邱宇凡,胡蘊慧,張 瑾
(天津醫(yī)科大學(xué)腫瘤醫(yī)院乳腺腫瘤三科,國家腫瘤臨床醫(yī)學(xué)研究中心,中國天津乳腺癌防治研究中心,乳腺癌防治教育部重點實驗室,天津市腫瘤防治重點實驗室,天津 300060)
?
DNA同源重組修復(fù)與乳腺癌的研究進展
邱宇凡,胡蘊慧,張瑾
(天津醫(yī)科大學(xué)腫瘤醫(yī)院乳腺腫瘤三科,國家腫瘤臨床醫(yī)學(xué)研究中心,中國天津乳腺癌防治研究中心,乳腺癌防治教育部重點實驗室,天津市腫瘤防治重點實驗室,天津300060)
雙鏈斷裂是真核細胞最嚴重的DNA損傷類型,主要依賴同源重組途徑進行修復(fù)。BRCA1/2是該修復(fù)通路中的關(guān)鍵因子,以其為核心組成的BRCA腫瘤抑制因子網(wǎng)絡(luò)中多種致病性突變均可損傷基因組完整性和穩(wěn)定性,增高乳腺癌易感性。該文結(jié)合最新研究進展,對DNA同源重組修復(fù)網(wǎng)絡(luò)中關(guān)鍵基因突變與乳腺癌易感性及個體化治療策略進行綜述,旨在促進相關(guān)突變攜帶者的乳腺癌早期預(yù)防、分子診斷和精準治療。
DNA雙鏈斷裂;同源重組修復(fù);乳腺腫瘤;易感基因;抑癌基因;BRCA;化療
乳腺癌(breast cancer, BC)已成為中國女性最常見的惡性腫瘤,發(fā)病率逐年攀升[1]。隨著全基因組關(guān)聯(lián)性研究(genome-wide association studies,GWAS)的進展,一系列與BC發(fā)生發(fā)展密切相關(guān)的DNA損傷修復(fù)相關(guān)基因突變與單核苷酸多態(tài)性(single nucleotide polymorphisms,SNP)位點得以發(fā)現(xiàn)。以BRCA1/2為核心的腫瘤抑制因子網(wǎng)絡(luò)主要參與包括電離輻射等多種因素導(dǎo)致的DNA雙鏈斷裂(double-strands breaks,DSB)的修復(fù)過程,通過與多種蛋白組成功能復(fù)合體調(diào)控同源重組修復(fù) (homologous recombination repair,HRR),此網(wǎng)絡(luò)中關(guān)鍵因子突變或SNP可能造成DNA修復(fù)能力缺失,引起基因組失穩(wěn),導(dǎo)致癌癥發(fā)生。
1.1DNA-DSB雙鏈斷裂是真核細胞DNA損傷中最嚴重的類型,由于缺乏一條完整的互補鏈作為修復(fù)模板,DNA序列難以完全恢復(fù),易造成遺傳信息的丟失。DSB還可能導(dǎo)致染色體的斷裂、丟失和重排,在某些情況下,單一的DSB損傷即足以導(dǎo)致細胞死亡[2]。
1.2DSB修復(fù) DNA雙鏈斷裂主要通過同源重組與非同源末端連接(non-homologous end-joining,NHEJ)兩條途徑進行修復(fù)。NHEJ不要求斷裂末端的序列同源,修復(fù)貫穿于整個細胞周期中頻繁且復(fù)雜性較低的DNA-DSB;HRR頻率遠低于NHEJ,主要介導(dǎo)諸如復(fù)制叉斷裂等復(fù)雜性或危險度較高的DSB修復(fù)[3]。
2.1BRCA家族
2.1.1BRCA1乳腺癌易感基因1(breast cancer 1 , BRCA1)定位于 17q21,編碼產(chǎn)物BRCA1由1 863個氨基酸組成,其N末端RING基序和C末端BRCT串聯(lián)基序是對維持BRCA1基本功能最為重要的兩個結(jié)構(gòu)域,也是乳腺癌易感性突變最常發(fā)生的部位。BRCA1可通過RING域與BRCA1相關(guān)環(huán)狀結(jié)構(gòu)域蛋白1(BRCA1-associated RING domain 1,BARD1)結(jié)合,靶向聚集于 DNA 損傷部位[4]; BRCT域可與帶有pSPxF結(jié)構(gòu)的磷酸化蛋白Abraxas、BRIP1和CtIP分別形成A、B、C復(fù)合體,介導(dǎo)損傷應(yīng)答中BRCA1的募集[5]。
2.1.2BRCA2BRCA2(breast cancer 2, BRCA2)基因定位于13q12-13,編碼由3418個氨基酸組成、含多個功能域的BRCA2蛋白。BRCA2的N端與PALB2-WD40域結(jié)合;通過中間段BRC重復(fù)序列和C端Cter結(jié)合RAD51家族,使RAD51得以結(jié)合至切除修飾后的ssDNA,這兩個結(jié)構(gòu)之間的DNA結(jié)合域(DNA binding domain,DBD)則用以結(jié)合DNA鏈和DSS1蛋白。
2.2BRCA腫瘤抑制因子網(wǎng)絡(luò)BRCA1通過與一系列蛋白形成復(fù)合體介導(dǎo)DNA HRR以維持染色體結(jié)構(gòu)和功能穩(wěn)定,并在這一重要作用中處于核心地位。經(jīng)上游ATM、CHEK2信號轉(zhuǎn)導(dǎo)后,BRCA1可通過PALB2連接BRCA2,繼而負載RAD51家族至DNA分子。另外,BRCA1結(jié)合MRN(MRE11-RAD50-NBS1)復(fù)合體及BRCC復(fù)合體后可獲得E3泛素連接酶活性;與磷酸化蛋白CtIP、BRIP1、Abraxas(CCDC98)、Aurora A等的相互作用,可影響DNA損傷后初始剪切機制和細胞周期檢查點調(diào)控等損傷修復(fù)相關(guān)環(huán)節(jié),而53BP1復(fù)合體對BRCA1在G1期的抑制作用則保證了同源重組發(fā)生于S/G2期[6]。除此之外,BRCA1尚可與錯配修復(fù)蛋白MSp、MSp、MSH6和MLH1以及BRAD1、MRE11/NBS1、BLM等諸多蛋白及調(diào)控因子形成復(fù)雜的DNA同源重組修復(fù)網(wǎng)絡(luò)。
BRCA1是最具代表性的低頻-高外顯率抑癌基因,與BC的發(fā)生發(fā)展關(guān)系最為密切。至少30%的遺傳性BC和近50%的家族性BC歸因于BRCA1基因的種系突變,其突變攜帶者一生中罹患BC的風險約為60%~80%[1]。
3.1BRCA1與DSBs修復(fù)有效的HRR需要以完善的DSB DNA末端切除為基礎(chǔ),在S/G2期,BRCA1對MRN復(fù)合體中的MRE11核酸酶抑制作用被解除,MRE11聯(lián)合CtIP進行短距離DSB切除的同時,BRCA1與CtIP共同募集Dna2,與Exo1核酸酶一起參與長距離切除[7]。在BRCA1突變的細胞中,DNA復(fù)制時依賴Tus/Ter-停滯復(fù)制叉的異常同源重組會導(dǎo)致遺傳不穩(wěn)定性,增加BC易感性[8]。此外,染色質(zhì)穩(wěn)定性受損后可募集p53結(jié)合蛋白1(p53-binding protein 1,53BP1),拮抗BRCA1,引發(fā)DSB修復(fù)途徑的起始選擇由HR轉(zhuǎn)向NHEJ[6],降低修復(fù)的精準性。
3.2BRCA1突變與乳腺癌BRCA1突變后引起的單倍體劑量不足和抑癌因子缺失會加劇基因組不穩(wěn)定性和端粒侵蝕,導(dǎo)致異常形式的細胞衰老,增加BC發(fā)病風險[9]。BRCA1突變攜帶者更易罹患三陰型乳腺癌(triple-negative breast cancer, TNBC),且TNBC患者中BRCA1突變比例較高,以家族性BC尤為明顯[10]。Couch等[11]的研究顯示,TNBC中組織學(xué)3級的比例為83%,對于BRCA1突變攜帶者,這一比例會增加到94%(P<0.001)。有統(tǒng)計表明,亞洲人BRCA1最常見的突變前兩位分別為185delAG(c.68_69delAG)和c.390C>A,在中國,南方省市和香港人群中BRCA1 c.470_471delCT,c.981_982delAT也很常見[12]。此外,在攜帶BRCA1致病性突變的基礎(chǔ)上,若還伴有其他染色體位點的SNP,如1q32- rs2290854、4q32.3- rs4691139等,則會更大程度增加BC的發(fā)病風險[13]。
PALB2 (partner and localizer of BRCA2)基因定位于16p12,編碼BRCA1/2的橋接蛋白PALB2,分別以N端與BRCA1 C端卷曲螺旋相結(jié)合,以C端WD40域與BRCA2 N端結(jié)合。
4.1PALB2與DSB修復(fù)在G1期,經(jīng)泛素化的PALB2與BRCA1的結(jié)合會受到抑制,限制HRR[14]。在S期復(fù)制應(yīng)激下,PALB2可被磷酸化的復(fù)制蛋白A(replication protein A,RPA)募集至停滯復(fù)制叉,增強復(fù)制叉穩(wěn)定性并介導(dǎo)其復(fù)原[15]。PALB2和BRCA2亦可協(xié)同募集并刺激聚合酶η(polymeraseη,Polη)活性,啟動Polη介導(dǎo)的重組相關(guān)DNA合成,參與下游HRR[16]。
4.2PALB2突變與乳腺癌PALB2單等位基因突變與BC易感性相關(guān),具有中度外顯率。目前檢測出的錯義突變主要有加拿大人群c.2323C>T、c.2323C>T、c.3113G>A和澳大利亞人群c.3113G>A[17]。PALB2的c.1592delT雜合性突變可以將DSB修復(fù)引導(dǎo)至單鏈退火(single-strand annealing,SSA)或微同源介導(dǎo)的末端連接(microhomology-mediated end-joining,MMEJ)等錯誤傾向較高的修復(fù)途徑,降低基因組穩(wěn)定性[18]。
2014年,Antoniou等[19]發(fā)表的一項臨床研究顯示,相比于普通人群,PALB2突變可明顯升高其攜帶者罹患BC的風險,且PALB2突變攜帶者的臨床表型中,Luminal型占比大于TNBC。40歲以下的攜帶者的患病風險約提高至8~9倍,40~60歲者6~8倍,60歲以上者約5倍,其突變攜帶者70歲前的絕對患病風險在無家族史者中為33%,而對于有2名以上一級親屬50歲前罹患BC的攜帶者,這一風險則高達58%[19]。
BRCA2是除BRCA1外最重要的BC易感基因,其雙等位基因突變會導(dǎo)致嚴重的D1型范可尼貧血(fanconi anemia,F(xiàn)A)或多種早發(fā)性惡性腫瘤,單等位基因突變明顯增加有BC家族史的突變攜帶者尤其是男性攜帶者的BC發(fā)病風險[20]。
5.1BRCA2與DSB修復(fù)BRCA2的主要功能在于負載RAD51至DNA損傷部位,這個步驟在HRR中十分關(guān)鍵。研究發(fā)現(xiàn),在G1期,細胞除了抑制損傷DNA的剪切作用之外,更重要的是通過一系列包括阻止BRCA1-PALB2-BRCA2復(fù)合體的組裝等多步驟阻滯DNA損傷位點對BRCA2的募集[14],從而保證了HRR順利發(fā)生于S/G2期。BRCA2還可通過穩(wěn)定RAD51絲狀體,以保持復(fù)制應(yīng)激下的基因組完整性,從而穩(wěn)定停滯復(fù)制叉新生DNA,使其免于降解[21]。
5.2BRCA2突變與乳腺癌Kwong等[12]的研究顯示,中國和韓國人群中最常出現(xiàn)的BRCA2突變?yōu)閏.7480C>T,c.1399A>T和c.3744_3747delTGAG等。Lin等[22]通過對臺灣人群早發(fā)或家族性BC測序發(fā)現(xiàn)11種BRCA2雜合有害突變,其中錯義突變c.G8243A與HRR缺陷相關(guān)。但不同于BRCA1的是,BRCA2突變攜帶者更傾向于發(fā)生Luminal型BC,而非TNBC[23]。BRCA2的SNP意義評估也在不斷進展,近期一項對家族性BC的研究顯示,BRCA2 c.9976A>T并非無作用性位點變異,應(yīng)進一步評估其與BC發(fā)病風險的相關(guān)性[24]。
6.1RAD51RAD51基因定位于15q15,其編碼產(chǎn)物RAD51蛋白是真核生物體內(nèi)的一種DNA重組酶,與原核生物的RecA蛋白同源,可在BRCA2等的募集和負載下,結(jié)合于經(jīng)切除修飾的DNA損傷部位,參與同源部位搜尋與DNA單鏈交換等過程[3]。Sekhar等[25]針對RAD51 135G>C進行薈萃分析發(fā)現(xiàn)此位點純合突變會增加BC患病風險。在對中國人群RAD51的miRNA結(jié)合位點SNP分析后,Wu等[26]發(fā)現(xiàn),rs963917 /rs963918位點的TA和TG單倍型可增加發(fā)生BC的風險。
RAD51的5種旁系同源物(RAD51B、RAD51C、RAD51D、XRCC2和XRCC3)表現(xiàn)出與RAD51 20-30%的氨基酸序列相似度,主要維持RAD51蛋白絲狀體的穩(wěn)定性,其中突變外顯率較高的RAD51C和RAD51D與BC關(guān)系較為密切。
6.2RAD51C和RAD51DRAD51C作為一個低頻中外顯率的亞效基因,在BC和卵巢癌(ovarian cancer,OC)中可檢測出其雜合突變。RAD51C缺失可募集NHEJ相關(guān)蛋白至染色質(zhì),增加修復(fù)后基因組不穩(wěn)定性[27]。最初由德國的一項入組1100個BRCA1/2突變陰性BC/OC高危家族的研究發(fā)現(xiàn)了6個單等位基因致病性突變[28],而近期Lin等[22]研究也發(fā)現(xiàn),RAD51C c.905-2A>C會導(dǎo)致錯誤剪接,從而產(chǎn)生危害性。
RAD51D突變之前一直被認為僅與OC相關(guān),但最近西班牙的一項研究[29]分析了841例BRCA突變陰性的家族性或散發(fā)早發(fā)性BC/OC病例后發(fā)現(xiàn),其中3種RAD51D突變中僅有1種檢出OC病例。不過,鑒于RAD51C和RAD51D的突變頻率較低,在被基因組學(xué)進一步研究證實前,目前尚未考慮將其列為臨床常規(guī)檢測。
BRIP1/ BACH1(BRCA1 interacting protein C-terminal helicase 1)基因位于17p22,編碼蛋白BRIP1/BACH1通過C端與BRCA1核心結(jié)構(gòu)之一BRCT功能域相連,在S/G2期與BRCA1共定位于細胞核。之前有研究認為,攜帶BRIP1/BACH1低外顯率截斷突變者的BC患病風險在BRCA突變陰性者中約升高一倍[30]。但近期韓國一項入組的253例BRCA1/2突變陰性高危BC的研究顯示并沒有發(fā)現(xiàn)任何BRIP1截斷突變[31]。在之前的研究中,BRIP1一直被認為是中低度外顯率基因,然而近期一項薈萃分析顯示這一觀點尚需進一步病例對照測序研究的確證[17]。最近一項Easton等[32]發(fā)表的測序研究結(jié)果也顯示沒有證據(jù)表明BRIP1截斷突變與乳腺癌風險有關(guān),這使得BRIP1與乳腺癌易感性的相關(guān)性開始受到質(zhì)疑。
共濟失調(diào)毛細血管擴張突變(ataxia telangiectasia mutated, ATM)基因位于11q22-23,細胞周期檢查點激酶2(checkpoint kinase 2, CHEK2)基因位于22q12。ATM蛋白屬于PI3K家族,作為DNA損傷應(yīng)答的上游開關(guān)分子激活下游CHEK2蛋白,磷酸化多種關(guān)鍵的細胞周期蛋白(如p53, CDC25和BRCA1等)。
8.1ATMATM雜合突變攜帶者比普通人群BC患病風險高2倍,在50歲以下的女性中,此風險會提升至5倍[33]。ATM蛋白低表達與較差的乳腺癌特異性生存(breast cancer-specific survival,BCSS)相關(guān)(P<0.0001),同時伴有p53突變者預(yù)后最差[34]。研究表明,ATM與CHEK2的表達有明顯相關(guān)性,數(shù)據(jù)分析顯示兩者聯(lián)合分析具有預(yù)后價值,其中ATM低表達伴CHEK2高表達者BCSS最差(P=0.033)[34]。近期Aloraifi等[17]的薈萃分析顯示目前僅發(fā)現(xiàn)了芬蘭人群中ATM c.6903insA這一個始祖突變。
8.2CHEK2CHEK2對BRCA1等蛋白的磷酸化在調(diào)控DSB修復(fù)時限中具有重要作用。近期Parameswaran等[35]的研究發(fā)現(xiàn),BRCA1會被出現(xiàn)于G1期,S/G2期高表達的SCF(Skp2)蛋白泛素化降解,從而解除對MRE11核酸酶的抑制作用,啟動DSB切除過程,CHEK2對BRCA1磷酸化作用如果被抑制,SCF(Skp2)的泛素化作用也會消失,因此證明CHEK2在保證DSB修復(fù)順利發(fā)生于S/G2期十分必要。
CHEK2低表達在HER-2過表達BC中較為多見,同時,CHEK2低水平腫瘤較多為激素受體陰性(ER-/PgR-/AR-)表型,且在ER陰性化療后CHEK2低表達者BCSS最差(P=0.020)[34]。CHEK2*1100delC是已明確的突變熱點,其純合突變可使BC患病風險較非攜帶者增高6倍,還會使雙側(cè)BC和術(shù)后復(fù)發(fā)的風險升高[36]。Liu等[37]通過對2334名可手術(shù)原發(fā)性BC患者的分析后發(fā)現(xiàn)CHEK2 1111C>T(p71Y)突變攜帶者HER-2陽性者比例較低(15.4%vs30.8%,P=0.038),且新輔助化療后pCR率明顯高于非攜帶者(33.3%vs19.5%,P=0.031),無遠處轉(zhuǎn)移生存率稍劣于無突變者差異并無顯著性(HR=1.24,95% CI:0.59~2.63)。
家族性和散發(fā)性BC患者均可能攜帶BRCA腫瘤抑制因子網(wǎng)絡(luò)中核心組分的致病性突變,導(dǎo)致DSB HRR功能缺陷,因而對蒽環(huán)類、喜樹堿類等DNA拓撲異構(gòu)酶抑制劑,烷化劑、鉑類等DNA鏈交聯(lián)劑,奧拉帕尼等PARP-1抑制劑更為敏感,這為細化BC個體化精準治療提供了新的指導(dǎo)方案。
9.1抗血管生成藥物血管生成因子如VEGF、Ang-1和Ang-2在BRCA突變的腫瘤中常存在過表達,TNBC患者常攜帶BRCA突變,BRCA突變BC患者的化療敏感性亦與野生型患者存在差異。根據(jù)GBG 44-GeparQiunto臨床研究的亞組分析結(jié)果顯示,術(shù)前AC序貫T聯(lián)合貝伐珠單抗方案新輔助化療后,BRCA突變攜帶者的病理完全緩解(pathologic complete response, pCR)率明顯高于野生型患者(50.0%vs30.8%,P=0.001)[38]。由此可見,同源重組修復(fù)因子與血管生成因子間的相互作用機制尚待深入探究。
9.2鉑類TNBC或攜帶BRCA突變患者對化療敏感性優(yōu)于野生型患者。近年,GeparSixto和CALGB 40603兩項Ⅱ期臨床研究結(jié)果均提示,在標準新輔助化療方案中添加卡鉑可以明顯增加TNBC患者的pCR率,不過遺憾的是,亞組分析顯示,BRCA突變亞組內(nèi)聯(lián)合卡鉑組pCR率雖然高于未聯(lián)合組,但差異沒有顯著性(61.5%vs50.5=0.413),反而在野生型亞組中聯(lián)合卡鉑的治療方案pCR率明顯高于對照組(50.8%vs33.1%,P=0.005)[39],說明卡鉑在BRCA突變?nèi)橄侔┗颊咧械闹委熥饔萌孕韪嘌芯俊?/p>
9.3PARP-1抑制劑聚腺苷二磷酸核糖聚合酶-1(poly ADP-ribose polymerase 1,PARP-1)是DNA單鏈斷裂修復(fù)過程中至關(guān)重要的DNA結(jié)合因子,PARP-1抑制劑可在BRCA1/2等基因突變導(dǎo)致的DNA DSB修復(fù)功能缺陷基礎(chǔ)上進一步增加基因組不穩(wěn)定性,引發(fā)細胞死亡[40]。其中代表性藥物“奧拉帕尼(olaparib)”已被批準應(yīng)用于BRCA突變的晚期OC治療,對TNBC的Ⅲ期臨床研究也正在進行,初步結(jié)果較為滿意。除BRCA外,ATM、CHEK2或RAD51C缺失亦可成為PARP合成致死途徑的靶點[27,41-42],這說明攜帶HRR通路中亞效基因突變者均具有應(yīng)用PARP-1抑制劑治療的潛在可能。
9.4Hsp90抑制劑熱休克蛋白90(heat shock protein,Hsp90)是細胞內(nèi)的伴侶分子,廣泛參與染色質(zhì)重構(gòu)、DNA復(fù)制和轉(zhuǎn)錄、RNA加工、端粒穩(wěn)定性維持和DNA修復(fù)過程[43]。Hsp90與BRCA1/2、RAD51等多種HRR因子存在聯(lián)系,應(yīng)用Hsp90抑制劑可能提高其他上述抗腫瘤藥在非BRCA突變BC患者中的敏感性。例如,17-AAG可以抑制BRCA1表達、降解BRCA2;PU-H71和NVP-AUY922可以抑制RAD51復(fù)合物的形成; Ganetespib在降解RAD51的同時還會降低ATM激酶的活化。目前有研究發(fā)現(xiàn),HER-2過表達可能會降低細胞對紫杉類藥物的敏感性[44],因而對于非BRCA突變的HER-2過表達BC來講,應(yīng)用Hsp90抑制劑可能在抗HER-2靶向藥物的基礎(chǔ)上提供新的治療策略??梢哉f,Hsp90抑制劑結(jié)合BRCA相關(guān)修復(fù)機制,為BC的治療提供了嶄新的治療思路。
從臨床角度看,攜帶BRCA1等易感基因突變的乳腺癌具有早發(fā)傾向,多具有不良病理分型和預(yù)后狀況[11],因此對乳腺癌高危人群中進行BRCA1及其功能相關(guān)易感基因篩查有助于早期診斷和后續(xù)針對性治療,將可能明顯改善BRCA相關(guān)乳腺癌患者的生存。隨著高通量測序技術(shù)的發(fā)展,低頻易感基因突變的作用被不斷揭示,可以預(yù)見,乳腺癌中DNA同源重組修復(fù)因子網(wǎng)絡(luò)的基礎(chǔ)和臨床轉(zhuǎn)化研究仍具有廣闊前景。
[1]Fan L, Strasser-Weippl K, Li J J, et al. Breast cancer in China[J].LancetOncol, 2014,15(7):e279-e89.
[2]Rich T, Allen R L, Wyllie A H. Defying death after DNA damage[J].Nature, 2000,407(6805):777-83.
[3]Kowalczykowski S C. An overview of the molecular mechanisms of recombinational DNA repair[J].ColdSpringHarborPerspectBiol, 2015,7(11):1-36.
[4]Li M, Yu X. Function of brca1 in the DNA damage response is mediated by adp-ribosylation[J].Cancercell, 2013,23(5):693-704.
[5]Wu Q, Paul A, Su D, et al. Structure of brca1-brct/abraxas complex reveals phosphorylation-dependent brct dimerization at DNA damage sites[J].MolCell, 2016,61(3):434-48.
[6]Panier S, Boulton S J. Double-strand break repair: 53bp1 comes into focus[J].NatRevMolCellBiol, 2014,15(1):7-18.
[7]Hoa N N, Kobayashi J, Omura M, et al. Brca1 and ctip are both required to recruit DNA2 at double-strand breaks in homologous recombination[J].PloSOne, 2015,10(4):e0124495.
[8]Willis N A, Chandramouly G, Huang B, et al. Brca1 controls homologous recombination at tus/ter-stalled mammalian replication forks[J].Nature, 2014,510(7506):556-9.
[9]Sedic M, Skibinski A, Brown N, et al. Haploinsufficiency for brca1 leads to cell-type-specific genomic instability and premature senescence[J].NatCommun, 2015,6(7505):1-14.
[10]Seong M W, Kim K H, Chung I Y, et al. A multi-institutional study on the association between Brca1/Brca2 mutational status and triple-negative breast cancer in familial breast cancer patients[J].BreastCancerResTreat, 2014,146(1):63-9.
[11]Couch F J, Hart S N, Sharma P, et al. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer[J].JClinOncol, 2015,33(4):304-11.
[12]Kwong A, Shin V Y, Ho J C, et al. Comprehensive spectrum of Brca1 and Brca2 deleterious mutations in breast cancer in asian countries[J].JMedGenet, 2016,53(1):15-23.
[13]Couch F J, Wang X, McGuffog L, et al. Genome-wide association study in brca1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk[J].PLoSGenet, 2013,9(3):e1003212.
[14]Orthwein A, Noordermeer S M, Wilson M D, et al. A mechanism for the suppression of homologous recombination in g1 cells[J].Nature, 2015,528(7582):422-6.
[15]Murphy A K, Fitzgerald M, Ro T, et al. Phosphorylated rpa recruits palb2 to stalled DNA replication forks to facilitate fork recovery[J].JCellBiol, 2014,206(4):493-507.
[16]Buisson R, Niraj J, Pauty J, et al. Breast cancer proteins palb2 and brca2 stimulate polymerase eta in recombination-associated DNA synthesis at blocked replication forks[J].CellRep, 2014,6(3):553-64.
[17]Aloraifi F, McCartan D, McDevitt T, et al. Protein-truncating variants in moderate-risk breast cancer susceptibility genes: A meta-analysis of high-risk case-control screening studies[J].CancerGenet, 2015,208(9):455-63.
[18]Obermeier K, Sachsenweger J, Friedl T W, et al. Heterozygous palb2 c.1592delt mutation channels DNA double-strand break repair into error-prone pathways in breast cancer patients[J].Oncogene, 2015:1-11.
[19]Antoniou A C, Casadei S, Heikkinen T, et al. Breast-cancer risk in families with mutations in palb2[J].NEnglJMed, 2014,371(6):497-506.
[20]de Juan I, Palanca S, Domenech A, et al. Brca1 and brca2 mutations in males with familial breast and ovarian cancer syndrome. Results of a spanish multicenter study[J].FamCancer, 2015,14(4):505-13.
[21]Schlacher K, Wu H, Jasin M. A distinct replication fork protection pathway connects fanconi anemia tumor suppressors to rad51-brca1/2[J].CancerCell, 2012,22(1):106-16.
[22]Lin P H, Kuo W H, Huang A C, et al. Multiple gene sequencing for risk assessment in patients with early-onset or familial breast cancer[J].Oncotarget, 2016,7(7):8310-20.
[23]Waddell N, Arnold J, Cocciardi S, et al. Subtypes of familial breast tumours revealed by expression and copy number profiling[J].BreastCancerResTreat, 2010,123(3):661-77.
[24]Thompson E R, Gorringe K L, Rowley S M, et al. Reevaluation of the brca2 truncating allele c.9976a>t(p.Lys3326ter) in a familial breast cancer context[J].SciRep, 2015,5(14800):1-6.
[25]Sekhar D, Pooja S, Kumar S, et al. Rad51 135g>c substitution increases breast cancer risk in an ethnic-specific manner: A meta-analysis on 21,236 cases and 19,407 controls[J].SciRep, 2015,5(11588):1-10.
[26]Wu Z, Wang P, Song C, et al. Evaluation of mirna-binding-site snps of mre11a, nbs1, rad51 and rad52 involved in hrr pathway genes and risk of breast cancer in china[J].MolGenetGenomics, 2015,290(3):1141-53.
[27]Somyajit K, Mishra A, Jameei A, et al. Enhanced non-homologous end joining contributes toward synthetic lethality of pathological rad51c mutants with poly(adp-ribose) polymerase[J].Carcinogenesis, 2015,36(1):13-24.
[28]Meindl A, Hellebrand H, Wiek C, et al. Germline mutations in breast and ovarian cancer pedigrees establish rad51c as a human cancer susceptibility gene[J].NatureGenet, 2010,42(5):410-4.
[29]Gutierrez-Enriquez S, Bonache S, de Garibay G R, et al. About 1% of the breast and ovarian spanish families testing negative for brca1 and brca2 are carriers of rad51d pathogenic variants[J].IntJCancer, 2014,134(9):2088-97.
[30]Seal S, Thompson D, Renwick A, et al. Truncating mutations in the fanconi anemia j gene brip1 are low-penetrance breast cancer susceptibility alleles[J].NatureGenet, 2006,38(11):1239-41.
[31]Kim H, Cho D Y, Choi D H, et al. Analysis of brip1 variants among korean patients with brca1/2 mutation-negative high-risk breast cancer[J].CancerResTreat, 2016:1-7.
[32]Easton D F, Lesueur F, Decker B, et al. No evidence that protein truncating variants in brip1 are associated with breast cancer risk: Implications for gene panel testing[J].JMedGenet, 2016,53(5):298-309.
[33]Thompson D, Duedal S, Kirner J, et al. Cancer risks and mortality in heterozygous atm mutation carriers[J].JNatlCancerInst, 2005,97(11):813-22.
[34]Abdel-Fatah T M, Arora A, Alsubhi N, et al. Clinicopathological significance of atm-chk2 expression in sporadic breast cancers: A comprehensive analysis in large cohorts[J].Neoplasia, 2014,16(11):982-91.
[35]Parameswaran B, Chiang H C, Lu Y, et al. Damage-induced brca1 phosphorylation by chk2 contributes to the timing of end resection[J].CellCycle, 2015,14(3):437-48.
[36]Adank M A, Jonker M A, Kluijt I, et al. Chek2*1100delc homozygosity is associated with a high breast cancer risk in women[J].JMedGenet, 2011,48(12):860-3.
[37]Liu Y, Xu Y, Ouyang T, et al. Association between chek2 p71y mutation and response to neoadjuvant chemotherapy in women with breast cancer[J].BMCCancer, 2015,15(194):1-8.
[38]von Minckwitz G, Loibl S, Untch M, et al. Survival after neoadjuvant chemotherapy with or without bevacizumab or everolimus for her2-negative primary breast cancer(gbg 44-geparquinto)dagger[J].AnnOncol, 2014,25(12):2363-72.
[39]von Minckwitz G, Schneeweiss A, Loibl S, et al. Neoadjuvant carboplatin in patients with triple-negative and her2-positive early breast cancer(geparsixto; gbg 66): A randomised phase 2 trial[J].LancetOncol, 2014,15(7):747-56.
[40]Lord C J, Tutt A N, Ashworth A. Synthetic lethality and cancer therapy: Lessons learned from the development of parp inhibitors[J].AnnRevMed, 2015,66:455-70.
[41]Weston V J, Oldreive C E, Skowronska A, et al. The parp inhibitor olaparib induces significant killing of atm-deficient lymphoid tumor cellsinvitroandinvivo[J].Blood, 2010,116(22):4578-87.
[42]Hoglund A, Stromvall K, Li Y, et al. Chk2 deficiency in myc overexpressing lymphoma cells elicits a synergistic lethal response in combination with parp inhibition[J].CellCycle, 2011,10(20):3598-607.
[43]Pennisi R, Ascenzi P, di Masi A. Hsp90: A new player in DNA repair?[J].Biomolecules, 2015,5(4):2589-618.
[44]師以康,張勝華,黃云虹,等. 乳腺癌細胞的her2過表達降低其對紫杉醇的藥物敏感性[J]. 中國藥理學(xué)通報,2009,25(4):444-8.
[44]Shi Y K, Zhang S H, Huang Y H, et al. Her2 overexpression in breast cancer cells reduces the sensitivity to taxol[J].ChinPharmacolBull,2009,25(4):444-8.
Research progress of relationship between DNA homologous recombination repair and breast cancer
QIU Yu-fan, HU Yun-hui, ZHANG Jin
(TheThirdDepartmentofBreastCancer,ChinaTianjinBreastCancerPrevention,Treatment,andResearchCenter,TianjinMedicalUniversityCancerInstituteandHospital;NationalClinicalResearchCenterofCancer,Tianjin’sClincalResearchCenterforCancer,KeyLaboratoryofBreastCancerPreventionandTherapyofMinistryofEducation,TianjinKeyLaboratoryofCancerPreventionandTherapy,Tianjin300060,China)
Double-strand DNA breaks(DSBs) are the most deleterious events in eukaryotic cells, and there are two major pathways for repairing them: homologous recombination(HR) and non-homologous DNA end joining(NHEJ). BRCA1/2 proteins are key factors in HR repair pathway for DSBs and play an essential role in BRCA tumor suppressor network, which maintains genomic integrity and stability. Pathogenic mutations of core genes in this network may damage the DNA repair process and increase the risk of breast cancer. This review summarizes the current reports on the relationship between breast cancer susceptibility and mutations of the key factors in DNA HR repair associated tumor suppressor network, and aims at promoting the prevention, molecular diagnosis and precision treatment of the breast cancer patients with aforementioned mutations.
DNA double-strand DNA breaks; homologous recombination repair; breast neoplasm; susceptibility gene; tumor suppressor gene; BRCA; chemotherapy
2016-02-10,
2016-04-15
國家自然科學(xué)青年基金項目(No 81402408);國家科技支撐計劃項目(No 2015BAI12B15)
邱宇凡(1991-),男,碩士生,研究方向:乳腺癌個體化精準治療策略,E-mail:qyf_tj1229@163.com;張瑾(1966-),女,博士,教授,主任醫(yī)師,博士生導(dǎo)師,研究方向:乳腺癌個體化精準治療策略,通訊作者,E-mail:zhangjin@tjmuch.com.cn
10.3969/j.issn.1001-1978.2016.07.006
A
1001-1978(2016)07-0910-05
R-05;R342.3;R394.2;R737.902.6;R737.905
網(wǎng)絡(luò)出版時間:2016-6-20 11:49網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/34.1086.R.20160620.1149.012.html