梁利喜, 熊 健, 劉向君
(油氣藏地質(zhì)及開(kāi)發(fā)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室(西南石油大學(xué)),成都 610500)
?
川南地區(qū)龍馬溪組頁(yè)巖孔隙結(jié)構(gòu)的分形特征
梁利喜, 熊健, 劉向君
(油氣藏地質(zhì)及開(kāi)發(fā)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室(西南石油大學(xué)),成都 610500)
[摘要]分形維數(shù)是多孔介質(zhì)不規(guī)則程度的度量。對(duì)川南下志留統(tǒng)龍馬溪組頁(yè)巖的氮?dú)馕椒y(cè)量結(jié)果分析,采用基于FHH模型的分形維數(shù)計(jì)算模型,得到龍馬溪組頁(yè)巖孔隙的分形維數(shù)。川南龍馬溪組頁(yè)巖具有明顯的分形特征及較大的分形維數(shù),分形維數(shù)變化范圍在2.600 5~2.648,平均為2.625 2。頁(yè)巖分形維數(shù)與頁(yè)巖比表面積和孔容呈正相關(guān),且頁(yè)巖中的微孔對(duì)頁(yè)巖分形維數(shù)有重要影響。有機(jī)質(zhì)、石英和黏土礦物對(duì)頁(yè)巖分形維數(shù)影響較大,長(zhǎng)石和碳酸鹽對(duì)頁(yè)巖分形維數(shù)影響較??;頁(yè)巖分形維數(shù)與有機(jī)碳含量和石英含量呈正相關(guān),而與黏土礦物含量呈負(fù)相關(guān),其中黏土礦物中伊利石和綠泥石對(duì)頁(yè)巖孔隙結(jié)構(gòu)影響不同。頁(yè)巖分形維數(shù)越大,頁(yè)巖孔隙結(jié)構(gòu)越復(fù)雜或孔隙表面越粗糙,頁(yè)巖的吸附氣體能力越強(qiáng),但頁(yè)巖氣的解吸、擴(kuò)散及滲流變得越困難。
[關(guān)鍵詞]川南;龍馬溪組;頁(yè)巖;分形維數(shù);孔隙結(jié)構(gòu);氮?dú)馕椒?;FHH模型
2011年,美國(guó)能源信息署(EIA)發(fā)布的《World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States》報(bào)告包含了美國(guó)在內(nèi)的33個(gè)國(guó)家的頁(yè)巖氣資源評(píng)價(jià)成果,報(bào)告指出全球頁(yè)巖氣的技術(shù)可采資源總量為18.76×1012m3,中國(guó)頁(yè)巖氣的技術(shù)可采資源總量為3.61×1012m3,其中四川盆地的龍馬溪組頁(yè)巖的技術(shù)可采資源量為0.971×1012m3,顯示四川盆地下志留統(tǒng)龍馬溪組頁(yè)巖氣資源開(kāi)發(fā)潛力巨大,是最具開(kāi)發(fā)潛力的地區(qū)之一[1,2]。頁(yè)巖作為頁(yè)巖氣藏的儲(chǔ)集層,是一種非均勻性的多孔介質(zhì),其孔容、孔徑及其分布對(duì)于頁(yè)巖氣賦存狀態(tài)及頁(yè)巖氣滲流機(jī)制有重要影響。針對(duì)四川盆地龍馬溪組頁(yè)巖儲(chǔ)層復(fù)雜的孔隙結(jié)構(gòu)研究,眾多學(xué)者采用不同方法研究了龍馬溪組頁(yè)巖的孔隙結(jié)構(gòu),采用環(huán)境掃描電鏡(SEM)、雙離子束(FIB-SEM)、透射電子顯微鏡(TEM)、壓汞法(MICP)、低壓氣體吸附法(N2, CO2)等方法來(lái)描述頁(yè)巖的孔隙結(jié)構(gòu),分析頁(yè)巖儲(chǔ)層孔隙結(jié)構(gòu)的特征[3-10]。而國(guó)內(nèi)外眾多學(xué)者也采用分形理論研究了砂巖儲(chǔ)層和煤層氣儲(chǔ)層的孔隙結(jié)構(gòu)特征,Pfeifer、Katz、Schlueter、Radlinski、陳亮等研究了砂巖孔隙的分形特征[11-15],Yao、Cai、楊宇等研究了煤層孔隙的分形特征[16-18],胡琳和Yang等分別用壓汞法和低壓氮?dú)夥ㄑ芯苛隧?yè)巖儲(chǔ)層孔隙的分形特征[19,20]。因此,頁(yè)巖儲(chǔ)層的孔隙結(jié)構(gòu)也可采用分形理論進(jìn)行研究。針對(duì)四川盆地龍馬溪組富含有機(jī)質(zhì)的頁(yè)巖,本文在低壓氮?dú)馕綄?shí)驗(yàn)數(shù)據(jù)基礎(chǔ)上,利用基于分形的Frenkel-Halsey-Hill(FHH)計(jì)算模型[21,22],對(duì)頁(yè)巖的分形維數(shù)進(jìn)行定量描述,從而研究它們的分形特性,進(jìn)而討論頁(yè)巖孔隙的分形維數(shù)與頁(yè)巖孔隙結(jié)構(gòu)、有機(jī)碳含量和礦物組成的關(guān)系,以及分析頁(yè)巖分形維數(shù)的意義。
1樣品與實(shí)驗(yàn)方法
1.1實(shí)驗(yàn)樣品
本文研究的3組實(shí)驗(yàn)頁(yè)巖樣品采自四川省宜賓市雙河鎮(zhèn)地區(qū)下志留統(tǒng)龍馬溪組。龍馬溪組屬海相沉積環(huán)境,下部為黑色頁(yè)巖,上部為灰色、黃綠色泥質(zhì)或粉砂質(zhì)頁(yè)巖。3組露頭頁(yè)巖樣品分別取自于雙河鎮(zhèn)燕子村四社、荷葉村一社和荷葉村四社,根據(jù)取樣點(diǎn)分別標(biāo)記L1、L2和L3。按國(guó)家標(biāo)準(zhǔn)取樣、破碎和篩分,頁(yè)巖樣品分別進(jìn)行了礦物組分測(cè)試、有機(jī)碳含量測(cè)試和低壓氮?dú)馕綔y(cè)試。在低壓氮?dú)馕綄?shí)驗(yàn)數(shù)據(jù)的基礎(chǔ)上,進(jìn)行頁(yè)巖分形維數(shù)計(jì)算分析。
1.2實(shí)驗(yàn)方法
本次研究在西南石油大學(xué)油氣藏地質(zhì)及開(kāi)發(fā)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室完成。礦物組分測(cè)試分析使用荷蘭PANalytical公司生產(chǎn)的X’Pert PRO全自動(dòng)粉末的X射線衍射儀,采用半定量原理計(jì)算頁(yè)巖樣品中不同礦物組分含量;有機(jī)碳含量測(cè)試分析使用美國(guó)LECO公司生產(chǎn)的CS230 SH分析儀,采用紅外吸收法來(lái)測(cè)定頁(yè)巖樣品的有機(jī)碳含量;低壓氮?dú)馕綔y(cè)試分析使用美國(guó)康塔公司生產(chǎn)的NOVA2000e型表面積和孔隙分析儀,主要分析頁(yè)巖樣品顆粒的比表面積和孔隙體積。
基于氮?dú)馕椒▽?shí)驗(yàn)所得數(shù)據(jù),Pfeifer提出了基于Frenkel-Halsey-Hill (FHH)模型的分形維數(shù)理論計(jì)算方法[11]。在該理論基礎(chǔ)上得到分形維數(shù)計(jì)算公式[21,22]
lnV=(D-3)ln[ln(p0/p)]+C
(1)
式中:V為平衡壓力為p時(shí)所吸附氣體的體積(m3);po為飽和蒸汽壓(MPa);D為分形維數(shù);C為常數(shù)。根據(jù)測(cè)得的氮?dú)獾葴匚綌?shù)據(jù),按照(1)式進(jìn)行數(shù)據(jù)整理,以lnV對(duì)ln[ln(p0/p)]作圖,斜率為K,即可得分形維數(shù)D=(3+K)。
2頁(yè)巖孔隙分形維數(shù)計(jì)算
以宜賓市雙河鎮(zhèn)地區(qū)龍馬溪組的頁(yè)巖樣品為研究對(duì)象,16個(gè)頁(yè)巖樣品的礦物組成測(cè)試結(jié)果見(jiàn)圖1,TOC含量測(cè)試結(jié)果見(jiàn)表1。根據(jù)分形模型理論將16個(gè)樣品低壓氮?dú)馕綄?shí)驗(yàn)所得到的數(shù)據(jù)按式(1)進(jìn)行整理,然后根據(jù)頁(yè)巖樣品的lnV和ln[ln(p0/p)]的關(guān)系曲線分布規(guī)律擬合得出斜率(圖2),從而得出不同頁(yè)巖樣品的分形維數(shù)D(表1)。
從圖2中可以基于FHH模型得到的lnV和ln[ln(p0/p)]之間的線性相關(guān)性顯著,相關(guān)系數(shù)均大于0.988,根據(jù)曲線斜率計(jì)算得到的頁(yè)巖樣品分形維數(shù)見(jiàn)表1。從表1中可以看出,頁(yè)巖樣品的分形維數(shù)變化范圍在2.600 5~2.648,平均值為2.625 2。頁(yè)巖的分形維數(shù)較大,且分形維數(shù)可反映出孔隙結(jié)構(gòu)的復(fù)雜性,說(shuō)明本研究區(qū)龍馬溪組的頁(yè)巖孔隙系統(tǒng)具有分形特征和較高的復(fù)雜性。頁(yè)巖分形維數(shù)大也說(shuō)明孔隙結(jié)構(gòu)的復(fù)雜程度高,孔隙表面粗糙程度、形狀的不規(guī)則程度均高[15]。
圖1 頁(yè)巖樣品礦物組成Fig.1 Mineral compositions of the shale samples
圖2 部分頁(yè)巖樣品的lnV和ln[ln(p0/p)]的關(guān)系曲線Fig.2 Plots of lnV vs ln[ln(p0/p)] of some shale samples
編號(hào)BET比表面積/(m2·g-1)總孔容/(cm3·g-1)w/%TOC黏土礦物黃鐵礦石英碳酸鹽巖長(zhǎng)石分形維數(shù)L1-19.0130.022964.5312.281.5059.0125.361.842.6464L1-29.2790.023494.5113.241.2060.7124.091.762.6480L1-38.4170.021054.1013.581.8749.4132.882.262.6362L1-49.3310.022194.5214.461.8148.8534.880.002.6471L1-59.0610.021463.4414.001.3045.1139.590.002.6357L1-68.1000.021193.1515.471.8350.0927.205.422.6363L1-78.4810.022594.4511.101.3057.2026.523.882.6474L1-88.6400.021573.9015.403.6448.1732.790.002.6356L2-19.0390.020711.1234.561.4327.8828.927.202.6056L2-28.5630.020721.5335.700.9325.6829.837.862.6219L2-37.4770.019961.0659.341.1722.4814.814.212.6008L2-47.5890.020341.3353.021.5530.608.865.972.6058L3-18.6310.019571.3539.121.0123.1833.703.002.6143L3-27.9780.017981.1734.691.1322.8537.513.822.6083L3-37.5600.018841.2063.602.1820.089.474.692.6005L3-48.2300.020471.2635.700.9325.6829.837.862.6126
3頁(yè)巖孔隙分形維數(shù)的特征
宜賓市雙河鎮(zhèn)地區(qū)龍馬溪組的頁(yè)巖分形維數(shù)與頁(yè)巖孔隙結(jié)構(gòu)、TOC含量和礦物組成等都存在一定程度的相關(guān)性。
3.1分形維數(shù)與比表面積和孔容的關(guān)系
頁(yè)巖分形維數(shù)與頁(yè)巖比表面積的相關(guān)性見(jiàn)圖3。從圖3中可以看出頁(yè)巖分形維數(shù)與比表面積(R2=0.483 9,圖3-A)、孔容(R2=0.743 1,圖3-B)呈正相關(guān)性,其中與孔容的相關(guān)性相對(duì)較顯著,頁(yè)巖的分形維數(shù)隨著頁(yè)巖的比表面積和孔容的增加而呈增大的趨勢(shì)。同時(shí)從圖3中還可看出頁(yè)巖的分形維數(shù)與微孔比表面積(R2=0.902 5,圖3-C)、微孔孔容(R2=0.899,圖3-D)呈顯著的正相關(guān)性,頁(yè)巖分形維數(shù)隨著頁(yè)巖微孔的比表面積和孔容的增加而增加。微孔孔隙增多,微孔的比表面積或孔容增多,使頁(yè)巖的比表面積和總孔容增加(圖4),使頁(yè)巖分形維數(shù)增大,從而使頁(yè)巖孔隙結(jié)構(gòu)更為復(fù)雜,說(shuō)明頁(yè)巖中微孔孔隙對(duì)頁(yè)巖分形維數(shù)有重要影響。即頁(yè)巖中的微孔孔隙越多,頁(yè)巖的孔隙結(jié)構(gòu)越復(fù)雜或孔隙表面越粗糙,造成頁(yè)巖的分形維數(shù)越大。這個(gè)結(jié)論與Yao等關(guān)于煤巖分形特征[16]和Yang等關(guān)于牛蹄塘組頁(yè)巖分形特征[20]的研究結(jié)論一致。
3.2分形維數(shù)與有機(jī)碳含量的關(guān)系
圖5-A反映了頁(yè)巖分形維數(shù)與有機(jī)碳含量的相關(guān)性,從圖中可以看出頁(yè)巖分形維數(shù)與有機(jī)碳含量呈正相關(guān)性,且相關(guān)性顯著(R2=0.934 3),頁(yè)巖有機(jī)碳含量越高,頁(yè)巖分形維數(shù)越大。同時(shí),從圖5中還可看出頁(yè)巖微孔的孔容和微孔的比表面積與有機(jī)碳含量存在顯著的正相關(guān)性,相關(guān)系數(shù)分別為0.918 8(圖5-B)、0.929 4(圖5-C),隨著有機(jī)碳含量增大,有機(jī)質(zhì)孔隙增多,有機(jī)質(zhì)孔隙中微孔孔隙較多[8,10],使微孔的比表面積和孔容增大。說(shuō)明隨著有機(jī)碳含量增加,有機(jī)質(zhì)孔隙增多,衍生出的微孔隙數(shù)量增多,對(duì)頁(yè)巖的比表面積和孔容貢獻(xiàn)較大,頁(yè)巖的孔隙結(jié)構(gòu)越復(fù)雜或孔隙表面越粗糙,從而使頁(yè)巖分形維數(shù)增大。
3.3分形維數(shù)與礦物組成的關(guān)系
頁(yè)巖分形維數(shù)與頁(yè)巖礦物組成(黏土礦物、石英、長(zhǎng)石和碳酸鹽巖)存在一定程度的相關(guān)性(圖6-圖9)。
圖6反映了頁(yè)巖分形維數(shù)與頁(yè)巖樣品的黏土礦物含量的相關(guān)性,從圖中可看出頁(yè)巖分形維數(shù)和黏土礦物含量呈負(fù)相關(guān)性,相關(guān)性較顯著,相關(guān)系數(shù)為0.857 9(圖6-A)。其中與黏土礦物中的伊利石含量呈正相關(guān)性,相關(guān)系數(shù)為0.569 6(圖6-B);與綠泥石含量呈負(fù)相關(guān),相關(guān)系數(shù)為0.836(圖6-C);與伊蒙混層含量沒(méi)有明顯的相關(guān)性。同時(shí)從圖6還可看出頁(yè)巖黏土礦物含量與頁(yè)巖的微孔比表面積和微孔孔容存在負(fù)相關(guān)性,相關(guān)系數(shù)分別為0.751 9(圖6-D)、0.755 6(圖6-E),頁(yè)巖的微孔比表面積和微孔孔容隨著頁(yè)巖黏土礦物含量的增加而呈下降的趨勢(shì),即造成頁(yè)巖微孔隙數(shù)量減少。說(shuō)明頁(yè)巖黏土礦物含量增加,造成頁(yè)巖致密且使頁(yè)巖中微孔隙數(shù)量減小,導(dǎo)致頁(yè)巖分形維數(shù)減小。其中黏土礦物中伊利石和綠泥石對(duì)頁(yè)巖孔隙結(jié)構(gòu)影響作用不同。
圖3 分形維數(shù)與比表面積和孔容的關(guān)系Fig.3 Relationships between fractal dimension and specific surface area, total pore volume
圖4 微孔孔容和孔容、微孔比表面積和比表面積的關(guān)系Fig.4 Relationship between micropore specific surface area and specific surface area and the relationship between micropore volume and total pore volume
圖5 分形維數(shù)、微孔比表面積和微孔孔容與TOC含量的關(guān)系Fig.5 Relationships between TOC contents and fractal dimension, micropore specific surface area, micropore volume
圖6 分形維數(shù)、微孔比表面積和微孔孔容與黏土礦物含量的關(guān)系Fig.6 Relationships between clay minerals contents and fractal dimension, micropore specific surface area, micropore volume
圖7 分形維數(shù)、微孔比表面積和微孔孔容與石英的關(guān)系Fig.7 Relationships between quartz contents and fractal dimension, micropore specific surface area, micropore volume
圖8 分形維數(shù)、微孔比表面積和微孔孔容與長(zhǎng)石的關(guān)系Fig.8 Relationships between feldspars and fractal dimension, micropore surface area, micropore volume
圖9 分形維數(shù)、微孔比表面積和微孔孔容與碳酸鹽的關(guān)系Fig.9 Relationships between carbonate rock contents and fractal dimension, micropore specific surface area, micropore volume
圖7反映了頁(yè)巖分形維數(shù)與頁(yè)巖樣品的石英含量相關(guān)性,從圖中可看出頁(yè)巖分形維數(shù)和頁(yè)巖中石英含量呈正相關(guān)性,相關(guān)性較顯著,相關(guān)系數(shù)為0.897 4(圖7-A),頁(yè)巖分形維數(shù)隨著頁(yè)巖中石英含量的增加而呈增大的趨勢(shì)。同時(shí),從圖7還可看出頁(yè)巖石英含量和頁(yè)巖微孔的比表面積和微孔孔容呈正顯著的相關(guān)性,相關(guān)系數(shù)分別為0.926 2(圖7-B)、0.888 7(圖7-C),頁(yè)巖的微孔比表面積和微孔孔容隨著頁(yè)巖石英含量的增加而增大,即造成頁(yè)巖微孔隙數(shù)量增多。這可能與石英成因有關(guān),從圖7中可以看出頁(yè)巖的石英含量和頁(yè)巖有機(jī)碳含量呈正相關(guān)性,Tian等、Ross等、Chalmers等研究認(rèn)為頁(yè)巖石英含量和頁(yè)巖有機(jī)碳含量呈正相關(guān)性是與石英的來(lái)源有關(guān),他們認(rèn)為這些頁(yè)巖中石英為生物成因[10,23,24]。因此,龍馬溪組頁(yè)巖中部分石英來(lái)源于硅質(zhì)生物即生物成因。頁(yè)巖中石英含量增加,使頁(yè)巖中微孔隙數(shù)量增多,對(duì)頁(yè)巖的表面積和孔容貢獻(xiàn)較大,造成頁(yè)巖孔隙結(jié)構(gòu)復(fù)雜,導(dǎo)致頁(yè)巖分形維數(shù)增大。同時(shí)頁(yè)巖中石英含量對(duì)頁(yè)巖的脆性有重要的影響,石英含量高,頁(yè)巖地層的脆性高,頁(yè)巖地層易形成裂縫。因此,硅質(zhì)生物使頁(yè)巖礦物組成中硅質(zhì)成分增加,且硅質(zhì)生物體內(nèi)存在有機(jī)質(zhì)孔隙,使頁(yè)巖分形維數(shù)增大,導(dǎo)致頁(yè)巖孔隙結(jié)構(gòu)復(fù)雜程度增加,同時(shí)也使頁(yè)巖地層易形成裂縫。
從圖8中可以看出,頁(yè)巖分形維數(shù)與頁(yè)巖的長(zhǎng)石含量之間呈弱負(fù)相關(guān)性,相關(guān)系數(shù)為0.373 7(圖8-A),頁(yè)巖的長(zhǎng)石含量與頁(yè)巖的微孔比表面積和微孔的孔容也呈弱的負(fù)相關(guān)性(圖8-B、C);而頁(yè)巖分形維數(shù)與頁(yè)巖的碳酸鹽含量之間呈弱正相關(guān)性,相關(guān)系數(shù)為0.183 7(圖9-A),頁(yè)巖的碳酸鹽含量與頁(yè)巖的微孔比表面積和微孔的孔容不存在明顯的關(guān)系(圖9-B、C)。頁(yè)巖中的長(zhǎng)石和碳酸鹽對(duì)頁(yè)巖孔隙結(jié)構(gòu)影響較小,對(duì)頁(yè)巖的比表面積和孔容貢獻(xiàn)較小,因此頁(yè)巖中的長(zhǎng)石和碳酸鹽對(duì)頁(yè)巖分形維數(shù)影響較小。
通過(guò)綜合分析圖5-圖9可以得出,頁(yè)巖有機(jī)質(zhì)和礦物組成對(duì)頁(yè)巖的孔隙結(jié)構(gòu)(比表面積和孔容)的影響,也反映出頁(yè)巖的有機(jī)質(zhì)和礦物組成對(duì)頁(yè)巖分形維數(shù)的影響,頁(yè)巖分形維數(shù)值反映了頁(yè)巖孔隙結(jié)構(gòu)的復(fù)雜程度或頁(yè)巖孔隙表面粗糙度,因此頁(yè)巖的分形維數(shù)越大,頁(yè)巖的孔隙結(jié)構(gòu)越復(fù)雜或孔隙表面越不規(guī)則,頁(yè)巖的比表面積或孔容越大。
頁(yè)巖的分形維數(shù)越大,頁(yè)巖孔隙表面越粗糙或孔隙結(jié)構(gòu)越復(fù)雜,頁(yè)巖中微孔孔隙越多,頁(yè)巖表面的吸附位越多,越有利于頁(yè)巖吸附氣體,使得頁(yè)巖吸附氣體能力增強(qiáng)。Yao等和Yang等研究表明煤巖或頁(yè)巖分形維數(shù)越大,煤巖或頁(yè)巖的孔隙表面越粗糙,孔隙表面具有更多的氣體吸附位;同時(shí)煤巖或頁(yè)巖的孔隙結(jié)構(gòu)越復(fù)雜,固氣相互作用勢(shì)能越大,煤巖或頁(yè)巖的吸附性能越強(qiáng)[16,20]。說(shuō)明頁(yè)巖的分形維數(shù)越大,頁(yè)巖的吸附性能越大,頁(yè)巖吸附氣體的能力越強(qiáng)。然而,Cai等研究表明煤巖的滲透率隨分形維數(shù)的增加而呈下降趨勢(shì),煤巖分形維數(shù)增大,煤巖的孔隙結(jié)構(gòu)越復(fù)雜,使氣體滲流能力降低[17]。說(shuō)明頁(yè)巖的分形維數(shù)增大,使頁(yè)巖孔隙結(jié)構(gòu)復(fù)雜程度增加,造成頁(yè)巖中氣體滲流阻力增大,導(dǎo)致頁(yè)巖中氣體的滲流能力降低。因此頁(yè)巖分形維數(shù)增大,微孔孔隙增多,有利于增強(qiáng)頁(yè)巖吸附氣體的能力,同時(shí)將使頁(yè)巖氣的解吸、擴(kuò)散和滲流能力變得困難。頁(yè)巖儲(chǔ)層經(jīng)水力壓裂改造后形成縫網(wǎng),將減小頁(yè)巖分形維數(shù),增大頁(yè)巖的滲透率,有利于加快頁(yè)巖氣的解吸和擴(kuò)散,有利于頁(yè)巖氣的開(kāi)采。
4結(jié) 論
a.基于氮?dú)馕椒▽?shí)驗(yàn)所得數(shù)據(jù),采用FHH模型的分形維數(shù)計(jì)算方法,得到川南下志留統(tǒng)龍馬溪組頁(yè)巖的分形維數(shù)為2.600 5~2.648,平均為2.625 2,說(shuō)明川南龍馬溪組頁(yè)巖孔隙系統(tǒng)具有分形特征和較高的復(fù)雜性。
b.頁(yè)巖分形維數(shù)與頁(yè)巖比表面積和孔容呈正相關(guān),且頁(yè)巖中的微孔孔隙對(duì)頁(yè)巖分形維數(shù)有重要影響。
c.頁(yè)巖中的有機(jī)質(zhì)、石英和黏土礦物對(duì)頁(yè)巖分形維數(shù)影響較大,長(zhǎng)石和碳酸鹽對(duì)頁(yè)巖分形維數(shù)影響較小,其中頁(yè)巖分形維數(shù)與有機(jī)碳含量和石英含量呈正相關(guān),而與黏土礦物含量呈負(fù)相關(guān),并且黏土礦物中伊利石和綠泥石對(duì)頁(yè)巖孔隙結(jié)構(gòu)的影響不同。
[參考文獻(xiàn)]
[1]U.S.EnergyInformationAdministration(EIA).Worldshalegasresources:Aninitialassessmentof14regionsoutsidetheUnitedStates[EB/OL].[2011-02-17],http://www.eia.gov/analysis/studies/worldshalegas.
[2]ChenS,ZhuY,WangH,etal. Shale gas reservoir characterization: A typical case in the southern Sichuan Basin of China[J]. Energy, 2011, 36: 6609-6616.
[3] 聶海寬,張金川.頁(yè)巖氣儲(chǔ)層類型和特征研究——以四川盆地及其周緣下古生界為例[J].石油實(shí)驗(yàn)地質(zhì),2011,33(3):219-225.
Lie H K, Zhang J C. Types and characteristics of shale gas reservoir: A case study of Lower Paleozoic in and around Sichuan Basin [J]. Petroleum Geology & Experiment, 2011, 33(3): 219-225. (In Chinese)
[4] 田華,張水昌,柳少波,等.壓汞法和氣體吸附法研究富有機(jī)質(zhì)頁(yè)巖孔隙特征[J].石油學(xué)報(bào),2012,33(3):419-427.
Tian H, Zhang S C, Liu S B,etal. Determination of organic-rich shale pore features by mercury injection and gas adsorption methods[J]. Acta Petrolei Sincia, 2012, 33(3): 419-427. (In Chinese)
[5] 陳尚斌,朱炎銘,王紅巖,等.川南龍馬溪組頁(yè)巖氣儲(chǔ)層納米孔隙結(jié)構(gòu)特征及其成藏意義[J].煤炭學(xué)報(bào),2012,37(3):438-444.
Chen S B, Zhu Y M, Wang H Y,etal. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin [J]. Journal of China Coal Society, 2012, 37(3): 438-444. (In Chinese)
[6] 陳尚斌,夏筱紅,秦勇,等.川南富集區(qū)龍馬溪組頁(yè)巖氣儲(chǔ)層孔隙結(jié)構(gòu)分類[J].煤炭學(xué)報(bào),2013,37(5):760-765.
Chen S B, Xia X H, Qin Y,etal. Classification of pore structures in shale gas reservoir at the Longmaxi Formation in the south of Sichuan Basin[J]. Journal of China Coal Society, 2013, 37(5): 760-765. (In Chinese)
[7]陳文玲,周文,羅平,等.四川盆地長(zhǎng)芯1井下志留統(tǒng)龍馬溪組頁(yè)巖氣儲(chǔ)層特征研究[J].巖石學(xué)報(bào),2013,29(3):1073-1086.
Chen, W L, Zhou W, Luo P,etal. Analysis of the shale gas reservoir in the Lower Silurian Longmaxi Formation, Changxin 1 well, Southeast Sichuan Basin, China[J]. Journal of Acta Petrologica Sinica, 2013, 29(3): 1073-1086. (In Chinese)
[8] 白志強(qiáng),劉樹(shù)根,孫瑋.四川盆地西南雷波地區(qū)五峰組-龍馬溪組頁(yè)巖儲(chǔ)層特征[J].成都理工大學(xué)學(xué)報(bào):自然科學(xué)版,2013,40(5):521-531.
Bai Z Q, Liu S G, Sun W,etal. Reservoir characteristic of Wufeng Formation-Longmaxi Formation in southwest of Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013,40(5): 521-531. (In Chinese)
[9] 冉波,劉樹(shù)根,孫瑋.四川盆地南緣騎龍村剖面五峰-龍馬溪組黑色頁(yè)巖孔隙大小特征的重新厘定[J].成都理工大學(xué)學(xué)報(bào):自然科學(xué)版,2013,40(5):532-542.
Ren B, Liu S G, Sun W,etal. Redefinition of pore size characteristics in Wufeng Fromaiotn-Longmaxi Formation black shale of Qilongcun section in southern Sichuan Basin China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013,40(5): 532-542. (In Chinese)
[10] Tian H, Pan L, Xiao X,etal. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE-SEM methods[J]. Marine and Petroleum Geology, 2013, 48: 8-19.
[11] Pfeiferper P, Avnir D. Chemistry nonintegral dimensions between two and three[J]. J Chem Phys, 1983, 79(7): 3369-3558.
[12] Katz A J, Thompson A H. Fractal sandstone pores: implication for conductivity and formation[J]. Phys Rev Lett, 1985, 54(3): 1325-1328.
[13] Schlueter E M, Zimmerman R W, Witherspoon P A,etal. The fractal dimension of pores in sedimentary rocks and its influence on permeability[J]. Engineering Geology, 1997, 48: 199-215.
[14] Radlinski A P, Loannidis M A, Hinde A L,etal. Angstrom to millimeter characterization of sedimentary rock microstructure[J]. Journal of Colloid and Interface Science, 2004, 274(2): 607-612.
[15] 陳亮,譚凱旋,劉江,等.新疆某砂巖鈾礦含礦層孔隙結(jié)構(gòu)的分形特征[J].中山大學(xué)學(xué)報(bào):自然科學(xué)版,2012,51(6):139-144.
Chen L, Tan K X, Liu J,etal. Pore structure fractal features of the ore-bearing layer from a sandstone-type uranium deposit, Xinjiang[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2012, 51(6): 139-144. (In Chinese)
[16] Yao Y, Liu D, Tang D,etal. Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4adsorption capacity of coals[J]. International Journal of Coal Geology, 2008, 73(1): 27-42.
[17] Cai Y, Liu D, Pan Z,etal. Pore structure and its impact on CH4adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China[J]. Fuel, 2013(103): 258-268.
[18] 楊宇,孫晗森,彭小東,等.煤層氣儲(chǔ)層孔隙結(jié)構(gòu)分形特征定量研究[J].特種油氣藏,2013,20(1):31-33.
Yang Y, Sun H S, Peng X D,etal. Quantitative study on fractal characteristics of the structure of CBM reservoir[J]. Special Oil & Gas Reservoirs, 2013, 20(1): 31-33. (In Chinese)
[19] 胡琳,朱炎銘,陳尚斌,等.蜀南雙河龍馬溪組頁(yè)巖孔隙結(jié)構(gòu)的分形特征[J].新疆石油地質(zhì),2013,34(1):79-82.
Hu L, Zhu Y M, Chen S B,etal. Fractal characteristics of shale pore structure of Longmaxi Formation in Shuanghe area in Southern Sichuan[J]. Xinjiang Petroleum Geology, 2013, 34(1): 79-82. (In Chinese)
[20] Yang F, Ning Z, Liu H. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China[J]. Fuel, 2014, 115: 378-384.
[21] Avnir D, Jaroniec M. An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials[J]. Langmuir, 1989, 5: 1412-1433.
[22] Jaroniec M. Evaluation of the fractal dimension from a single adsorption isotherm[J]. Langmuir, 1995, 11: 2316-2317.
[23] Ross D J K, Bustin R M. Shale gas potential of the Lower Jurassic Gordondale member, northeastern British Columbia, Canada[J]. Bulletin of Canadian Petroleum Geology, 2007, 55(1):51-75.
[24] Chalmers G R L, Ross D J K, Bustin R M. Geological controls on matrix permeability of Devonian gas shales in the Horn River and Liard basins, northeastern British Columbia, Canada [J]. International Journal of Coal Geology, 2012, 103: 120-131.
[25] Jarvie D M, Hill R J, Ruble T E,etal. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment [J]. AAPG Bulletin, 2007, 91(4): 475-499.
[第一作者] 楊俊(1982-),男,碩士,工程師,主要從事油氣藏形成與分布和油氣地球化學(xué)勘探研究工作, E-mail:yangjun19821002@163.com。
Fractal characteristics of pore structure of
Longmaxi Formation shale in south of Sichuan Basin, China
LIANG Li-xi, XIONG Jian, LIU Xiang-jun
StateKeyLaboratoryofOilandGasReservoirGeologyandExploitation,
SouthwestPetroleumUniversity,Chengdu610500,China
Abstract:The fractal dimension is a measure of the degree of irregular porous media. This paper calculates the fractal dimensions of the pore structure of the Lower Silurian Longmaxi Formation shale in the south of Sichuan Basin by using the fractal dimension computational model based on FHH model and analyzes the measured results of the pore structure by the nitrogen adsorption method. The result shows that the pore structure of Longmaxi Formation shale has typical fractal nature, the fractal dimensions of pore structures of the Longmaxi Formation shale are relatively big and the value of the fractal dimension is 2.3559~2.6577, with an average of 2.488. There is a positive correlation between the fractal dimension of the shale and the specific surface area, the pore volume. Especially, the micropores in the shale have a significant impact on the fractal dimension. The organic matter, quartz and clay minerals have an important influence on the fractal dimension, whereas the feldspars and carbonates have a little influence on the fractal dimension. The fractal dimensions have positive relationships with the contents of total organic carbon and quartz, whereas there is a negative correlation between the fractal dimension and clay minerals contents, and the illite and chlorite have a different impact on the shale pore structure. The shale with a higher fractal dimension has a more complicated pore structure and a more irregular pore surface, and a higher adsorption capacity of the shale. However, the shale with a higher fractal dimension has lower capacity of desorption, diffusion and seepage of the shale gas.
Key words:Sichuan Basin; Longmaxi Formation; shale; pore structure; fractal dimension; nitrogen adsorption; FHH model
[基金項(xiàng)目]國(guó)家自然科學(xué)基金資助項(xiàng)目(40972088)。
[收稿日期]2014-05-07。
[文章編號(hào)]1671-9727(2015)06-0709-10
DOI:10.3969/j.issn.1671-9727.2015.06.09
[文獻(xiàn)標(biāo)志碼][分類號(hào)] TE122.23 A