• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      侵襲性真菌病的免疫治療

      2016-02-27 06:09:41熊小青綜述潔審校重慶醫(yī)科大學(xué)附屬兒童醫(yī)院血液腫瘤科重慶400014
      現(xiàn)代醫(yī)藥衛(wèi)生 2016年3期
      關(guān)鍵詞:抗菌肽念珠菌免疫治療

      熊小青綜述,于 潔審校(重慶醫(yī)科大學(xué)附屬兒童醫(yī)院血液腫瘤科,重慶400014)

      侵襲性真菌病的免疫治療

      熊小青綜述,于潔△審校(重慶醫(yī)科大學(xué)附屬兒童醫(yī)院血液腫瘤科,重慶400014)

      真菌??;血液??;免疫療法;抗真菌藥;綜述

      侵襲性真菌?。↖FD)系指真菌侵入人體,在組織、器官或血液中生長(zhǎng)、繁殖,并導(dǎo)致炎性反應(yīng)及組織損傷的疾病。真菌侵入人體后是否致病很大程度上取決于機(jī)體的免疫防御能力,所以免疫功能不全及處于免疫抑制狀態(tài)的患者易發(fā)生IFD。近年來(lái),盡管新的抗真菌藥物越來(lái)越多,但因?yàn)榭拐婢幬锏挠邢蘅咕V、毒副作用和真菌的耐藥性等問(wèn)題,抗真菌藥物的療效仍然是有限的[1]。隨著對(duì)免疫治療和真菌感染致病機(jī)制的進(jìn)一步認(rèn)識(shí)及技術(shù)水平的發(fā)展,免疫治療受到越來(lái)越多的重視,并為防治IFD提供了新的治療方法。

      1 真菌免疫治療

      機(jī)體抗真菌免疫包括天然(非特異性)免疫和獲得性(特異性)免疫。非特異性免疫是指在感染初期免疫活性細(xì)胞(如中性粒細(xì)胞、單核細(xì)胞、單核巨噬細(xì)胞、自然殺傷細(xì)胞、樹突狀細(xì)胞)、炎性介質(zhì)、天然抗體對(duì)真菌的殺傷作用。特異性免疫是指真菌刺激機(jī)體免疫系統(tǒng)后,T、B淋巴細(xì)胞(主要是T淋巴細(xì)胞)及其介質(zhì)參與的免疫效應(yīng)。真菌免疫治療的對(duì)象包括宿主免疫和真菌病原體兩方面。宿主免疫方面的治療機(jī)制包括:(1)使用真菌疫苗提高宿主的免疫力;(2)有針對(duì)性的激活吞噬細(xì)胞、T細(xì)胞及抗體等介導(dǎo)的非特異性和真菌特異性免疫反應(yīng);(3)誘導(dǎo)機(jī)體產(chǎn)生細(xì)胞因子、趨化因子、抗菌肽(AMPs)等免疫應(yīng)答產(chǎn)物。真菌病原體方面的免疫治療有單克隆抗體、合成的抗菌肽、信號(hào)轉(zhuǎn)導(dǎo)抑制劑、生物制劑,其治療機(jī)制為調(diào)節(jié)和(或)參與補(bǔ)體系統(tǒng)、阻止真菌病原體黏附到宿主細(xì)胞上、抑制真菌的繁殖或直接殺死真菌病原體,這些治療機(jī)制不依賴于宿主免疫,為免疫功能不全患者的真菌治療帶來(lái)了福音。

      2 細(xì)胞治療

      一項(xiàng)體外培養(yǎng)實(shí)驗(yàn)表明,被IL-2激活的CD4+或CD8+T細(xì)胞、T系NK細(xì)胞、CD16+/56+非T系NK細(xì)胞和LAK細(xì)胞能對(duì)抗含有莢膜的隱球菌[2]。Sun等[3]給被煙曲霉感染的免疫功能不全小鼠輸入曲霉菌抗原f16(Aspf16)特異性的CD8+T淋巴細(xì)胞,延長(zhǎng)了這些小鼠的存活時(shí)間。這些體內(nèi)外研究證實(shí)了,細(xì)胞免疫在抗真菌免疫中扮演著至關(guān)重要的角色,比如粒細(xì)胞、樹突狀細(xì)胞、NK細(xì)胞、LAK細(xì)胞、CD4+或CD8+T細(xì)胞介導(dǎo)的細(xì)胞免疫。

      樹突狀細(xì)胞(DCs)在細(xì)胞免疫應(yīng)答中起導(dǎo)火線的作用,因此增強(qiáng)DCs的效能為真菌免疫治療提供了新的發(fā)展前景。含有十五肽(PPCs)的DCs和其他抗原遞呈細(xì)胞(APCs)能解讀Aspf16的編碼序列,引起APC池的擴(kuò)張及促進(jìn)能分泌干擾素(IFN)的具有細(xì)胞毒性的T細(xì)胞的增殖[4-5]。體外培養(yǎng)實(shí)驗(yàn)結(jié)果顯示,已攝取抗原Aspf16 的DCs能激活被MHC-I限制的CD8+T細(xì)胞,這些具有細(xì)胞毒性的T細(xì)胞能殺死攝取了抗原的DCs和淋巴細(xì)胞;此外,在此培養(yǎng)基中分離出的T細(xì)胞也能殺死曲霉分生孢子[4]。Shi等[6]報(bào)道骨髓中處于非成熟狀態(tài)的DCs在受到念珠菌刺激后,通過(guò)上調(diào)CD80、CD40、CD86和MHC-Ⅱ的表達(dá)分化成成熟的DCs,成熟的DCs能引起細(xì)胞因子級(jí)聯(lián)反應(yīng),最終導(dǎo)致CD4+Th1細(xì)胞的生成。

      真菌抗原特異性的Th1應(yīng)答表型與真菌感染的嚴(yán)重程度和預(yù)后密切相關(guān)[7]??骨固禺愋訲h1細(xì)胞能改善合并侵襲性曲霉菌病的造血干細(xì)胞移植患者的預(yù)后;然而,環(huán)孢素A和麥考酚酸等多種化學(xué)治療藥物及激素會(huì)抑制抗曲霉特異性Th1細(xì)胞的增殖,降低CD154的表達(dá)和IFN-γ的分泌,因此這種免疫治療方法在器官移植患者中的應(yīng)用受到了限制[8]。曲霉菌、念珠菌、球孢子菌和毛霉菌的細(xì)胞壁成分存在T淋巴細(xì)胞免疫交叉反應(yīng),這一原理使多種抗原特異性的T淋巴細(xì)胞免疫治療成為可能[9]。有文獻(xiàn)報(bào)道,在侵襲性曲霉菌患者中,煙曲霉蛋白質(zhì)Crf1、Gel1和Pmp20能誘導(dǎo)機(jī)體生成相應(yīng)的特異性T細(xì)胞;在這些T細(xì)胞中,表達(dá)CD137或CD154 的T細(xì)胞具有多種抗原特異性,這種多種抗原特異性的T細(xì)胞能同時(shí)識(shí)別曲霉菌和毛霉菌[10]。通過(guò)細(xì)胞因子捕獲系統(tǒng)(γ-干擾素)和免疫磁珠分選(CDl54),大規(guī)模制備多功能的T淋巴細(xì)胞,已在體外實(shí)驗(yàn)中取得成功[11]。

      Grigull等[12-13]闡述了抗真菌藥物聯(lián)合粒細(xì)胞輸注的治療方法在粒細(xì)胞缺乏的癌癥患者中的有效性。一項(xiàng)評(píng)估粒細(xì)胞輸注治療的療效和耐受性的臨床試驗(yàn)表明,在合并感染的粒細(xì)胞缺乏的兒童和青少年患者中,粒細(xì)胞輸注治療是有效的[14]。一項(xiàng)Ⅱ期臨床隨機(jī)對(duì)照試驗(yàn)結(jié)果顯示,粒細(xì)胞輸注劑量為8×108/kg時(shí),中性粒細(xì)胞缺乏患兒有很好的耐受性,且能有效地清除感染(有效率大于92%)[15]。粒細(xì)胞輸注聯(lián)合粒細(xì)胞集落刺激因子(GCSF)治療合并嚴(yán)重感染的再生障礙性貧血患者,提高了他們的生存率(180 d生存率為84%)和重建了造血功能[16]。Spellberg等[17]給合并念珠菌血癥的中性粒細(xì)胞缺乏小鼠輸注HL-60細(xì)胞后,提高了它們的生存率。

      3 細(xì)胞因子治療

      近年來(lái),利用細(xì)胞因子來(lái)調(diào)節(jié)抗真菌免疫反應(yīng)的免疫治療受到了人們的重視。一系列臨床試驗(yàn)已經(jīng)證實(shí)了這種免疫治療的有效性,例如巨噬細(xì)胞集落刺激因子(GM-CSF)-沙格司亭可以作為氟康唑難治性念珠菌口腔炎的輔助治療[18]。目前研究的細(xì)胞因子主要有IL-12、IL-17、IFN-γ、G-CSF和GM-CSF等。

      缺乏IL-12和CD4+細(xì)胞的小鼠常常會(huì)延遲清除感染,給予重組IL-12后加快了小鼠清除卡氏肺孢子蟲的速度[19]。Zhou等[20]使用抗-CD40和IL-12聯(lián)合治療感染了隱球菌的IFN-γ敲除的小鼠,延長(zhǎng)了小鼠的壽命,增強(qiáng)了小鼠的免疫力,防治了全身性隱球菌病和隱球菌腦炎的發(fā)生。促炎性細(xì)胞因子IL-17能誘導(dǎo)中性粒細(xì)胞合成GM-CSF、CXCL8/IL-8和β-防御素蛋白[21]。Unsinger等[22]使用IL-7治療白色念珠菌感染小鼠,減輕了小鼠感染的嚴(yán)重程度,增強(qiáng)了其淋巴細(xì)胞的功能(包括活化作用、增值能力、黏附分子的表達(dá)和IFN-γ的生成),改善了小鼠的預(yù)后。一項(xiàng)臨床試驗(yàn)表明,用重組IFN-γ治療侵襲性念珠菌病或曲霉菌病患者,可以上調(diào)HLA-DR的表達(dá)和增加促炎性細(xì)胞因子的分泌[23]。重組G-CSF和GM-CSF能縮短中性粒細(xì)胞減少癥的持續(xù)時(shí)間和增強(qiáng)中性粒細(xì)胞及巨噬細(xì)胞的吞噬功能和殺傷力[24]。1例59歲的慢性皮膚黏膜念珠菌病患者,經(jīng)過(guò)短期皮下注射G-CSF和長(zhǎng)期靜脈注射GM-CSF的治療獲得了痊愈,并改善了其單核細(xì)胞和中性粒細(xì)胞的功能[25]。

      細(xì)胞因子或趨化因子能增強(qiáng)抗真菌藥物的抗菌作用,而各種抗真菌藥物又能誘導(dǎo)炎性細(xì)胞因子的合成。在中性粒細(xì)胞減少的小鼠模型中,G-CSF能增強(qiáng)5-氟胞嘧啶的抗真菌作用[26]。G-CSF和GM-CSF聯(lián)合伏立康唑或氟康唑的治療方案能增強(qiáng)中性粒細(xì)胞或單核細(xì)胞的抗真菌活性[27]。有研究報(bào)道,IFN-γ和兩性霉素B聯(lián)合治療隱球菌腦膜炎能提高病原體的清除率,且未增加不良反應(yīng)[28]。

      細(xì)胞因子或趨化因子抑制劑會(huì)干擾炎癥反應(yīng),增加宿主發(fā)生微生物感染的風(fēng)險(xiǎn),使細(xì)胞因子治療復(fù)雜化。例如,α-腫瘤壞死因子(TNF-α)抑制劑(英夫利昔單抗、阿達(dá)木單抗、依那西普)能增加宿主真菌感染的風(fēng)險(xiǎn)[29]。預(yù)防性使用TNF抑制劑的患者發(fā)生卡氏肺囊蟲肺炎和其他真菌感染的概率明顯增高[30-31]。一項(xiàng)體外試驗(yàn)結(jié)果顯示,甲強(qiáng)龍、環(huán)孢霉素、麥考酚酸和雷帕霉素(西羅莫司)會(huì)抑制Th1細(xì)胞的增殖、減少IFN-γ的分泌及CD154的表達(dá)[8]。

      4 單克隆抗體

      機(jī)體感染真菌后會(huì)產(chǎn)生一些重要的抗體,這些抗體能結(jié)合真菌表面及細(xì)胞內(nèi)的抗原,包括多糖類、蛋白質(zhì)或蛋白質(zhì)衍生物、糖蛋白或糖脂類等抗原[32]。雜交瘤技術(shù)能捕獲天然抗體的具體特點(diǎn),這使制備具有天然抗體功能效應(yīng)的單克隆抗體成為可能,這一技術(shù)的應(yīng)用促進(jìn)了單克隆抗體的發(fā)展。

      機(jī)體分泌的殺傷因子(KTs)能殺死許多對(duì)它敏感的微生物(真菌、細(xì)菌、病毒),它通過(guò)結(jié)合細(xì)胞壁和細(xì)胞膜表面的KT受體(KTRs)來(lái)發(fā)揮殺傷作用;而對(duì)KT敏感的真菌屬能產(chǎn)生抗-KT和抗-KTR抗體,它們能中和KT的殺傷作用;抗獨(dú)特型單克隆抗體能抵消抗-KT和抗-KTR抗體的作用,從而恢復(fù)KTs的殺傷作用[33]。K20是一種抗KT4抗體的單克隆抗體,體外試驗(yàn)表明K20也具有殺傷真菌的作用[34]。一些體內(nèi)外試驗(yàn)研究結(jié)果顯示,KT樣單克隆抗體(KAbs)有抗念珠菌和煙霉菌的作用[35-36]。

      依芬古單抗 (Mycograb)是一種抗-熱休克蛋白90 (HSP90)的單克隆抗體,它能抑制熱帶假絲酵母菌生長(zhǎng);研究表明,Mycograb和卡泊芬凈合用能提高念珠菌對(duì)藥物的敏感性;Mycograb聯(lián)合兩性霉素B能有效抑制白色念珠菌、克柔氏念珠菌和光滑念珠菌[37-39]。Mycograb作為兩性霉素B、卡泊芬凈或氟康唑的輔助治療,與單用抗真菌藥物(特別是兩性霉素B)相比,可顯著提高治療有效率[39];治療真菌血癥時(shí),Mycograb和兩性霉素B脂質(zhì)體或卡泊芬凈合用能提高療效,且有良好的耐受性[40]。一項(xiàng)Ⅲ期臨床試驗(yàn)結(jié)果顯示,Mycograb能降低念珠菌血癥患者的歸因病死率和提高真菌清除率[41]。但由于生產(chǎn)困難和安全性尚不明確等問(wèn)題,Mycograb尚未被用于臨床治療。

      葡萄糖醛酸木糖甘露聚糖結(jié)合鼠單克隆抗體-18B7是一種新型隱球菌莢膜多糖的單克隆抗體,Ⅰ期臨床試驗(yàn)在HIV感染合并隱球菌腦膜炎患者中進(jìn)行,結(jié)果顯示大劑量單克隆抗體-18B7能有效清除患者血清中的多聚糖(GXM),但其劑量安全窗較窄,單次有效劑量注射作用持續(xù)時(shí)間僅3個(gè)月[42]。放射性免疫治療是一種基于單克隆抗體的免疫治療方式,被放射性核素標(biāo)記的抗體能通過(guò)釋放輻射能殺傷靶細(xì)胞。Bryan等[43]報(bào)道與兩性霉素B相比,核素標(biāo)記的213Bi-18B7和188Re-18B7對(duì)小鼠肺組織和腦組織中的隱球菌清除效果更好。核素標(biāo)記的曲霉特異性單克隆抗體-JF5的臨床試驗(yàn)在合并侵襲性肺曲霉菌病的免疫缺陷患者中取得了成功[44]。

      5 真菌疫苗

      真菌病原體能引起宿主的天然抗體反應(yīng),而純化的真菌抗原能引起機(jī)體的特異性抗體應(yīng)答,這些抗體具有保護(hù)性功能,真菌共同抗原的存在及抗體的交叉反應(yīng)使廣效的抗體反應(yīng)成為可能;這些研究結(jié)果促進(jìn)了真菌疫苗的發(fā)展。但由于臨床上對(duì)真菌感染不重視及真菌疫苗研發(fā)成本巨大,真菌疫苗的研發(fā)遠(yuǎn)遠(yuǎn)落后于其他病原體疫苗。

      真菌疫苗主要包括菌體疫苗、亞單位疫苗和DNA疫苗等。傳統(tǒng)的菌體疫苗由于安全性和標(biāo)準(zhǔn)化等問(wèn)題,未達(dá)到真菌疫苗的理想劑型。亞單位疫苗是將真菌的特異性抗原進(jìn)行提純而制成的疫苗。亞單位疫苗具有較好的安全性和標(biāo)準(zhǔn)化方式,但免疫原性較差,往往需要佐劑來(lái)達(dá)到長(zhǎng)期持續(xù)的保護(hù)性免疫作用。前期實(shí)驗(yàn)比較成功的亞單位疫苗主要有:念珠菌疫苗(重組Als3p、重組Sap2p、Hyrlp、β-甘露聚糖肽共軛物)、隱球菌疫苗(葡萄糖醛酸木糖甘露聚糖CRMl97:交叉反應(yīng)物質(zhì)197共軛物、肽模擬表位)、曲霉疫苗(AspF、Crfl)和交叉疫苗(海帶多糖-CRMl97共軛物)等。其中念珠菌疫苗重組Als3p已進(jìn)入臨床試驗(yàn)階段。重組Als3p念珠菌疫苗的Ⅰ期臨床研究在40名健康人中開展,結(jié)果顯示30 μg和300μg的劑量都具有安全性和可耐受性,免疫球蛋白水平在接種疫苗后14 d達(dá)到高峰,并且能夠促進(jìn)外周血單核細(xì)胞產(chǎn)生保護(hù)性的細(xì)胞因子[45]。目前處于研究階段的真菌疫苗眾多,但在動(dòng)物和人類中尚需更多研究來(lái)驗(yàn)證其安全性和有效性,高質(zhì)量的真菌疫苗將大大減少IFD所帶來(lái)的死亡和醫(yī)療負(fù)擔(dān)。

      6 抗菌肽(AMPS)

      分泌抗菌肽(AMPs)是機(jī)體固有免疫反應(yīng)的一部分。抗菌肽具有細(xì)胞毒性,它能滲透性損傷病原體的細(xì)胞膜、干擾病原體的代謝活動(dòng)、破壞病原體的細(xì)胞質(zhì)和核蛋白。到目前為止,人們已經(jīng)發(fā)現(xiàn)了約150種具有抗真菌活性的天然抗菌肽及許多合成和半合成抗菌肽。

      抗菌肽和傳統(tǒng)抗真菌藥物合用能顯著提高抗真菌治療的療效。Marques等[46]用副球孢子菌抗原gp43衍生出的抗菌肽-P10聯(lián)合兩性霉素B或氟康唑或酮康唑或伊曲康唑治療巴西副球孢子菌感染的小鼠,能改善小鼠的預(yù)后。Petraitis的臨床研究顯示,在口咽、食道念珠菌病患者中,人工合成的抗菌肽PLD-118對(duì)氟康唑耐藥的念珠菌有協(xié)同抗菌作用[47]。中性粒細(xì)胞衍生的陽(yáng)離子型抗菌肽CAP37是一種人工合成的殺菌劑類似物,它對(duì)氟康唑敏感或耐藥的念珠菌屬都有顯著的抗菌活性[48]。Trappin-2是一種中性粒細(xì)胞絲氨酸蛋白酶抑制物,低劑量的Trappin-2對(duì)煙曲霉和白色念珠菌都有極強(qiáng)的抗菌活性[49]。半胱氨酸蛋白酶抑制劑是一種從卵清蛋白中提取純化的抗菌肽,治療濃度的半胱氨酸蛋白酶抑制劑對(duì)唑類敏感的白色念珠菌、近平滑假絲酵母菌及熱帶假絲酵母菌的抗菌效果和氟康唑相當(dāng),且它不會(huì)拮抗氟康唑或兩性霉素B的抗菌活性,并且它對(duì)唑類耐藥的白色念珠菌也有抗菌作用[50]。

      抗菌肽的疏水性會(huì)影響其抗真菌活性。Jiang等[51]報(bào)道增加抗菌肽D-V13K的疏水性會(huì)減弱其抗接合菌的活性,而增強(qiáng)抗子囊菌的活性。含有疏水肽的抗菌肽GKH17、HKH17和不含疏水肽的抗菌肽相比,前者對(duì)白色念珠菌的細(xì)胞毒性明顯強(qiáng)于后者[52]。機(jī)體的內(nèi)環(huán)境也會(huì)影響抗菌肽的抗真菌活性,比如抗菌肽P-113和Ac-KWRRWVRWI-NH(2)只有在低鹽環(huán)境中才有很強(qiáng)的抗真菌活性,而改良的Pac-525抗菌肽的抗真菌活性不受鹽濃度的影響[53]。

      7 真菌過(guò)敏反應(yīng)和免疫治療

      真菌過(guò)敏反應(yīng)常是真菌孢子或次微米級(jí)的菌絲片段通過(guò)吸入、皮膚接觸或食入等途徑進(jìn)入機(jī)體而引起的變態(tài)反應(yīng)。這些過(guò)敏原能誘導(dǎo)機(jī)體產(chǎn)生強(qiáng)烈的IgE或T細(xì)胞介導(dǎo)的炎癥反應(yīng)。這些變態(tài)反應(yīng)是免疫介導(dǎo)的,因此可以采用免疫治療法治療這些疾病。對(duì)真菌變態(tài)反應(yīng)來(lái)說(shuō),抗過(guò)敏藥物通過(guò)抑制炎性反應(yīng)能減輕過(guò)敏癥狀,而特異性免疫治療是一種抗原特異性的、持續(xù)時(shí)間長(zhǎng)的和能緩解疾病病情的治療方法。低變應(yīng)原性的過(guò)敏原衍生物和變應(yīng)原疫苗類多肽是一種新的免疫治療方法,它們能減少IgE的產(chǎn)生、下調(diào)Th2介導(dǎo)的免疫反應(yīng)、誘導(dǎo)產(chǎn)生更多的調(diào)節(jié)性T細(xì)胞,以此增加機(jī)體對(duì)過(guò)敏原的耐受性,但其安全性尚需更多的臨床研究來(lái)進(jìn)一步證實(shí)[54]。

      綜上所述,真菌免疫機(jī)制的研究和免疫治療方法的探索都取得了巨大進(jìn)步,但目前能用于臨床的真菌免疫治療仍然有限,需要更多的體內(nèi)外試驗(yàn)及大規(guī)模臨床研究進(jìn)一步驗(yàn)證這些免疫治療的可行性。真菌免疫治療的發(fā)展有望在將來(lái)為免疫功能受抑制的IFD高危人群提供有效的免疫防御措施,從而有效減少IFD的發(fā)病率和病死率。

      [1]HAMAD M.Antifungal immunotherapy and immunomodulation:a doublehitter approach to deal with invasive fungal infections[J].Scand J Immunol,2008,67(6):533-543.

      [2]Levitz SM,Dupont MP.Phenotypic and functional characterization of human lymphocytes activated by interleukin-2 to directly inhibit growth of Cryptococcus neoformans in vitro[J].J Clin Invest,1993,91(4):1490-1498.

      [3]Sun Z,Zhu P,Li L,et al.Adoptive immunity mediated by HLA-A*0201 restricted Asp f16 peptides-specific CD8+T cells against Aspergillus fumigatus infection[J].Eur J Clin Microbiol Infect Dis,2012,31(11):3089-3096.

      [4]Ramadan G,Davies B,Kurup VP,et al.Generation of cytotoxic T cell responses directed to human leucocyte antigen Class I restricted epitopes from the Aspergillus f16 allergen[J].Clin Exp Immunol,2005,140(1):81-91.

      [5] Zhu F,Ramadan G,Davies B,et al.Stimulation by means of dendritic cells followed by Epstein-Barr virus-transformed B cells as antigen-presenting cells is more efficient than dendritic cells alone in inducing Aspergillus f16-specific cytotoxic T cell responses[J].Clin Exp Immunol,2008,151(2):284-296.

      [6]ShiD,LiD,YinQ,etal.Silencedsuppressorofcytokinesignaling1(SOCS1)enhances the maturation and antifungal immunity of dendritic cells in response to Candida albicans in vitro[J].Immunol Res,2015,61(3):206-218.

      [7]Jarvis JN,Casazza JP,Stone HH,et al.The phenotype of the Cryptococcusspecific CD4+memory T-cell response is associated with disease severity and outcome in HIV-associated cryptococcal meningitis[J].J Infect Dis,2013,207(12):1817-1828.

      [8]Tramsen L,Schmidt TS,Roeger F,et al.Immunosuppressive compounds exhibit particular effects on functional properties of human anti-Aspergillus Th1 cells[J].Infect Immun,2014,82(6):2649-2656.

      [9]Tramsen L,Schmidt S,Boenig H,et al.Clinical-scale generation of multispecific anti-fungal T cells targeting Candida,Aspergillus and mucormycetes[J].Cytotherapy,2013,15(3):344-351.

      [10]Stuehler C,Nowakowska J,Bernardini C,et al.Multispecific Aspergillus T cells selected by CD137 or CD154 induce protective immune responses against the most relevant mold infections[J].J Infect Dis,2015,211(8):1251-1261.

      [11]Khanna N,Stuehler C,Conrad B,et al.Generation of a multipathogenspecific T-cell product for adoptive immunotherapy based on activationdependent expression of CD154[J].Blood,2011,118(4):1121-1131.

      [12]Grigull L,Beilken A,Schmid H,et al.Secondary prophylaxis of invasive fungal infections with combination antifungal therapy and G-CSF-mobilized granulocyte transfusions in three children with hematologcal malignancies[J]. Support Care Cancer,2006,14(7):783-786.

      [13]Grigull L,Pulver N,Goudeva L,et al.G-CSF mobilised granulocyte transfusions in 32 paediatric patients with neutropenic sepsis[J].Support Care Cancer,2006,14(9):910-916.

      [14]Seidel MG,Minkov M,Witt V,et al.Granulocyte transfusions in children and young adults:does the dose matter?[J].J Pediatr Hematol Oncol,2009,31(3):166-172.

      [15]Sachs UJ,Reiter A,Walter T,et al.Safety and efficacy of therapeutic early onset granulocyte transfusions in pediatric patients with neutropenia and severe infections[J].Transfusion,2006,46(11):1909-1914.

      [16]Wang H,Wu Y,F(xiàn)u R,et al.Granulocyte transfusion combined with granulocyte colony stimulating factor in severe infection patients with severe aplastic anemia:a single center experience from China[J].PloS One,2014,9(2):e88148.

      [17]Spellberg BJ,Collins M,Avanesian V,et al.Optimization of a myeloid cell transfusion strategy for infected neutropenic hosts[J].J Leukoc Biol,2007,81(3):632-641.

      [18]Vazquez JA,Hidalgo JA,De Bono S.Use of sargramostim(rh-GM-CSF)as adjunctive treatment of fluconazole-refractory oropharyngeal candidiasis in patients with AIDS:a pilot study[J].HIV Clin Trials,2000,1(3):23-29.

      [19]Ruan S,Mckinley L,Zheng M,et al.Interleukin-12 and host defenseagainst murine Pneumocystis pneumonia[J].Infect Immun,2008,76(5):2130-2137.

      [20]Zhou Q,Gault RA,Kozel TR,et al.Immunomodulation with CD40 stimulation and interleukin-2 protects mice from disseminated cryptococcosis[J]. Infect Immun,2006,74(4):2161-2168.

      [21]Matsuzaki G,Umemura M.Interleukin-17 as an effector molecule of innate and acquired immunity against infections[J].Microbiol Immunol,2007,51(12):1139-1147.

      [22]Unsinger J,Burnham CA,Mcdonough J,et al.Interleukin-7 ameliorates immune dysfunction and improves survival in a 2-hit model of fungal sepsis[J].J Infect Dis,2012,206(4):606-616.

      [23]Delsing CE,Gresnigt MS,Leentjens J,et al.Interferon-gamma as adjunctive immunotherapy for invasive fungal infections:a case series[J].BMC Infect Dis,2014,14:166.

      [24]Chiou CC,Groll AH,Walsh TJ.New drugs and novel targets for treatment of invasive fungal infections in patients with cancer[J].Oncologist,2000,5(2):120-135.

      [25]Wildbaum G,Shahar E,Katz R,et al.Continuous G-CSF therapy for isolated chronic mucocutaneous candidiasis:complete clinical remission with restoration of IL-17 secretion[J].J Allergy Clin Immunol,2013,132 (3):761-764.

      [26]Quezada G,Koshkina NV,Zweidler-Mckay P,et al.Intranasal granulocyte-macrophage colony-stimulating factor reduces the Aspergillus burden in an immunosuppressed murine model of pulmonary aspergillosis[J]. Antimicrob Agents Chemother,2008,52(2):716-718.

      [27]Vora S,Purimetla N,Brummer E,et al.Activity of voriconazole,a new triazole,combined with neutrophils or monocytes against Candida albicans:effect of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor[J].Antimicrob Agents Chemother,1998,42(4):907-910.

      [28]Jarvis JN,Meintjes G,Rebe K,et al.Adjunctive interferon-gamma immunotherapy for the treatment of HIV-associated cryptococcal meningitis:a randomized controlled trial[J].Aids,2012,26(9):1105-1113.

      [29]Weinblatt ME,Kremer JM,Bankhurst AD,et al.A trial of etanercept,a recombinant tumor necrosis factor receptor:Fc fusion protein,in patients with rheumatoid arthritis receiving methotrexate[J].N Engl J Med,1999,340(4):253-259.

      [30]Grubbs JA,Baddley JW.Pneumocystis jirovecii pneumonia in patients receiving tumor-necrosis-factor-inhibitor therapy:implications for chemoprophylaxis[J].Curr Rheumatol Rep,2014,16(10):445.

      [31]Chirch LM,Cataline PR,Dieckhaus KD,et al.Proactive infectious disease approach to dermatologic patients who are taking tumor necrosis factoralfa antagonists:PartⅡ.Screening for patients on tumor necrosis factoralfa antagonists[J].J Am Acad Dermatol,2014,71(1):1.e1-7;quiz 1.e8-9.

      [32]Casadevall A,Pirofski LA.Antibody-mediated protection through crossreactivity introduces a fungal heresy into immunological dogma[J].Infect Immun,2007,75(11):5074-5078.

      [33]Magliani W,Conti S,Giovati L,et al.Antibody peptide based antifungal immunotherapy[J].Front Microbiol,2012,3:190.

      [34]Polonelli L,Beninati C,Teti G,et al.Yeast killer toxin-like candidacidal Ab6 antibodies elicited through the manipulation of the idiotypic cascade[J]. PloS One,2014,9(8):e105727.

      [35]Manfredi M,Mccullough MJ,Conti S,et al.In vitro activity of a monoclonal killer anti-idiotypic antibody and a synthetic killer peptide against oral isolates of Candida spp.differently susceptible to conventional antifungals[J]. Oral Microbiol Immunol,2005,20(4):226-232.

      [36]Cenci E,Mencacci A,Sprecda A,et al.Protection of killer antiidiotypic antibodies against early invasive aspergillosis in a murine model of allogeneic T-cell-depleted bone marrow transplantation[J].Infect Immun,2002,70(5):2375-2382.

      [37]Hodgetts S,Nooney L,Al-Akeel R,et al.Efungumab and caspofungin:pre-clinical data supporting synergy[J].J Antimicrob Chemother,2008,61(5):1132-1139.

      [38]Matthews RC,Rigg G,Hodgetts S,et al.Preclinical assessment of the efficacy of mycograb,a human recombinant antibody against fungal HSP90[J]. Antimicrob Agents Chemother,2003,47(7):2208-2216.

      [39]Nooney L,Matthews RC,Burnie JP.Evaluation of Mycograb,amphotericin B,caspofungin,and fluconazole in combination against Cryptococcus neoformans by checkerboard and time-kill methodologies[J].Diagn Microbiol Infect Dis,2005,51(1):19-29.

      [40]Sutherland A,Ellis D.Treatment of a critically ill child with disseminated Candida glabrata with a recombinant human antibody specific for fungal heat shock protein 90 and liposomal amphotericin B,caspofungin,and voriconazole[J].Pediatr Crit Care Med,2008,9(4):e23-25.

      [41]Pachl J,Svoboda P,Jacobs F,et al.A randomized,blinded,multicenter trial of lipid-associated amphotericin B alone versus in combination with an antibody-based inhibitor of heat shock protein 90 in patients with invasive candidiasis[J].Clin Infect Dis,2006,42(10):1404-1413.

      [42]Larden RA,Pappas PG,Perfect J,et al.Phase I evaluation of the safety and pharmacokinetics of murine-derived anticryptococcal antibody 18B7 in subjects with treated cryptococcal meningitis[J].Antimicrob Agents Chemother,2005,49(3):952-958.

      [43]Bryan RA,Jiang Z,Howell RC,et al.Radioimmunotherapy is more effective than antifungal treatment in experimental cryptococcal infection[J].J Infect Dis,2010,202(4):633-637.

      [44]Thornton CR.Breaking the mould-novel diagnostic and therapeutic strategies for invasive pulmonary aspergillosis in the immune deficient patient[J]. Expert Rev ClinImmunol,2014,10(6):771-780.

      [45]Schmidt CS,White CJ,Ibrahim AS,et al.NDV-3,a recombinant alumadjuvanted vaccine for Candida and Staphylococcus aureus,is safe and immunogenic in healthy adults[J].Vaccine,2012,30(52):7594-7600.

      [46]Marques AF,Da Silva MB,Juliano MA,et al.Peptide immunization as an adjuvant to chemotherapy in mice challenged intratracheally with virulent yeastcellsofParacoccidioides brasiliensis[J].AntimicrobAgents Chemother,2006,50(8):2814-2819.

      [47]Petraitis V,Petraitiene R,Kelaher AM,et al.Efficacy of PLD-118,a novel inhibitor of candida isoleucyl-tRNA synthetase,against experimental oropharyngeal and esophageal candidiasis caused by fluconazole-resistant C. albicans[J].Antimicrob Agents Chemother,2004,48(10):3959-3967.

      [48]Pereira HA,Tsyshecskaya-Hoover I,Hinsley H,et al.Candidacidal activity of synthetic peptides based on the antimicrobial domain of the neutrophilderived protein,CAP37[J].Med Mycol,2010,48(2):263-272.

      [49]Baranger K,Zani ML,Chandenier J,et al.The antibacterial and antifungal properties of trappin-2(pre-elafin)do not depend on its protease inhibitory function[J].FEBSJ,2008,275(9):2008-2020.

      [50]Kolaczkowska A,Kolaczkowski M,Sokolowska A,et al.The antifungal properties of chicken egg cystatin against Candida yeast isolates showing different levels of azole resistance[J].Mycoses,2010,53(4):314-320.

      [51]Jiang Z,Kullberg BJ,vander Lee H,et al.Effects of hydrophobicity on the antifungal activity of alpha-helical antimicrobial peptides[J].Chem Biol Drug Des,2008,72(6):483-495.

      [52]Schmidtchen A,Pasupuleti M,Morgelin M,et al.Boosting antimicrobial peptides by hydrophobic oligopeptide end tags[J].J Biol Chem,2009,284 (26):17584-17594.

      [53]Wang CW,Yip BS,Cheng HT,et al.Increased potency of a novel D-betanaphthylalanine-substituted antimicrobial peptide against fluconazoleresistant fungal pathogens[J].FEMS Yeast Res,2009,9(6):967-970.

      [54]Twaroch TE,Curin M,Valenta R,et al.Mold allergens in respiratory allergy:from structure to therapy[J].Allergy Asthma Immunol Res,2015,7(3):205-220.

      10.3969/j.issn.1009-5519.2016.03.028

      A

      1009-5519(2016)03-0400-05

      △,E-mail:1808106657@qq.com。

      (2015-12-13)

      猜你喜歡
      抗菌肽念珠菌免疫治療
      抗菌肽的生物學(xué)特性及在畜禽養(yǎng)殖中的應(yīng)用
      腫瘤免疫治療發(fā)現(xiàn)新潛在靶點(diǎn)
      新型抗菌肽菌絲霉素純化工藝研究
      廣東飼料(2016年5期)2016-12-01 03:43:21
      念珠菌耐藥機(jī)制研究進(jìn)展
      抗菌肽修飾方法與抗菌機(jī)制的研究進(jìn)展
      腎癌生物免疫治療進(jìn)展
      信鴿白色念珠菌病的診治
      臨產(chǎn)孕婦念珠菌感染及不良妊娠結(jié)局調(diào)查
      MSL抗菌肽對(duì)鼠傷寒沙門氏菌感染的預(yù)防作用
      PCR-RFLP鑒定常見致病性念珠菌
      凤山县| 新密市| 梅州市| 杨浦区| 潜山县| 陆川县| 大化| 石渠县| 祁阳县| 金秀| 崇阳县| 长宁区| 阿鲁科尔沁旗| 金平| 泾阳县| 南郑县| 杨浦区| 黄骅市| 城步| 大荔县| 娄底市| 赤城县| 金平| 兴海县| 南郑县| 乌海市| 安达市| 皋兰县| 安仁县| 青岛市| 西峡县| 双牌县| 铜山县| 北流市| 枝江市| 六安市| 尼玛县| 舒城县| 彝良县| 延吉市| 手机|