李玉龍,劉修澤,李軼平,王愛(ài)勇,王小林,董 婧
(遼寧省海洋水產(chǎn)科學(xué)研究院,遼寧省海洋生物資源與生態(tài)學(xué)重點(diǎn)實(shí)驗(yàn)室,大連 116023)
李玉龍,劉修澤,李軼平,王愛(ài)勇,王小林,董 婧
(遼寧省海洋水產(chǎn)科學(xué)研究院,遼寧省海洋生物資源與生態(tài)學(xué)重點(diǎn)實(shí)驗(yàn)室,大連 116023)
細(xì)紋子魚(yú)(Liparis tanakae)主要分布于西北太平洋海域的朝鮮半島、日本和我國(guó)渤海、黃海和東海,已成為黃渤海漁業(yè)資源的優(yōu)勢(shì)種類(lèi)之一,并在黃渤海生態(tài)系統(tǒng)中的扮演著越來(lái)越重要的角色。因此,有必要對(duì)這一生態(tài)優(yōu)勢(shì)種的種群狀況及遺傳背景進(jìn)行了解。根據(jù)線粒體COⅠ基因序列對(duì)遼寧沿海不同體色花紋的細(xì)紋子魚(yú)遼東灣群體(n=20)和黃海北部群體(n=34)的遺傳多樣性和群體遺傳結(jié)構(gòu)進(jìn)行了分析。結(jié)果表明,長(zhǎng)度為623 bp的COⅠ基因片段,其A、T、G、C堿基的平均含量分別為22.3%,32.4%,26.9%,18.4%。在2個(gè)群體54 ind個(gè)體中共檢測(cè)得到8個(gè)單倍型,其單倍型間遺傳差異為0.2%~0.6%。兩個(gè)群體的單倍型多樣性指數(shù)和核苷酸多態(tài)性指數(shù)分別在0.56±0.06和0.70±0.05、0.001 0±0.000 9和0.001 7± 0.001 3之間。分子方差分析顯示兩群體間無(wú)遺傳分化。核苷酸不配對(duì)分析表明,細(xì)紋子魚(yú)群體在50 000~116 000年前經(jīng)歷了群體擴(kuò)張。
細(xì)紋子魚(yú);線粒體COⅠ基因;遺傳多樣性;遺傳結(jié)構(gòu)
1.1 樣品采集
圖1 子魚(yú)樣品取樣站位圖Fig.1 Sampling locations of snailfishes
1.2 DNA提取、擴(kuò)增及測(cè)序
采用酚/氯仿抽提法從肌肉組織中提取基因組DNA。采用聚合酶鏈?zhǔn)椒磻?yīng)(PCR)技術(shù)擴(kuò)增了COⅠ基因部分序列片段。所用正向引物和反向引 物序列 分別為COⅠ a:5′-cctgcaggaggaggagaycc-3′和COⅠ b:5′-atgcatatctatctgccattttag-3′[22]。
反應(yīng)體系25μL,包括:0.2 mmol·L-1每種dNTPs,0.2μmol·L-1每種引物,1μL DNA模板,1 U Taq,2.0 mmol·L-1MgCl2,2.5μL 10×緩沖液,滅菌超純水補(bǔ)足剩余體系。PCR擴(kuò)增在Gene Amp 9700型PCR儀上進(jìn)行,反應(yīng)程序:94℃預(yù)變性5 min后,94℃變性50 s,52℃退火1min,72℃延伸1 min,共35個(gè)循環(huán),最后72℃下延伸5 min。PCR產(chǎn)物純化后雙向測(cè)序(上海英濰捷基)。
圖2 子魚(yú)樣品的體表特征Fig.2 Body surface characteristics of samples
1.3 數(shù)據(jù)分析
測(cè)定的COⅠ基因序列進(jìn)行BLAST(http://www.ncbi.nlm.gov/BLAST/)檢索,確定序列為目的片段并將其翻譯成氨基酸序列以排除假基因干擾。利用CLUSTAL X1.8[25]軟件輔以人工校對(duì)對(duì)序列進(jìn)行比對(duì)及相似性分析。按樣品的地理來(lái)源將子魚(yú)劃分為2個(gè)群體,遼東灣20 ind細(xì)紋子魚(yú)個(gè)體歸為一個(gè)群體(LD),黃海北部34 ind個(gè)體歸為黃海北部群體(HB)。用DnaSP v5[26]軟件確定單倍型。單倍型多樣性指數(shù)(h)、核苷酸多樣性指數(shù)(π)根據(jù)Nei的公式由Arlequin 3.01[27]軟件計(jì)算。采用Mega 3.0軟件[28]統(tǒng)計(jì)堿基含量、變異位點(diǎn),采用Kimura雙參數(shù)模型計(jì)算細(xì)紋子魚(yú)單倍型間的遺傳距離并構(gòu)建NJ(neighbour-joining)系統(tǒng)樹(shù),采用Bootstrap 1000檢驗(yàn)分子系統(tǒng)樹(shù)各分支的置信度。此外,為探討單倍型的譜系結(jié)構(gòu),采用中介網(wǎng)絡(luò)法[29]構(gòu)建單倍型網(wǎng)絡(luò)關(guān)系圖。使用Arlequin 3.01軟件中的分子變異分析(AMOVA)[30]來(lái)評(píng)估群體間遺傳變異,其顯著性通過(guò)1 000次重抽樣來(lái)檢驗(yàn),群體間的遺傳距離采用Kimura 2-parameter模型計(jì)算。
通過(guò)Arlequin 3.01軟件進(jìn)行中性檢驗(yàn)和核苷酸不配對(duì)分布分析來(lái)檢測(cè)細(xì)紋子魚(yú)的群體歷史動(dòng)態(tài)。中性檢驗(yàn)由Tajima’D檢驗(yàn)[31]和Fu’s Fs檢驗(yàn)[32]來(lái)驗(yàn)證。統(tǒng)計(jì)檢驗(yàn)的檢驗(yàn)值如果是負(fù)值并且顯著偏離中性,則可能是群體擴(kuò)張或瓶頸效應(yīng)等原因造成的[33]。對(duì)于那些沒(méi)有顯著偏離擴(kuò)張模型的分布,采用廣義非線性最小方差法(general non-linear least square)估算擴(kuò)張參數(shù)τ,并通過(guò)公式τ=2ut轉(zhuǎn)化為實(shí)際的擴(kuò)張時(shí)間,其中u是所研究的整個(gè)序列長(zhǎng)度的突變速率,其置信區(qū)間采用參數(shù)重抽樣法計(jì)算[34]。在棘頭梅童魚(yú)(Collichthys lucidus)[21]以及銀鯧(Pampus argenteus)[23]的遺傳多樣性研究中都采用2%/ MY(百萬(wàn)年)這一線粒體基因的平均進(jìn)化速率作為魚(yú)類(lèi)COⅠ基因的突變速率,本研究采用這一速率估算遼寧沿海細(xì)紋子魚(yú)群體的擴(kuò)張時(shí)間。另外根據(jù)這一進(jìn)化速率,應(yīng)用Network 4.6.1.0(http://www.fluxus-technology.com)估算遼寧沿海細(xì)紋子魚(yú)群體的擴(kuò)張時(shí)間以檢驗(yàn)兩種方法估算的群體擴(kuò)張時(shí)間是否一致。
2.1 堿基組成及序列變異分析
8個(gè)變異位點(diǎn)定義了 8種單倍型(Haplotype1-8),Hap1和Hap5是細(xì)紋子魚(yú)群體的主體單倍型,其所占頻率分別為44.4%、40.7%,除此之外,其它單倍型僅在1個(gè)或2個(gè)個(gè)體中檢測(cè)到。8個(gè)單倍型在黃海北部群體中都被檢測(cè)到,遼東灣20 ind個(gè)體僅發(fā)現(xiàn)3種單倍型(Hap1、Hap5、Hap7),且都為與黃海北部群體的共享單倍型。不同花紋模式的子魚(yú)個(gè)體共享同一單倍型,不同子魚(yú)個(gè)體間的遺傳距離范圍為0%~0.6%,屬于種內(nèi)差異水平。單倍型頻率及其在兩群體中的分布如表1所示。
單倍型多樣性指數(shù)(h)、核苷酸多樣性指數(shù)(π)和其它群體多樣性指數(shù)如表2所示。此外,根據(jù)已有資料比較了細(xì)紋子魚(yú)與中國(guó)沿海其它幾種海水魚(yú)類(lèi)相同基因片段遺傳多樣性參數(shù)(表3)。從表3中可以看出,不管從單倍型多樣性指數(shù)(0.64±0.04)還是從核苷酸多樣性指數(shù)(0.14%±0.11%)來(lái)看,遼寧沿海細(xì)紋子魚(yú)群體的遺傳多樣性處于中等或相對(duì)較低水平。
Tab.1 Variable sites and hap lotype frequencies of COⅠgene fragments of L.tanakae
注:LD代表遼東灣群體,HB代表黃海北部群體Note:LD and HB represent Liaodong Bay and north of the Yellow Sea,respectively
表2 不同群體細(xì)紋子魚(yú)COⅠ基因的遺傳多樣性指數(shù)Tab.2 Summary ofmolecular diversity for L.tanakae
表2 不同群體細(xì)紋子魚(yú)COⅠ基因的遺傳多樣性指數(shù)Tab.2 Summary ofmolecular diversity for L.tanakae
注:LD代表遼東灣群體,HB代表黃海北部群體Note:LD and HB represent Liaodong Bay and north of the Yellow Sea,respectively
群體Sample樣本數(shù)Sample size單倍型數(shù)No.of haplotype單倍型多樣性指數(shù)h核苷酸多樣性指數(shù)/% π Tajima’s D檢驗(yàn)Tajima’s D test D P Fu’s Fs檢驗(yàn)Fu’s Fs test Fs P群體擴(kuò)張參數(shù)Demographic expansion τ θ0 θ17 0.02 0.97 0 99 999 LD 20 3 0.56±0.06 0.10±0.09 - - - - - - -HB 34 8 0.70±0.05 0.17±0.13 - - - - - - -Total 54 8 0.64±0.04 0.14±0.11-1.35 0.06 -3.4
表3 細(xì)紋子魚(yú)與其它幾種海水魚(yú)類(lèi)COⅠ基因遺傳多樣性參數(shù)比較Tab.3 Com parison of genetic parameters of 5 fish species
表3 細(xì)紋子魚(yú)與其它幾種海水魚(yú)類(lèi)COⅠ基因遺傳多樣性參數(shù)比較Tab.3 Com parison of genetic parameters of 5 fish species
參考文獻(xiàn)Reference細(xì)紋子魚(yú)L.tanakae 54 8 0.64±0.04 0.14±0.11群體Sample樣本數(shù)Sample size單倍型數(shù)No.of haplotype單倍型多樣性指數(shù)h核苷酸多樣性指數(shù)/% π本研究棘頭梅童魚(yú)Collichthys lucidus 209 44 0.79±0.02 1.11±0.02 趙明等[21]銀鯧Pampus argenteus 111 33 0.62±0.05 0.2±0.1 吳仁協(xié)等[23]大彈涂魚(yú)Boleophthalmus pectinirostris 118 59 0.952 0.27 楊帆等[35]鱭屬魚(yú)類(lèi)Coilia 150 63 0.556~0.933 0.2~0.5 周曉犢等[36]
2.2 單倍型間遺傳關(guān)系
圖3 細(xì)紋子魚(yú)不同個(gè)體(A)及單倍型(B)NJ系統(tǒng)樹(shù)(圓圈面積表示單倍型的頻率)Fig.3 Neighbor-joining tree show ing the relationship among individuals(A)and COⅠhaplotypes(B)for L.tanakae(Circle areas depict proportions of haplotypes)
表4 遼寧沿海兩個(gè)細(xì)紋子魚(yú)群體的AMOVA分析Tab.4 Analysis of molecular variation for populations of L.tanakae
表4 遼寧沿海兩個(gè)細(xì)紋子魚(yú)群體的AMOVA分析Tab.4 Analysis of molecular variation for populations of L.tanakae
變異來(lái)源Variation source自由度d f方差總和Sum of squares變異組分Variance components變異貢獻(xiàn)率Percentage of variation F ST P群體間Among population 1 0.104 -0.013 47 -3.14 -0.031 0.97群體內(nèi)Within population 52 23.045 0.443 17 103.14總數(shù)Total 53 23.149 0.429 70 100.00
2.3 群體遺傳分化
基于COⅠ基因?qū)?xì)紋子魚(yú)LD和HB群體的分子變異分析表明:103.14%的差異屬于群體內(nèi)差異,群體間差異為-3.14%,F(xiàn)ST值為負(fù)值(表4),這表明本研究中遼寧沿海兩個(gè)細(xì)紋子魚(yú)群體為同一群體且無(wú)遺傳分化。
2.4 群體歷史動(dòng)態(tài)
用Tajima’D檢驗(yàn)[31]和Fu’s Fs檢驗(yàn)[32]這兩種廣泛使用的統(tǒng)計(jì)檢驗(yàn)方法來(lái)進(jìn)行中性檢驗(yàn),結(jié)果見(jiàn)表2。合并數(shù)據(jù)后總?cè)后w的Fu’s Fs值為負(fù)值且檢驗(yàn)都是顯著的(P<0.05),Tajima’D值也為負(fù)值且檢驗(yàn)接近顯著(P=0.06),這表明細(xì)紋子魚(yú)經(jīng)歷了明顯的群體擴(kuò)張。
用核苷酸不配對(duì)分布(mismatch distribution)分析細(xì)紋子魚(yú)群體的歷史動(dòng)態(tài),遼寧沿海細(xì)紋子魚(yú)群體核苷酸不配對(duì)分布呈現(xiàn)明顯的單峰類(lèi)型(圖5),對(duì)θ0和θ1進(jìn)行的估算表明細(xì)紋子魚(yú)群體經(jīng)歷了明顯的群體增長(zhǎng),提示分布于遼寧沿海的細(xì)紋子魚(yú)群體經(jīng)歷了明顯的群體擴(kuò)張。核苷酸不配對(duì)分布的峰值τ提供了一個(gè)估算群體大致發(fā)生擴(kuò)張的時(shí)間。細(xì)紋子魚(yú)的τ值的觀測(cè)值為0.967(95%CI:0.629~1.445)。根據(jù)COⅠ2%的進(jìn)化速率和τ值根據(jù)公式τ=2ut推算出的群體擴(kuò)張時(shí)間約為7.76×104年[(0.5~1.16)×105年]。
圖4 細(xì)紋子魚(yú)單倍型的MJ網(wǎng)絡(luò)圖(數(shù)字表示突變位點(diǎn),圓圈面積表示單倍型的頻率)Fig.4 Median-network showing phylogenetic relationships among mtDNA COⅠ gene haplotypes of L.tanakae.(Numbers in the lines represent the sites of nucleotide substitutions,circle areas depict proportions of hap lotypes.)
圖5 細(xì)紋子魚(yú)COⅠ單倍型的核苷酸不配對(duì)分布Fig.5 Observed pairwise difference(bars)and expected mismatch distributions(line)under the sudden expansion model of COⅠgene haplotypes in L.tanakae
[1]ORR JW.Lopholiparis flerxi:A new genus and species of snailfish(Scorpaeniformes:Liparidae)from the Aleutian Islands,Alaska[J].Copeia,2004(3):551-555.
[2]CHERNOVA N V,STEIN D L,ANDRIASHEV A P.Family liparidae scopoli 1777-snailfishes[J].California Academy of Sciences,Annotated Checklist of Fishes,2004(31):1-72.
[3]BALUSHKIN A V.Volodichthys gen.nov.new species of the primitive snailfish(Liparidae:Scorpaeniformes)of the southern hemisphere.Description of new speciesV.Solovjevaesp.nov.(Cooperation Sea,the Antarctic)[J].Journal of Ichthyology,2012,52(1):1-10.
[4]成慶泰,鄭葆珊.中國(guó)魚(yú)類(lèi)系統(tǒng)檢索[M].北京:科學(xué)出版社,1987.
CHENG Q T,ZHENG B S.Systematic synopsis of Chinese Fishes[M].Beijing:Science Press,1987.
[5]劉蟬馨.遼寧動(dòng)物志:魚(yú)類(lèi)[M].沈陽(yáng):遼寧科學(xué)技術(shù)出版社,1987.
LIU C X.Fauna in Liaoning Province(Fish)[M].Shenyang:Liaoning Science and Technology Press,1987.
[6]KIDO K.New and rare species of the genusParaliparis(family Liparididae)from southern Japan[J].Japanese Journal of Ichthyology,1985,31(4):362-368.
[7]劉 靜,陳詠霞,馬 琳.黃渤海魚(yú)類(lèi)圖志[M].北京:科學(xué)出版社,2015.
LIU J,CHENG Y X,MA L.Fishes of the Bohai Sea and Yellow Sea[M].Beijing:Science Press,2015.
[8]楊 濤,單秀娟,陳云龍,等.黃海中南部子魚(yú)種類(lèi)的分析[J].漁業(yè)科學(xué)進(jìn)展,2015,36(5):19-25.
YANG T,SHAN X J,CHEN Y L,et al.Analysis of liparidae species in central and southern Yellow Sea[J].Progress in Fishery Sciences,2015,36(5):19-25.
[9]李玉龍,劉修澤,董 婧,等.遼寧沿海兩種子魚(yú)的分子鑒定[J].水產(chǎn)科學(xué),2015,34(6):380-385.
LI Y L,LIU X Z,DONG J,et al.Molecular identification of two snailfish,Liparis tanakaeandLiparis zonatusin the Liaoning coast based onCOⅠgene sequences[J].Fisheries Science,2015,34(6):380-385.
[10]張春霖,成慶泰,鄭葆珊.黃渤海魚(yú)類(lèi)調(diào)查報(bào)告[M].北京:科學(xué)出版社,1955.
ZHANG C L,CHENG Q T,ZHENG B S.Fishes of the Yellow Sea and Bohai,China[M].Beijing:Science Press,1955.
[11]朱元鼎,張春霖,成慶泰.東海魚(yú)類(lèi)志[M].北京:科學(xué)出版社,1963.
ZHU Y D,ZHANG C L,CHENG Q T.Fishes of the Eaet China Sea[M].Beijing:Science Press,1963.
[12]JIN X S,ZHANG B,XUE Y.The response of the diets of four carnivorous fishes to variations in the Yellow Sea ecosystem[J].Deep Sea Research.(II Top Stud Oceanogr),2010,57(11-12):996-1000.
[13]劉修澤,董 婧,于旭光,等.遼寧省近岸海域的漁業(yè)資源結(jié)構(gòu)[J].海洋漁業(yè),2014,36(4):289-299.
LIU X Z,DONG J,YU X G,et al.Fishery resources structure in coastal waters of Liaoning province[J].Marine Fisheries,2014,36(4):289-299.
[14]周志鵬,金顯仕,單秀娟,等.黃海中南部細(xì)紋子魚(yú)的生物學(xué)特征及資源分布的季節(jié)變化[J].生態(tài)學(xué)報(bào),2012,32(17):5550-5561.
ZHOU Z P,Jin X S,SHAN X J,et al.Seasonal variations in distribution and biological characteristics of snailfish Liparis tanakae in the central and southern Yellow Sea[J].Acta Ecologica Sinica,2012,32(17):5550-5561.
[15]單秀娟,陳云龍,周志鵬,等.黃海中南部細(xì)紋子魚(yú)繁殖生物學(xué)特征的年際變化[J].漁業(yè)科學(xué)進(jìn)展,2014,35(3):1-8.
SHAN X J,CHEN Y L,ZHOU Z P,et al.Interannual variations in propagational biological characteristics ofLiparis tanakaein central and southern Yellow Sea[J].Progress in Fishery Sciences,2014,35(3):1-8.
[16]薛 瑩,徐賓鐸,高天翔,等.北黃海細(xì)紋子魚(yú)攝食生態(tài)的初步研究[J].中國(guó)水產(chǎn)科學(xué),2010,17(5):1066-1074.
XUE Y,XU B D,GAO T X,et al.Preliminary study on feeding ecology ofLiparis tanakaein north Yellow Sea[J].Journal of Fishery Sciences of China,2010,17(5):1066-1074.
[17]張 波,金顯仕,戴芳群.黃海中南部細(xì)紋子魚(yú)的攝食習(xí)性及其變化[J].水產(chǎn)學(xué)報(bào),2011,35(8):1199-1207.
ZHANG B,JIN X S,DAI F Q.Feeding habits and their variation of seasnail(Liparis tanakae)in the central and southern Yellow Sea[J].Journal of Fisheries of China,2011,35(8):1199-1207.
JIANG W M.The deit and food consumption by grassfish(Liparis tanakae)in the Yellow sea[J].Journal of Fishery Sciences of China,1996,3(3):8-15.
ZHOU Z P.Interannual and seasonal variances of population biological characteristic of snailfish,Liparis tanakaein Yellow Sea[D].Shanghai:Shanghai Ocean University,2012.
[20]JIN X S,TANGQ.Changes in fish species diversity and dominant species composition in the Yellow Sea[J].Fisheries research,1996,26(3-4):337-352.
[21]趙 明,宋 偉,馬春艷,等.基于線粒體COⅠ基因序列的棘頭梅童魚(yú)7個(gè)野生群體遺傳結(jié)構(gòu)分析[J].中國(guó)水產(chǎn)科學(xué),2015,22(2):233-242.
ZHAO M,SONG W,MA C Y,et al.Population genetic structure ofCollichthys lucidusbased on the mitochondrial cytochrome oxidase subunit I sequence[J].Journalof Fishery Sciences of China,2015,22(2):233-242.
[22]彭士明,施兆鴻,侯俊利,等.銀鯧3個(gè)野生群體線粒體COⅠ基因的序列差異分析[J].上海海洋大學(xué)學(xué)報(bào),2009,18(4):398-402.
PENG S M,SHI Z H,HOU J L,et al.Genetic diversity of three wild silver pomfret(Pampusargenteus)populations based onCOⅠgene sequences[J].Journal of Shanghai Ocean University,2009,18(4):398-402.
[23]吳仁協(xié),梁秀何,莊志猛,等.中國(guó)近海銀鯧線粒體COⅠ基因序列變異分析[J].動(dòng)物分類(lèi)學(xué)報(bào),2012,37(3):480-488.
WU R X,LIANG X H,ZHUANG Z M,et al.MitochondrialCOⅠsequance variation of silver pomfretpampus argentus)from chinese coastal waters[J].Acta Zootaxonomica Sinica,2012,37(3):480-488.
[24]曹 艷,章 群,宮亞運(yùn),等.基于線粒體COⅠ序列的中國(guó)沿海藍(lán)點(diǎn)馬鮫遺傳多樣性[J].海洋漁業(yè),2015,37(6):485-493.
CAO Y,ZHANG Q,GONG Y Y,et al.Genetic variation of Scomberomorus niphonius in the coastal waters of china based on mtDNACOⅠsequences[J].Marine Fisheries,2015,37(6):485-493.
[25]THOMPSON JD,GIBSON T J,PLEWNIAK F,et al.The Clustal X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools[J].Nucleic Acids Research,1997(25):4876-4882.
[26]LIBRADO P,ROZAS J.DnaSP v5:A software for comprehensive analysis of DNA polymorphism data[J].Bioinformatics,2009,25(11):1451-1452.
[27]EXCOFFIER L,LAVAL G,SCHNEIDER S.Arlequin ver 3.01:An integrated software package for population genetics data analysis[J].Evolutionary Bioinformatics,2005(1):47-50.
[28]KUMAR S,TAMURA K,NEIM.MEGA 3:Integrated software for molecular evolutionary genetics analysis and sequence alignment[J].Briefings in Bioinformatics,2004,5(2):150-163.
[29]BANDELT H,F(xiàn)ORSTER P,ROHL A.Median joining networks for inferring intraspecific phylogenics[J].Molecular Biology Evolution,1999,16(1):37-48.
[30]EXCOFFIER L,SMOUSE PE,QUATTRO JM.Analysis ofmolecular variance inferred from metric distances among DNA haplotypes:Application to human mitochondrial DNA restriction data[J].Genetics,1992,131(2):406-425.
[31]TAJIMA F.Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism[J].Genetics,1989(123):585-595.
[32]FU Y X.Statistical tests of neutrality of mutations against population growth,hitchhiking and background selection[J].Genetics,1997(147):915-925.
[33]TAJIMA F.The effect of change in population size on population DNA polymorphism[J].Genetics,1989(123):597-601.
[34]SCHNEIDER S,EXCOFFIER L.Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites:application to human mitochondrial DNA[J].Genetics,1999(152):1079-1089.
[35]楊 帆,何立軍,雷光春,等.中國(guó)東南沿海彈涂魚(yú)科常見(jiàn)魚(yú)類(lèi)的遺傳多樣性和DNA條形碼[J].生態(tài)學(xué)雜志,2012,31(3):676-683.
YANG F,HE L J,LEIG C,etal.Genetic diversity and DNA barcoding of mudskipper common species along Southeast Coasts of China[J].Chinese Journal of Ecology,2012,31(3):676-683.
[36]周曉犢,楊金權(quán),唐文喬,等.基于線粒體COⅠ基因DNA條形碼的中國(guó)鱭屬物種有效性分析[J].動(dòng)物分類(lèi)學(xué)報(bào),2010,35(4):819-826.
ZHOU X D,YANG JQ,TANGW Q,etal.Species validities analyses of ChineseCoiliafishes based on mtDNACOⅠbarcoding[J].Acta Zootaxonomica Sinica,2010,35(4):819-826.
[37]HEBERT PD N,CYWINSKA A,BALL SL,et al.Biological identifications through DNA barcodes[J].Proceedings of the Royal Society of London,Series B,2003,270(1512):313-322.
[38]HEBERT P D N,RATNASINGHAM S,Dewaard J R.Barcoding animal life:cytochrome c oxidase subunit I divergences among closely related species[J].Proceedings of the Royal Society of London,Series B,2003,270(Suppl1):96-99.
[39]GRANT W S,BOWEN B W.Shallow population histories in deep evolutionary lineages of marine fishes:insights from sardines and anchovies and lessons for conservation[J].JHered,1998(89):415-426.
[40]唐啟升,葉懋中.山東近海漁業(yè)資源開(kāi)發(fā)與保護(hù)[M].北京:農(nóng)業(yè)出版社,1990.
TANG Q S,YEM Z.The exploitation and protection of fishery resources in Shandong offore[M].Beijing:China Agriculture Press,1990.
[41]山田梅芳,時(shí)村宗春,堀川博史,等.東シナ?!S海の魚(yú)類(lèi)誌[M].東京:東海大學(xué)出版會(huì),2007.
YAMADA U,TOKIMURA U,HORIKAWA H,et al.Fishes and fisheries of the East China and Yellow Seas[M].Kanagawa:Tokai University Press,2007.
[42]陳大剛.黃渤海漁業(yè)生態(tài)學(xué)[M].北京:海洋出版社,1991.
CHEN D G.Fish ecology of the Bohai Sea and Yellow Sea[M].Beijing:Ocean Press,1991.
[43]LIU J X,GAO T X,ZHUANG Z M,et al.Late Pleistocene divergence and subsequent population expansion of two closely related fish species,Japanese anchovy(Engraulis japonicus)and Australian anchovy(Engraulis australis)[J].Molecular Phylogenetics and Evolution,2006,40(3):712-723.
[44]LIU J X,GAO T X,WU S F,et al.Pleistocene isolation in the marginal ocean basins and limited dispersal in a marine fish,Liza haematocheila(Temminck&Schlegel,1845)[J].Molecular Ecology,2007(16):275-288.
[45]HAN Z Q,GAO T X,YANAGIMOTO T,et al.Genetic population structure ofNibea albiflorain the Yellow and East China Seas[J].Fisheries Science,2008(74):544-552.
[46]WU R X,LIU S F,ZHUANG ZM,et al.Population genetic structure ofLarimichthys polyactisin theYellow and East China Seas based on Cyt b sequences[J].Progress in Natural Science,2009, 19(9):924-930.
Genetic diversity analysis of snailfish Liparis tanakae in the Liaoning coast based on COⅠgene sequences
LI Yu-long,LIU Xiu-ze,LI Yi-ping,WANG Ai-yong,WANG Xiao-lin,DONG Jing
(Key Laboratory of Marine Biological Resources and Ecology,Liaoning Ocean and Fisheries Science research Institute,Dalian116023,China)
Liparis tanakaeis mainly distributed in the coasts of China,Japan and Korea.As one of the dominate species in the coastal waters of China,it has become the top predator and won high status in fisheries ecosystem in the Yellow Sea and the Bohai Sea.However,little is known about the genetic diversity and population genetic structure ofL.tanakae.In this study,the genetic diversity and population genetic structure ofLiparis tanakaefrom the Liaodong Bay(n=20)and north of the Yellow Sea(n=34)were examined with a 623 bp segment ofmtDNA cytochrome oxidase I(COⅠ)gene.PCR amplification products of 623 bpCOⅠgene fragments were obtained,and the average contents of A,T,C and G were 22.3%,32.4%,26.9%,and 18.4%,respectively.A total of 54 samples were collected and 8 haplotypes were obtained.The genetic distance between haplotypes ranged from 0.2%to 0.6%.Mean haplotype diversity and nucleotide diversity for the two populations ranged from 0.56±0.06(Liaodong Bay)to 0.70±0.05(north of the Yellow Sea),and from 0.001 0±0.000 9(Liaodong Bay)to 0.001 7±0.001 3(north of the Yellow Sea),respectively.AMOVA revealed little genetic structure between the Liaodong Bay and north of the Yellow Sea inL.tanakae.Mismatch distribution revealed thatL.tanakaein the Liaoning coast has undergone population expansion,possibly before the last 50 000-116 000 years.
Liparis tanakae;mtDNACOⅠgene;genetic diversity;population genetic structure
Q 244
A
1004-2490(2016)02-0120-10
2015-12-01
海洋公益性行業(yè)科研專(zhuān)項(xiàng)黃渤海重要經(jīng)濟(jì)生物產(chǎn)卵場(chǎng)修復(fù)與重建技術(shù)集成與示范(201405010);遼寧省海洋與漁業(yè)科研項(xiàng)目(201401)
李玉龍(1981-),山東臨沂人,助理研究員,主要從事漁業(yè)資源增殖放流及海洋生物分子生物學(xué)研究。E-mail:liyudragon@126.com
董 婧,研究員。E-mail:1024470248@qq.com