);但其他物種如家蠅Muscadomestica或埃及伊蚊成蟲眼睛的色素會將熒光完全屏蔽或猝滅,從而導致鑒定的失敗(Hedigeretal.,2001; Kokozaetal.,2001)。然而,在野生型家蠅和埃及伊蚊的幼蟲和蛹階段,能夠檢測到3xP3-EGFP介導的眼睛熒光的表達(Hedigeretal.,2001; Kokozaetal.,2001),表明3xP3-EGFP的轉(zhuǎn)化標記體系既能用于野生型品系,也能用于突變品系。

      熒光標記在視覺系統(tǒng)如眼睛中的表達,使得其在具有很厚或黑化表皮的動物中也能被檢測到(圖1B)。熒光標記的選擇和轉(zhuǎn)化個體鑒定的最佳發(fā)育階段的確定,很大程度上依賴于昆蟲外表皮的形成和黑化以及眼睛發(fā)育和色素形成的時間與程度。對于大多數(shù)昆蟲而言,程序操作和熒光檢測的最佳時期可能都是胚胎末期和幼蟲期,這限制了3xP3-EGFP標記在該階段視覺系統(tǒng)不發(fā)達的昆蟲中的應用。然而,研究證實3xP3-EGFP標記能夠介導熒光在黑腹果蠅胚胎末期或幼蟲期中樞神經(jīng)系統(tǒng)、部分外周神經(jīng)系統(tǒng)、肛板和后腸中的表達(Hornetal.,2000),在鞘翅目和鱗翅目昆蟲中也觀察到中樞神經(jīng)系統(tǒng)中熒光的表達(Thomasetal.,2002)。這拓展了3xP3-EGFP標記在幼蟲階段沒有眼睛或視覺系統(tǒng)不發(fā)達昆蟲中的應用。迄今為止,以3xP3-EGFP為基礎(chǔ)的轉(zhuǎn)化系統(tǒng)已用于3個目昆蟲轉(zhuǎn)化個體的生產(chǎn)和鑒定,這充分表明人工構(gòu)建的3xP3-EGFP標記與轉(zhuǎn)座子聯(lián)合具有廣泛的適用性(Horn & Wimmer,2000; Hornetal.,2002)。

      3.3 熒光蛋白的毒性

      哺乳動物細胞培養(yǎng)試驗結(jié)果表明,水母GFP及其突變體的高水平表達能夠造成對細胞的毒性(Hanazonoetal.,1997),但毒性問題對GFP作為昆蟲轉(zhuǎn)化標記應用的影響并非特別嚴重,僅以polyubiquitin或actin5C驅(qū)動的EGFP標記轉(zhuǎn)化埃及伊蚊RED品系時表現(xiàn)出了毒性,因此只能建立EGFP低表達品系,所有高表達的轉(zhuǎn)化G1后代在蛹期全部死亡。該種效應是由高水平表達的EGFP造成還是由針對特定品系轉(zhuǎn)化方法中的不同參數(shù)造成尚不明確。在黑腹果蠅和野生型埃及伊蚊中,actin5C:EGFP的表達均未對其生育力造成明顯不利影響(Pinkertonetal.,2000)。同時,3xP3-EGFP標記即使在眼睛和中樞神經(jīng)系統(tǒng)中高水平表達并產(chǎn)生強烈的熒光,也未發(fā)現(xiàn)其對轉(zhuǎn)化昆蟲的存活率存在顯著性影響(Berghammeretal.,1999)。

      對于遺傳不育釋放項目而言,不僅要考慮遺傳修飾昆蟲的生育能力,而且要考慮釋放昆蟲與野生型昆蟲的競爭力以及轉(zhuǎn)化品系的穩(wěn)定性。通常,熒光轉(zhuǎn)化標記是否對轉(zhuǎn)化昆蟲的壽命、繁殖力、生育力或適合度造成一定的影響,對評估項目的效益具有決定性意義。鑒于GFP的潛在毒性,組織特異性啟動子驅(qū)動的熒光轉(zhuǎn)化標記可能更適于遺傳不育釋放項目的研究。因為組成型啟動子介導的熒光在轉(zhuǎn)化昆蟲毒性敏感組織中表達的可能性更大,而組織特異性啟動子驅(qū)動的熒光在限定空間或組織內(nèi)表達,可以避免對遺傳修飾昆蟲關(guān)鍵敏感組織的不利影響。如從海洋珊瑚蟲海鰓Renillareniformis中克隆的另一綠色熒光蛋白基因(Ward & Cormier,1979)經(jīng)人為修飾(hrGFP; Stratagene)后,在哺乳動物培養(yǎng)試驗中的毒性低于水母GFP突變體(Feltsetal.,2000)。天然珊瑚蟲GFP作為生物學標記比水母GFP具有更大的優(yōu)勢和更廣闊的應用前景。在光吸收方面,珊瑚蟲GFP的消光系數(shù)比野生型水母GFP高5倍,比人源化紅移轉(zhuǎn)變的水母蛋白高2.5倍。然而,有關(guān)hrGFP在昆蟲轉(zhuǎn)化中的應用還未見報道。

      3.4 EBFP、ECFP和EYFP轉(zhuǎn)化標記

      在模式生物中,GFP和EGFP通常用作分析增強子或啟動子的報告基因,以標記特定的組織或細胞,或作為體內(nèi)亞細胞蛋白定位的融合標簽(Tsien,1998)。非模式昆蟲的深入研究也迫切需要GFP或EGFP的表達載體。然而,這些表達載體與EGFP轉(zhuǎn)化標記聯(lián)合應用可能會產(chǎn)生一些干擾問題,所以報告基因和轉(zhuǎn)化標記的研究仍需發(fā)展多樣化、可區(qū)分的熒光分子。

      EBFP是GFP的一個藍光突變系,其熒光的激發(fā)峰和發(fā)射峰分別為383和445 nm (Pattersonetal.,1997)。基于EBFP與EGFP的光譜差異,足以應用特異性過濾裝置清晰地將EBFP從EGFP中區(qū)分出來。然而,EBFP的量子產(chǎn)率低,光褪色較快,所以當需要鑒定的個體數(shù)量很多或照射時間較長時,EBFP并不適宜用作轉(zhuǎn)化標記。GFP的另一個更穩(wěn)定的突變系為青色熒光突變系ECFP,其激發(fā)峰和發(fā)射峰分別為434和477 nm (Pattersonetal.,2001)。該突變品系能夠用更無害的藍光進行激發(fā),且穩(wěn)定性強,適宜用作轉(zhuǎn)化標記(Horn & Wimmer,2000)。但ECFP的光譜不能與EGFP完全分開,所以限制了其與帶有GFP和EGFP載體的聯(lián)合應用。應用特異性的過濾裝置能夠?qū)GFP從GFP的黃色突變品系EYFP中完全區(qū)分出來,EYFP的激發(fā)峰和發(fā)射峰分別為514和527 nm (Cubittetal.,1995)。ECFP和EYFP的量子產(chǎn)率和光褪色時間特性較佳(Pattersonetal.,2001),可用作獨立的遺傳修飾昆蟲轉(zhuǎn)化標記(Horn & Wimmer,2000)。各種熒光蛋白及突變體的激發(fā)峰和發(fā)射峰值如表5所示,GFP突變體及DsRed表達的熒光如圖2所示。

      表5 用于遺傳修飾昆蟲的熒光蛋白特性

      圖2 熒光突變體的熒光顏色及激發(fā)峰值(Patterson et al.,2001)Fig.2 Fluorescent color of GFP variants and Ds-Red and their excitation max. (Patterson et al.,2001)

      3.5 紅色熒光DsRed轉(zhuǎn)化標記

      從珊瑚屬??鸇iscosomastriata中分離的紅色熒光蛋白DsRed (drFP583),是另一種可用的熒光標記(Matzetal.,1999)。DsRed與水母GFP熒光發(fā)色團附近的保守性氨基酸序列具有23%的相似性(Walletal.,2000; Yarbroughetal.,2001)。DsRed的激發(fā)峰和發(fā)射峰分別為558和583 nm。較高的光褪色抗性、高量子產(chǎn)率以及較長的壽命是其作為轉(zhuǎn)化標記的理想特性。更為重要的是,DsRed在多數(shù)生物組織中表達的熒光都在自發(fā)光范圍以外,更利于轉(zhuǎn)化體的準確鑒定。但是,DsRed的成熟時間較長,在遺傳修飾轉(zhuǎn)化昆蟲的鑒定過程中不能像EGFP一樣在胚胎發(fā)育期就能被檢測到(Bairdetal.,2000; Hornetal.,2000)。

      人工修飾過的突變系DsRed1與DsRed具有相似的熒光特性(Matzetal.,1999)。Handler & Harrell (2001b)采用果蠅polyubiquitin啟動子驅(qū)動DsRed1的表達以鑒定遺傳修飾的黑腹果蠅幼蟲和成蟲,結(jié)果顯示,PUbDsRed1介導表達的紅色熒光比較明亮,并且與EGFP相比,更低數(shù)量級的DsRed1表達量也能被監(jiān)測,而較高的信噪比有利于轉(zhuǎn)化體的鑒定。Horn & Wimmer (2000)利用人工3xP3眼睛啟動子驅(qū)動DsRed1的表達,檢測其在黑腹果蠅中作為轉(zhuǎn)化標記的適用性,結(jié)果表明,在成蟲白色突變品系和野生型黑腹果蠅的復眼和單眼中均能輕易地檢測到強烈表達的紅色熒光,且透過輕微黑化的頭殼也能在成蟲腦中檢測到DsRed1的表達,而EGFP的綠色熒光則被阻斷。在澳大利亞銅綠蠅Luciliacuprina雙元件系統(tǒng)中,通過雜交雙雜合子品系(Double heterozygous line)篩選雙純合子品系(Double homozygous line),由于親代的雄蟲和雌蟲分別含有一個拷貝的ZsGreen和DsRed,經(jīng)過減數(shù)分裂后子代可能含有不同熒光蛋白類型和拷貝數(shù)(圖3)。ZsGreen和DsRed均由強組成型啟動子Lchsp83驅(qū)動,因此雙拷貝Lchsp83-DsRed幼蟲即使在白光照下也能被看出DsRed的表達(圖3A);在GFP2濾鏡下ZsGreen綠色熒光會受到紅色熒光的干擾(圖3B);而GFP-NB(Narrow broad)濾鏡則屏蔽了紅色熒光,更容易篩選出雙拷貝Lchsp83-ZsGreen的幼蟲(圖3C);再結(jié)合DsRed濾鏡篩選雙拷貝Lchsp83-DsRed的幼蟲(圖3D)。

      圖3 澳大利亞銅綠蠅3齡幼蟲的雙元件系統(tǒng)熒光圖片

      另一突變品系DsRed2具有與DsRed1相似的熒光特性,且可溶性更好,成熟更快,形成多聚物的可能性更低,甚至毒性更低。然而,作為適宜的報告基因,24 h左右的成熟時間依然較長。DsRed的另一突變系E5,也稱作“熒光計時器”(Terskikhetal.,2000),能夠在幾小時后檢測到熒光信號,成熟之前由最初的綠色熒光變?yōu)榧t光熒光。該標記目前的功能是用作內(nèi)部熒光時鐘的報告基因,可以檢測基因表達的時空動態(tài)。熒光顯示的綠色、黃色(綠色和紅色疊加)或紅色狀態(tài),表明基因的活化和下調(diào)表達的情況(Terskikhetal.,2000)。綠色—紅色熒光計時器,作為報告基因可與ECFP聯(lián)合應用,并作為昆蟲遺傳修飾研究的可辨認標記,但是目前還沒有成功應用的報道。

      4 結(jié)語

      自1982年科學家成功轉(zhuǎn)化出首例遺傳修飾的果蠅以來,昆蟲遺傳修飾技術(shù)因其潛在的廣泛應用前景而成為研究熱點。昆蟲遺傳修飾技術(shù)的開發(fā)與應用離不開性狀優(yōu)良的標記基因。作為遺傳修飾轉(zhuǎn)化載體構(gòu)建的關(guān)鍵組成部分之一,標記基因?qū)τ谶z傳修飾昆蟲轉(zhuǎn)化體的準確鑒定和轉(zhuǎn)化昆蟲穩(wěn)定性的監(jiān)測具有重要意義,開發(fā)可靠性高、穩(wěn)定性好、應用面廣的轉(zhuǎn)化標記基因,對于充分挖掘遺傳修飾技術(shù)的潛力非常重要。眼睛顏色基因轉(zhuǎn)化標記的多數(shù)特征雖然比較理想(Sarkar & Collins,2000),但多數(shù)重要的衛(wèi)生害蟲和農(nóng)業(yè)害蟲缺少適宜的受體突變品系,從而限制了該標記的應用。盡管理論上各物種都能產(chǎn)生突變—恢復轉(zhuǎn)化標記,但突變株的獲得、相應基因的克隆、突變表型的最終恢復等一系列步驟往往需要耗費大量的時間和人力物力??顾幮曰驑擞洸灰撰@得,且在轉(zhuǎn)化昆蟲的鑒定過程中存在諸多準確性和安全性方面的問題。因此,要對更多的昆蟲物種進行廣泛而深入的遺傳修飾研究,就需要開發(fā)性能更佳的適宜野生型背景使用的標記系統(tǒng)。

      熒光蛋白基因能夠在野生型背景轉(zhuǎn)化后代中起作用(Tsien,1998),通過突變方法獲得的多種不同熒光性質(zhì)的突變體,因具有快速、簡便、低毒等特點而得以廣泛應用,其中應用較多的是EGFP和DsRed標記基因。組成型和組織特異性的啟動子都可用來構(gòu)建EGFP的獨立標記系統(tǒng)以驅(qū)動EGFP的高效表達,但由于天然啟動子均來源于特定的物種而具有物種特異性,因此,每個組成型啟動子的熒光轉(zhuǎn)化標記只能應用到近緣物種。 此外,綠色熒光蛋白的自發(fā)光現(xiàn)象也限制了其在某些物種中的應用。紅色熒光蛋白DsRed造成生物組織自發(fā)光的現(xiàn)象則較少(Handler & Harrell,2001b),更利于轉(zhuǎn)化體的準確鑒定;在某些生物中與GFP聯(lián)合應用的表現(xiàn)優(yōu)于GFP突變體,所以應用前景很廣泛。DsRed熒光在生物組織中長達數(shù)周的壽命(Matzetal.,1999)和光褪色的抗性,也是不育昆蟲釋放技術(shù)在田間應用的理想特性(Peloquinetal.,2000),能用于穩(wěn)定監(jiān)測野生型種群的擴散和其在野外環(huán)境中與其他物種間的水平傳播。然而,DsRed較長的成熟時間限定了轉(zhuǎn)化體鑒定的階段,阻礙了DsRed作為報告基因在短期基因表達研究中的應用(Bairdetal.,2000; Handler & Harrell,2001b)。鑒于大量不同的GFP/EGFP報告基因和融合標簽載體都已經(jīng)可用,針對具體的轉(zhuǎn)化物種,需要根據(jù)物種的具體情況選擇適合的熒光轉(zhuǎn)化標記,避免假陽性或假陰性現(xiàn)象,或通過更換標記逐一將其解決。目前規(guī)避干擾的最好方法就是聯(lián)合應用以GFP為基礎(chǔ)的體內(nèi)報告基因與以DsRed1或DsRed2為基礎(chǔ)的轉(zhuǎn)化標記。即使EGFP和DsRed在相同的組織中同時表達,應用特異性的過濾裝置也能夠?qū)⑵渫耆珔^(qū)分開,從而進行獨立的鑒定和監(jiān)測。

      除了眼睛顏色標記基因、抗藥性標記基因和綠色熒光蛋白及上文中提到的突變體外,還有ZsGreen等其他的熒光蛋白標記和蛹顏色標記(McCombs & Saul,1995; Wappneretal.,1995)?;谒窯FP的開發(fā),在其他生物如珊瑚、海葵、水螅、甲殼類動物甚至低等脊索動物中相繼發(fā)現(xiàn)了GFP樣蛋白(Wiedenmannetal.,2009),熒光光譜覆蓋藍色到遠紅光,使熒光蛋白的適用范圍不斷擴大。更多更有效的熒光蛋白和其他標記基因的獲得,以及更適宜特定物種的轉(zhuǎn)化系統(tǒng)和檢測技術(shù)的發(fā)展,大大提高了對任何一種昆蟲進行遺傳修飾改造的可能性。

      昆蟲遺傳修飾技術(shù)為基因表達調(diào)控、生物大分子相互作用、胚胎發(fā)育以及發(fā)展生物傳感器等研究創(chuàng)造了條件,同時為農(nóng)林害蟲和媒介害蟲的防治提供了新的思路。應用遺傳修飾手段獲得的不育昆蟲釋放技術(shù)是一種可控制甚至根除靶標害蟲的環(huán)境友好型防控措施。為了保障釋放昆蟲的最佳防控效果,要求遺傳修飾轉(zhuǎn)化昆蟲中的轉(zhuǎn)化標記除不影響靶標物種的競爭性和適合度之外,還需要具有良好的遺傳穩(wěn)定性,以便于對其長期監(jiān)測,達到靈活調(diào)控釋放不育昆蟲與野生昆蟲的比例,獲取最佳防控效果的目標。然而,遺傳修飾昆蟲的釋放尤其是攜帶致死基因的昆蟲的釋放還存在一定的風險,所以在監(jiān)測釋放昆蟲環(huán)境穩(wěn)定性的同時,需要監(jiān)控其在物種間的水平傳播,避免對生物多樣性、生態(tài)環(huán)境和人體健康產(chǎn)生潛在的不利影響。

      致謝:赤擬谷盜與澳大利亞銅綠蠅熒光圖片分別來自北卡羅來納州立大學Dr. Marce Lorenzen與Dr. Max Scott實驗室,在此表示衷心的感謝。

      參考文獻

      Allen M, Handler A, Berkebile D and Skoda S. 2004. piggyBac transformation of the New World screwworm,Cochliomyiahominivorax, produces multiple distinct mutant strains.MedicalandVeterinaryEntomology, 18: 1-9.

      Allen M, O′Brochta D, Atkinson P and Levesque C. 2001. Stable, germ-line transformation ofCulexquinquefasciatus(Diptera: Culicidae).JournalofMedicalEntomology, 38: 701-710.

      Alphey L. 2002. Re-engineering the sterile insect technique.InsectBiochemistryandMolecularBiology, 32: 1243-1247.

      Atkinson P W, Pinkerton A C and O′Brochta D A. 2001. Genetic transformation systems in insects.AnnualReviewofEntomology, 46: 317-346.

      Baird G S, Zacharias D A and Tsien R Y. 2000. Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 97: 11984-11989.

      Benedict M Q, Salazar C E and Collins F H. 1995. A new dominant selectable marker for genetic transformation: Hsp70-opd.InsectBiochemistryandMolecularBiology, 25: 1061-1065.

      Berghammer A J, Klingler M and Wimmer E A. 1999. Genetic techniques: a universal marker for transgenic insects.Nature, 402: 370-371.

      Bhadra U, Bhadra M P and Birchler J A. 1998. Interactions among dosage-dependent trans-acting modifiers of gene expression and position-effect variegation inDrosophila.Genetics, 150: 251-263.

      Bhalla S C. 1968. White eye, a new sex-linked mutant ofAedesaegypti.MosquitoNews, 28: 380-385.

      Brand A. 1999. GFP as a cell and developmental marker in theDrosophilanervous system.MethodCellBiology, 58: 165-181.

      Callaerts P, Halder G and Gehring W J. 1997. PAX-6 in development and evolution.AnnualReviewofNeuroscience, 20: 483-532.

      Catteruccia F, Benton J P and Crisanti A. 2005. AnAnophelestransgenic sexing strain for vector control.NatureBiotechnology, 23: 1414-1417.

      Catteruccia F, Nolan T, Loukeris T G, Blass C, Savakis C, Kafatos F C and Crisanti A. 2000. Stable germline transformation of the malaria mosquitoAnophelesstephensi.Nature, 405: 959-962.

      Chalfie M, Tu Y, Euskirchen G, Ward W W and Prasher D C. 1994. Green fluorescent protein as a marker for gene expression.Science, 263: 802-805.

      Coates J C, Jasinskiene N, Miyashiro L and James A A. 1998. Mariner transposition and transformation of the yellow fever mosquito,Aedesaegypti.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 95: 3748-3751.

      Concha C, Belikoff E J, Carey B L, Li F, Schiemann A H and Scott M J. 2011. Efficient germ-line transformation of the economically important pest speciesLuciliacuprinaandLuciliasericata(Diptera, Calliphoridae).InsectBiochemistryandMolecularBiology, 41: 70-75.

      Condon K C, Condon G C, Dafa′alla T H, Forrester O T, Phillips C E, Scaife S and Alphey L. 2007. Germ-line transformation of the Mexican fruit fly.InsectMolecularBiology, 16: 573-580.

      Cormack B P, Valdivia R H and Falkow S. 1996. FACS-optimized mutants of the greenfluorescent protein (GFP).Gene, 173: 33-38.

      Cornel A J, Benedict M Q, Rafferty C S, Howells A J and Collins F H. 1997. Transient expression of theDrosophilamelanogastercinnabargene rescues eye color in the white eye (WE) strain ofAedesaegypti.InsectBiochemistryandMolecularBiology, 27: 993-997.

      Cubitt A B, Heim R, Adams S R, Boyd A E, Gross L A and Tsien R Y. 1995. Understanding, improving and using green fluorescent proteins.TrendsinBiochemicalSciences, 20: 448-455.

      Davis I, Girdham C H and O′Farrell P H. 1995. A nuclear GFP that marks nuclei in livingDrosophilaembryos; maternal supply overcomes a delay in the appearance of zygotic fluorescence.DevelopmentalBiology, 170: 726-729.

      Ewart G D, Cannell D, Cox G B and Howells A J. 1994. Mutational analysis of the traffic ATPase (ABC) transporters involved in uptake of eye pigment precursors inDrosophilamelanogaster.JournalofBiologicalChemistry, 269: 10370-10377.

      Felts K, Rogers B, Chen K, Ji H, Sorge J and Vaillancourt P. 2000. RecombinantRenillareniformisGFP displays low toxicity.Strategies, 13(3): 85-87.

      Ferguson H J, Neven L G, Thibault S T, Mohammed A and Fraser M. 2011. Genetic transformation of the codling moth,CydiapomonellaL., with piggyBac EGFP.TransgenicResearch, 20: 201-214.

      Ffrench-Constant R H, Mortlock D P, Shaffer C D, MacIntyre R J and Roush R T. 1991. Molecular cloning and transformation of cyclodiene resistance inDrosophila: an invertebrate GABAA receptor locus.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 88: 7209-7213.

      Fu G, Condon K C, Epton M J, Gong P, Jin L, Condon G C, Morrison N I, Dafa′alla T H and Alphey L. 2007. Female-specific insect lethality engineered using alternative splicing.NatureBiotechnology, 25: 353-357.

      Gomez S P and Handler A M. 1997. ADrosophilamelanogasterhobo-white+ vector mediates low frequency gene transfer inD.viriliswith full interspecific white+ complementation.InsectMolecularBiology, 6(2): 1-8.

      Gong P, Epton M J, Fu G, Scaife S, Hiscox A, Condon K C, Condon G C, Morrison N I, Kelly D W, Dafa′alla T, Coleman P G and Alphey L. 2005. A dominant lethal genetic system for autocidal control of the Mediterranean fruit fly.NatureBiotechnology, 23: 453-456.

      Grossman G, Rafferty C S, Clayton J R, Stevens T K, Mukabayire O and Benedict M Q. 2001. Germline transformation of the malaria vector,Anophelesgambiae, with the piggyBac transposable element.InsectMolecularBiology, 10: 597-604.

      Hanazono Y, Yu J M, Dunbar C E and Emmons R V. 1997. Green fluorescent protein retroviral vectors: low titer and high recombination frequency suggest a selective disadvantage.HumanGeneTherapy, 8: 1313-1319.

      Handler A M and Harrell R A. 1999. Germline transformation ofDrosophilamelanogasterwith thepiggyBactransposon vector.InsectMolecularBiology, 8: 449-457.

      Handler A M and Harrell R A. 2001a. Transformation of the Caribbean fruit fly,Anastrephasuspensa, with apiggyBacvector marked with polyubiquitin-regulated GFP.InsectBiochemistryandMolecularBiology, 31: 199-205.

      Handler A M and Harrell R A. 2001b. Polyubiquitin-regulated DsRed marker for transgenic insects.Biotechniques, 31: 824-828.

      Handler A M and James A A. 2000.InsectTransgenesis:MethodsandApplications. Boca Raton: CRC Press, 397.

      Handler A M and McCombs S D. 2000. ThepiggyBactransposon mediates germ-line transformation in the Oriental fruit fly and closely related elements exist in its genome.InsectMolecularBiology, 9: 605-612.

      Handler A M, McCombs S D, Fraser M L and Saul S H. 1998. The lepidopteran transposon vector,piggyBac, mediates germ-line transformation in the Mediterranean fruit fly.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 95: 7520-7525.

      Hediger M, Niessen N, Wimmer E A, Dübendorfer A and Bopp D. 2001. Genetic transformation of the houseflyMuscadomesticawith the lepidopteran-derived transposonpiggyBac.InsectMolecularBiology, 10: 113-119.

      Heinrich J C, Li X, Henry R A, Haack N, Stringfellow L, Heath A C G and Scott M J. 2002. Germ-line transformation of the Australian sheep blowflyLuciliacuprina.InsectMolecularBiology, 11: 1-10.

      Hemingway J and Ranson H. 2000. Insecticide resistance in insect vectors of human disease.AnnualReviewofEntomology, 45: 371-391.

      Higgs S and Lewis D L. 2000. Green fluorescent protein (GFP) as a marker for transgenic insects∥Handler A M and James A A.InsectTransgenesis:MethodsandApplications. Boca Raton: CRC Press, 93-109.

      Horn C, Jaunich B and Wimmer E A. 2000. Highly sensitive, fluorescent transformation marker forDrosophilatransgenesis.DevelopmentGenesandEvolution, 210: 623-629.

      Horn C, Schmid B G M, Pogoda F S and Wimmer E A. 2002. Fluorescent transformation markers for insect transgenesis.InsectBiochemistryandMolecularBiology, 32: 1221-1235.

      Horn C and Wimmer E A. 2000. A versatile vector set for animal transgenesis.DevelopmentGenesandEvolution, 210: 630-637.

      Ito J, Ghosh A, Moreira L A, Wimmer E A and Jacobs-Lorena M. 2002. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite.Nature, 417: 452-455.

      Jasinskiene N, Coates C J, Benedict M Q, Cornel A J, Rafferty C S, James A A and Collins F H. 1998. Stable transformation of the yellow fever mosquito,Aedesaegypti, with the Hermes element from the housefly.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 95: 3743-3747.

      Kokoza V, Ahmed A, Wimmer E A and Raikhel A S. 2001. Efficient transformation of the yellow fever mosquitoAedesaegyptiusing the piggyback transposable element vector pBac [3xP3-EGFPafm].InsectBiochemistryandMolecularBiology, 31: 1137-1143.

      Koukidou M, Klinakis A, Reboulakis C, Zagoraiou L, Tavernarakis N, Livadaras I, Economopoulos A and Savaki C. 2006. Germ line transformation of the olive flyBactroceraoleaeusing a versatile transgenesis marker.InsectMolecularBiology, 15: 95-103.

      Kuwayama H, Gotoh H, Konishi Y, Nishikawa H, Yaginuma T and Niimi T. 2014. Establishment of transgenic lines for jumpstarter method using a composite transposon vector in the ladybird beetle,Harmoniaaxyridis.PLoSONE, 9: e100804.

      Kuwayama H, Yaginuma T, Yamashita O and Niimi T. 2006. Germ-line transformation and RNAi of the ladybird beetle,Harmoniaaxyridis.InsectMolecularBiology, 15: 507-512.

      Labbé G M C, Nimmo D D and Alphey L. 2010.Piggy-bac- and PhiC31-mediated genetic transformation of the Asian tiger mosquito,Aedesalbopictus(Skuse).PLoSNeglectedTropicalDiseases, 4: e788.

      Liu D, Yan S, Huang Y, Tan A, Stanley D W and Song Q. 2012. Genetic transformation mediated bypiggyBacin the Asian corn borer,Ostriniafurnacalis(Lepidoptera: Crambidae).ArchivesofInsectBiochemistryandPhysiology, 80: 140-150.

      Lohe A R and Hartl D L. 1996. Germline transformation ofDrosophilaviriliswith the transposable element mariner.GeneticsSocietyofAmerica, 143: 365-374.

      Lorenzen M D, Brown S J, Denell R E and Beeman R W. 2002. Cloning and characterization of theTriboliumcastaneumeye-color genes encoding tryptophan oxygenase and kynurenine 3-monooxygenase.Genetics, 160: 225-234.

      Lorenzen M D, Kimzey T, Shippy T D, Brown S J, Denell R E and Beeman R W. 2007.piggyBac-based insertional mutagenesis inTriboliumcastaneumusing donor/helper hybrids.InsectMolecularBiology, 16: 265-275.

      Loukeris T G, Livadaras I, Arca B, Zabalou S and Savakis C. 1995. Gene transfer into the medfly,Ceratitiscapitata, with aDrosophilahydeitransposable element.Science, 270: 2002-2005.

      Lozovskaya E R, Nurminsky D I, Hartl D L and Sullivan D T. 1996. Germline transformation ofDrosophilavirilismediated by the transposable element hobo.Genetics, 142: 173-177.

      Mange A, Julien E, Prudhomme J C and Couble P. 1997. A strong inhibitory element down-regulates SRE-stimulated transcription of the A3 cytoplasmic actin gene ofBombyxmori.JournalofMolecularBiology, 265: 266-274.

      Marec F, Neven L G, Robinson A S, Vreysen M, Goldsmith M R, Nagaraju J and Franz G. 2005. Development of genetic sexing strains in Lepidoptera: from traditional to transgenic approaches.JournalofEconomicEntomology, 98: 248-259.

      Marcus J M, Ramos D M and Monteiro A. 2004. Germline transformation of the butterflyBicyclusanynana.ProcessBiochemistryScience, 271(Suppl 5): 263-265.

      Matz M V, Fradkov A F, Labas Y A, Savitsky A P, Zaraisky A G, Markelov M L and Lukyanov S A. 1999. Fluorescent proteins from nonbioluminescentAnthozoaspecies.NatureBiotechnology, 17: 969-973.

      McCombs S D and Saul S H. 1995. Translocation-based genetic sexing system for the oriental fruit fly (Diptera: Tephritidae) based on pupal color dimorphism.EntomologicalSocietyofAmerica, 88: 695-698.

      Michel K, Stamenova A, Pinkerton A C, Franz G, Robinson A S, Gariou-Papalexiou A, Zacharopoulou A, O′Brochta D A and Atkinson P W. 2001. Hermes-mediated germ-line transformation of the Mediterranean fruit flyCeratitiscapitata.InsectMolecularBiology, 10: 155-162.

      Miller L H, Sakai R K, Romans P, Gwadz R W, Kantoff P and Coon H G. 1987. Stable integration and expression of a bacterial gene in the mosquitoAnophelesgambiae.Science, 237: 779-781.

      Monroe S and Polk R. 2000. Antimicrobial use and bacterial resistance.CurrentOpinionMicrobiology, 3: 496-501.

      Nolan T, Bower T M, Brown A, Crisanti A and Catteruccia F. 2002.piggyBac-mediated germline transformation of the malaria mosquitoAnophelesstephensiusing the red fluorescent protein dsRED as a selectable marker.JournalofBiologicalChemistry, 277: 8759-8762.

      O′Brochta D A, Atkinson P W and Lehane M J. 2000. Transformation ofStomoxyscalcitranswith aHermesgene vector.InsectMolecularBiology, 9: 531-538.

      Osanai-Futahashi M, Ohde T, Hirata J, Uchino K, Futahashi R, Tamura T, Niimi T and Sezutsu H. 2012. A visible dominant marker for insect transgenesis.NatureCommunications, 3: 1295.

      Patterson G, Day R N and Piston D. 2001. Fluorescent protein spectra.JournalofCellScience, 114 (Pt 5): 837-838.

      Patterson G H, Knobel S M, Sharif W D, Kain S R and Piston D W. 1997. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy.BiophysicalJournal, 73: 2782-2790.

      Pavlopoulos A, Berghammer A J, Averof M and Klingler M. 2004. Efficient transformation of the beetleTriboliumcastaneumusing theMinostransposable element: quantitative and qualitative analysis of genomic integration events.Genetics, 167: 737-746.

      Peloquin J J, Thibault S T, Staten R and Miller T A. 2000. Germ-line transformation of pink bollworm (Lepidoptera: Gelechiidae) mediated by thepiggyBactransposable element.InsectMolecularBiology, 9: 323-333.

      Perera O P, Harrell R A and Handler A M. 2002. Germ-line transformation of the South American malaria vector,Anophelesalbimanus, with apiggyBac-EGFP tranposon vector is routine and highly efficient.InsectMolecularBiology, 11: 291-297.

      Phillips J P, Xin J H, Kirby K, Milne C P, Krell P and Wild J R. 1990. Transfer and expression of an organophosphate insecticide degrading gene from PseudomonasinDrosophilamelanogaster.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 87: 8155-8159.

      Pinkerton A C, Michel K, O′Brochta D A and Atkinson P W. 2000. Green fluorescent protein as a genetic marker in transgenicAedesaegypti.InsectMolecularBiology, 9: 1-10.

      Plautz J D, Day R N, Dailey G M, Welsh S B, Hall J C, Halpain S and Kay S A. 1996. Green fluorescent protein and its derivatives as versatile markers for gene expression in livingDrosophilamelanogaster, plant and mammalian cells.Gene, 173(1 Spec No): 83-87.

      Prasher D C, Eckenrode V K, Ward W W, Prendergast F G and Cormier M J. 1992. Primary structure of theAequoreavictoriagreen-fluorescent protein.Gene, 111: 229-233.

      Raphael K A, Shearman D C, Streamer K, Morrow J L, Handler A M and Frommer M. 2010. Germ-line transformation of the Queensland fruit fly,Bactroceratryoni, using apiggyBacvector in the presence of endogenouspiggyBacelements.Genetica, 139: 91-97.

      Rowan K H, Orsetti J, Atkinson P W and O′Brochta D A. 2004. Tn5 as an insect gene vector.InsectBiochemistryandMolecularBiology, 34: 695-705.

      Royer C, Jalabert A, Da Rocha M, Grenier A M, Mauchamp B, Couble P and Chavancy G. 2005. Biosynthesis and cocoon-export of a recombinant globular protein in transgenic silkworms.TransgenicResearch, 14: 463-472.

      Rubin G M and Spradling A C. 1982. Genetic transformation ofDrosophilawith transposable element vectors.Science, 218: 348-353.

      Sarkar A, Atapattu A, Belikoff E J, Heinrich J C, Li X, Horn C, Wimmer E A and Scott M J. 2006. InsulatedpiggyBacvectors for insect transgenesis.BMCBiotechnology, 6: 27.

      Sarkar A and Collins F H. 2000. Eye color genes for selection of transgenic insects∥Handler A M and James A A.InsectTransgenesis:MethodsandApplications. Boca Raton: CRC Press, 79-93.

      Schetelig M F, Caceres C, Zacharopoulou A, Franz G and Wimmer E A. 2009. Conditional embryonic lethality to improve the sterile insect technique inCeratitiscapitata(Diptera: Tephritidae).BMCBiology, 7: 4.

      Schetelig M F and Handler A M. 2013. Y-linked markers for improved population control of the Tephritid fruit fly pest,Anastrephasuspense.AdvancesinBiochemicalEngineering/Biotechnology, 136: 123-133.

      Scott M J, Heinrich J C and Li X. 2004. Progress towards the development of a transgenic strain of the Australian sheep blowfly (Luciliacuprina) suitable for a male-only sterile release program.InsectBiochemistryandMolecularBiology, 34: 185-192.

      Searles L L, Ruth R S, Pret A M, Fridell R A and Ali A J. 1990. Structure and transcription of theDrosophilamelanogastervermilion gene and several mutant alleles.MolecularCellBiology, 10: 1423-1431.

      Sheng G, Thouvenot E, Schmucker D, Wilson D S and Desplan C. 1997. Direct regulation of rhodopsin 1 by Pax-6/eyeless inDrosophila: evidence for a conserved function in photoreceptors.GenesDevelopment, 11: 1122-1131.

      Steller H and Pirrotta V. 1985. A transposable P vector that confers selectable G4l8 resistance toDrosophilalarvae.EMBOJournal, 4: 167-171.

      Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas J L, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme J C and Couble P. 2000. Germline transformation of the silkwormBombyxmoriL. using apiggyBactransposon-derived vector.NatureBiotechnology, 18: 81-84.

      Tan A, Fu G, Jin L, Guo Q, Li Z, Niu B, Meng Z, Morrison N I, Alphey L and Huang Y. 2013. Transgene-based, female-specific lethality system for genetic sexing of the silkworm,Bombyxmori.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 110: 6766-6770.

      Terskikh A, Fradkov A, Ermakova G, Zaraisky A, Tan P, Kajava A V, Zhao X, Lukyanov S, Matz M, Kim S, Weissman I and Siebert P. 2000. "Fluorescent timer": protein that changes color with time.Science, 290: 1585-1588.

      Thomas J L, Da Rocha M, Besse A, Mauchamp B and Chavancy G. 2002. 3xP3-EGFP marker facilitates screening for transgenic silkwormBombyxmoriL. from the embryonic stage onwards.InsectBiochemistryandMolecularBiology, 32: 247-253.

      Tsien R Y. 1998. The green fluorescent protein.AnnualReviewofBiochemistry, 67: 509-544.

      Uchino K, Imamura M, Shimizu K, Kanda T and Tamura T. 2007. Germ line transformation of the silkworm,Bombyxmori, using the transposable elementMinos.MolecularGeneticsandGenomics, 277: 213-220.

      Wall M A, Socolich M and Ranganathan R. 2000. The structural basis for red fluorescence in the tetrameric GFP homolog DsRed.NatureStructuralBiology, 7: 1133-1138.

      Walters M, Morrison N I, Claus J, Tang G, Phillips C E, Young R, Zink R T and Alphey L. 2012. Field longevity of a fluorescent protein marker in an engineered strain of the Pink Bollworm,Pectinophoragossypiella(Saunder).PLoSONE, 7: e38547.

      Wappner P, Kramer K J, Hopkins T L, Merritt M, Schaefer J and Quesada-Allue L A. 1995. White pupa: aCeratitiscapitatamutant lacking catecholamines for tanning the puparium.InsectBiochemistryandMolecularBiology, 25: 365-373, 155.

      Ward W W and Cormier M J. 1979. An energy transfer protein in coelenterate bioluminescence. Characterization of theRenillagreen-fluorescent protein.TheJournalofBiologicalChemistry, 254: 781-788.

      Warren W D, Palmer S and Howells A J. 1996. Molecular characterization of the cinnabar gene region ofDrosophilamelanogaster: identification of the cinnabar transcription unit.Genetica, 98: 249-262.

      White L D, Coates C J, Atkinson P W and O′Brochta D A. 1996. An eye color gene for the detection of transgenic non-drosophilid insects.InsectBiochemistryandMolecularBiology, 26: 641-644.

      Wiedenmann J, Oswald F and Nienhaus G U. 2009. Fluorescent proteins for live cell imaging: opportunities, limitations, and challenges.IUBMBLife, 61: 1029-1042.

      Yang T T, Cheng L and Kain S R. 1996. Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein.NucleicAcidsResearch, 24: 4592-4593.

      Yarbrough D, Wachter R M, Kallio K, Matz M V and Remington S J. 2001. Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-A resolution.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 98: 462-467.

      Zwiebel L J, Saccone G, Zacharopoulou A, Besansky N J, Favia G, Collins F H, Louis C and Kafatos F C. 1995. The white gene ofCeratitiscapitata: a phenotypic marker for germline transformation.Science, 270: 2005-2008.

      (責任編輯:楊郁霞)

      1State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural

      Sciences,Beijing100193,China;2Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh,

      NC27695-7613,USA;3Genetic Engineering and Society Center and W. M. Keck Center for Behavioral Biology,

      NorthCarolinaStateUniversity,Raleigh,NC27695-7613,USA;4Department of Agronomy and Plant

      Protection,QingdaoAgriculturalUniversity,Qingdao,Shandong266109,China

      Abstract:Transformation markers offer a tool to distinguish the genetically modified insects from wild types. Both the identification of transformants and the maintenance of transformed lines depend on reliable transformation makers. In addition, the evaluation of the genetic stability of released genetically modified insects needs strong and stable markers. Thus the development of broadly applicable, easily detectable and reliable transformation markers will facilitate the study of genetic pest management. In general, eye color genes, drug resistance genes and fluorescent protein genes can be used as markers in genetically modified insects. The first efficient identification of a non-drosophilid insect transformation line was based on the rescue of eye color mutant phenotypes. However, for most insect species, the application of eye color markers is limited because of the lack of suitable recipient mutant strains and less information on related genes. Markers based on drug resistance genes can improve the screening efficiency of transformants, but the selection for drug resistance is problematic and prone to have false positives or negatives with potential biosecurity problems. Fluorescent protein gene markers significantly facilitate the development of stable insect transformation lines. The green fluorescent protein (GFP, isolated from the jellyfish Aequorea victoria) and its variants with various fluorescent characteristics can be combined with suitable, strong promoters to serve as transformation markers for a wide range of insect species and guarantee the reliable screening of the transformants. In this category, the enhanced green fluorescent protein (EGFP) was mostly used. Besides, the red fluorescent protein (DsRed), isolated from the mushroom coral, Discosoma striata, provides a selection of red fluorescent proteins with better performance than GFP mutants. This paper reviews the history and status of transformation markers including eye color genes, drug resistance genes and the fluorescent protein genes. The potential roles of transformation markers in genetic pest management are also discussed.

      Key words:genetically modified insect; transformation marker; eye color gene; drug resistance gene; fluorescent protein gene

      通訊作者*(Author for correspondence), E-mail: zezhang@cqu.edu.cn

      作者簡介:許軍, 男, 博士研究生。 研究方向: 昆蟲生殖生物學。 E-mail: xzgxcxj@163.com

      基金項目:國家自然科學基金國際合作項目(31420103918)

      收稿日期(Received): 2014-11-14接受日期(Accepted): 2015-03-09

      DOI:10. 3969/j.issn.2095-1787.2015.02.003

      抚宁县| 封开县| 弥渡县| 文水县| 宁都县| 龙井市| 华容县| 青阳县| 万宁市| 忻州市| 涿鹿县| 迭部县| 武穴市| 扶绥县| 辉县市| 威远县| 普兰店市| 五莲县| 信阳市| 尤溪县| 新建县| 辉南县| 乌拉特前旗| 新建县| 汶上县| 行唐县| 河西区| 昆明市| 新营市| 鄂州市| 普陀区| 云南省| 赤壁市| 塔城市| 南汇区| 余干县| 邯郸县| 贵德县| 富顺县| 姜堰市| 蒙城县|