朱宸佑 曹鈺彬 鄧佳 亓文婷 曹 聰 石 冰
口腔疾病研究國(guó)家重點(diǎn)實(shí)驗(yàn)室 華西口腔醫(yī)院唇腭裂外科(四川大學(xué)) 成都 610041
膠原-生長(zhǎng)因子生物材料及其在骨和神經(jīng)再生中的應(yīng)用
朱宸佑曹鈺彬鄧佳亓文婷曹聰石冰
口腔疾病研究國(guó)家重點(diǎn)實(shí)驗(yàn)室 華西口腔醫(yī)院唇腭裂外科(四川大學(xué)) 成都 610041
膠原具有弱抗原性,良好的生物兼容性、生物降解能力以及生物力學(xué)性能,被廣泛用于皮膚、肌腱、血管、骨和神經(jīng)等部位的組織工程,而生長(zhǎng)因子是生物體內(nèi)一類微量高效調(diào)節(jié)細(xì)胞代謝和組織修復(fù)的小分子物質(zhì)。膠原-生長(zhǎng)因子生物材料(CGFB)在骨組織再生、神經(jīng)組織修復(fù)、肌腱重建和慢性傷口修復(fù)中表現(xiàn)出優(yōu)良的生物和生物力學(xué)性能。在骨組織修復(fù)中,CGFB合理地釋放生長(zhǎng)因子,有效地誘導(dǎo)了干細(xì)胞成骨向分化和促進(jìn)受損骨組織修復(fù)。在神經(jīng)組織修復(fù)中,根據(jù)修復(fù)對(duì)象采用的特異性的CGFB膠原設(shè)計(jì),有效地促進(jìn)了神經(jīng)突的生成。在中樞神經(jīng)系統(tǒng)修復(fù)中,膠原凝膠的注入為細(xì)胞生長(zhǎng)提供了良好的微環(huán)境,有利于中樞神經(jīng)系統(tǒng)的修復(fù)。本文回溯CGFB的基本性質(zhì)及其近年來(lái)在骨和神經(jīng)修復(fù)領(lǐng)域中的研究進(jìn)展,以預(yù)測(cè)其未來(lái)可繼續(xù)改進(jìn)的方向。
膠原; 生長(zhǎng)因子; 組織工程; 骨再生; 神經(jīng)再生
口腔頜面部組織結(jié)構(gòu)復(fù)雜,血管神經(jīng)密集,無(wú)論外傷還是腫瘤切除等手術(shù)均易傷及軟硬組織和血管神經(jīng),因而骨和神經(jīng)修復(fù)重建是口腔頜面外科最為重要的內(nèi)容,積極尋求新的技術(shù)手段和組織工程方法尤為重要和迫切[1-2]。本文就膠原-生長(zhǎng)因子生物材料(collagen-growth factor biomaterial,CGFB)的研究進(jìn)展及其在骨和神經(jīng)組織再生中的應(yīng)用作一綜述,以便于口腔頜面外科同行了解與探索。
膠原是一種細(xì)胞外基質(zhì)(extracellular matrix,ECM)結(jié)構(gòu)蛋白,既是ECM的主要成分,也是人工模擬細(xì)胞環(huán)境時(shí)最常用的成分[3]。膠原分布于骨、軟骨、皮膚和肌腱等組織,具有弱抗原性,良好的生物兼容性、生物降解能力以及生物力學(xué)性能[4],因而被廣泛用于皮膚、肌腱、血管、骨和神經(jīng)等部位的組織工程。由于膠原在不同的組織表現(xiàn)出質(zhì)量和類型有所差異,因此膠原在研究和實(shí)際應(yīng)用中都會(huì)因作用部分的不同而有所差別。
雖然膠原能為細(xì)胞生長(zhǎng)提供適宜的環(huán)境,但僅僅如此卻不能滿足組織在短期內(nèi)快速再生的需求。生長(zhǎng)因子對(duì)細(xì)胞新陳代謝和細(xì)胞內(nèi)外信號(hào)轉(zhuǎn)導(dǎo)通路及其級(jí)聯(lián)反應(yīng)起著重要的調(diào)控作用[5]。細(xì)胞因子通常由旁分泌或自分泌產(chǎn)生,且僅在局部起作用[6];因此,體內(nèi)不同組織、不同時(shí)期產(chǎn)生的細(xì)胞因子種類和質(zhì)量差別較大,這為針對(duì)特定修復(fù)部位提供特定生長(zhǎng)因子提供了依據(jù)和指導(dǎo)。在CGFB中,少量分散于膠原中的生長(zhǎng)因子才是該生物材料功能的核心所在,故如何高效地釋放生長(zhǎng)因子逐漸成為關(guān)注重點(diǎn)。
在眾多的細(xì)胞因子中,生長(zhǎng)因子在組織再生和創(chuàng)傷修復(fù)領(lǐng)域發(fā)揮著重要的作用,譬如血管內(nèi)皮生長(zhǎng)因子、表皮生長(zhǎng)因子(epidermal growth factor,EGF)、堿性成纖維細(xì)胞生長(zhǎng)因子(basic fibroblast growth factor,bFGF)、轉(zhuǎn)化生長(zhǎng)因子(transforming growth factor,TGF)、血小板衍生生長(zhǎng)因子(platelet-derived growth factor,PDGF)、神經(jīng)生長(zhǎng)因子(nerve growth factor,NGF)、骨形態(tài)發(fā)生蛋白(bone morphogenetic protein,BMP)等[7-15]。體內(nèi)細(xì)胞因子的釋放相當(dāng)復(fù)雜,某一局部涉及的細(xì)胞因子或生長(zhǎng)因子豐富多樣,且按照特定時(shí)空順序進(jìn)行釋放;因此,針對(duì)某一局部,通常只選取相對(duì)作用最重要、質(zhì)量最豐富、最具有代表性和實(shí)際意義的生長(zhǎng)因子進(jìn)行研究。隨著細(xì)胞環(huán)境模擬度的提高,多種細(xì)胞生長(zhǎng)因子按照一定的比例協(xié)同促進(jìn)組織生長(zhǎng)[16-17]。
近年來(lái),CGFB在組織工程中發(fā)揮著越來(lái)越重要的作用,譬如,血管再生對(duì)大多數(shù)組織都至關(guān)重要,ECM膠原整合的bFGF和EGF對(duì)血管生成有改善或提升效果[18],故這兩種生長(zhǎng)因子對(duì)于大多數(shù)組織的再生都有積極的促進(jìn)作用。此外,由成纖維細(xì)胞主導(dǎo)的ECM的合成和分泌在組織工程修復(fù)過(guò)程也是必要的,而PDGF有利于成纖維細(xì)胞的擴(kuò)張和遷移[19]。由此觀之,與CGFB有關(guān)的基礎(chǔ)研究可為其決策提供選擇方向和依據(jù),但因?yàn)榧?xì)胞生長(zhǎng)因子作用的復(fù)雜性,故還需要根據(jù)具體組織判斷選擇。雖然CGFB在肌肉、皮膚和黏膜中也有相當(dāng)重要的作用[17,20-24],但本文只介紹CGFB在骨和神經(jīng)修復(fù)中的作用及其相應(yīng)的改良措施。
骨組織修復(fù)是組織工程研究的一個(gè)重要領(lǐng)域,CGFB作為一個(gè)極具前景的生物材料已經(jīng)投入了市場(chǎng);然而,傳統(tǒng)的CGFB的成骨效果受到膠原和細(xì)胞因子自身的限制,并不令人滿意,細(xì)胞生長(zhǎng)因子在膠原中如何更加高效地釋放也在很大程度上限制了CGFB的應(yīng)用。近年來(lái)為了進(jìn)一步提升CGFB在骨組織修復(fù)中的效果,不同的試驗(yàn)室分別從膠原性質(zhì)、生長(zhǎng)因子性質(zhì)以及兩者的結(jié)合等方面對(duì)材料作了改進(jìn)。
CGFB能在骨組織修復(fù)中表現(xiàn)出值得期待的促組織修復(fù)效果,在于合理地使用和釋放了細(xì)胞因子。BMP是一類僅在骨和軟骨再生中使用的生長(zhǎng)因子,可有效地誘導(dǎo)干細(xì)胞成骨向分化和促進(jìn)受損骨組織修復(fù)。研究[25]顯示,將BMP分散在膠原中使其隨膠原的生物降解釋出,由于膠原與BMP之間的結(jié)合疏松,因此材料在移植到體內(nèi)的初期會(huì)產(chǎn)生近30%的爆發(fā)性釋放,這既導(dǎo)致藥物的浪費(fèi),還可能因藥物過(guò)量對(duì)患者造成傷害。此外臨床上尚在使用的基本CGFB模型的釋放效果并不令人滿意,于是不斷有研究者[26]試圖從細(xì)胞生長(zhǎng)因子運(yùn)載方式上改良原有模型。譬如,Lee等[27]將搭載低劑量的BMP-2納米纖維置于膠原內(nèi)部,很好地模擬了ECM的天然結(jié)構(gòu),達(dá)到了緩釋和擴(kuò)大BMP-2骨再生效應(yīng)的目的。根據(jù)該研究結(jié)果推斷,由納米顆粒和納米纖維等組成單一或多級(jí)的緩釋模型均可應(yīng)用于骨組織修復(fù);另外,構(gòu)建復(fù)雜的三維仿生模型,也可能有利骨組織修復(fù)。
相對(duì)于細(xì)胞生長(zhǎng)因子而言,CGFB的生物力學(xué)性能對(duì)于骨修復(fù)效果的影響不明顯,相關(guān)研究較少?;|(zhì)是否適合骨細(xì)胞的增殖、生長(zhǎng)、遷移和分化也是值得考慮的,而材料自身硬度是一個(gè)重要因素[28]。Banks等[29]在通過(guò)交聯(lián)的方法在不改變膠原孔徑前提下獨(dú)立控制硫酸軟骨素膠原材料硬度,觀察脂肪間質(zhì)干細(xì)胞的成骨分化情況時(shí)發(fā)現(xiàn),較硬的基質(zhì)會(huì)無(wú)視生長(zhǎng)因子的存在而誘導(dǎo)成骨基因表達(dá),而較軟的基質(zhì)則需要生長(zhǎng)因子才能誘導(dǎo)成骨基因表達(dá)。這一研究結(jié)果對(duì)于成骨研究領(lǐng)域選擇CGFB硬度有著重要的指導(dǎo)意義,根據(jù)對(duì)誘導(dǎo)成骨的要求,可以選擇不同硬度的材料和決定是否選用生長(zhǎng)因子。
Yamano等[30]在體內(nèi)外試驗(yàn)中分別從膠原膜中緩釋PDGF和生長(zhǎng)分化因子(growth differation factor,GDF)-5發(fā)現(xiàn),GDF-5更能提高成骨細(xì)胞的增殖活性和成骨基因表達(dá),從而加速骨再生。在不斷尋找和選擇天然存在的更適于治療的細(xì)胞因子的同時(shí),人工合成的新細(xì)胞因子也正在研究中。Kleinschmidt等[31]將BMP-2殘基引入GDF-5中產(chǎn)生了基因突變的蛋白BB-1。BMP-2對(duì)于需要血管再生的長(zhǎng)骨重建效果并不好,BB-1則結(jié)合了BMP-2和GDF-5的優(yōu)點(diǎn)[32],同時(shí)促進(jìn)了骨再生和血管再生。沿此思路,可以不斷地通過(guò)化學(xué)合成的方法制造和確認(rèn)更優(yōu)的成骨細(xì)胞因子,以提高骨組織修復(fù)效果。
骨組織重建作為CGFB在組織工程應(yīng)用的典型方向,存在著組織工程普遍存在的一些問(wèn)題:釋放系統(tǒng)不足,大小骨組織損傷修復(fù)要求有所區(qū)別等。近期的研究主要集中在細(xì)胞因子釋放問(wèn)題上,而對(duì)于生物力學(xué)性能和細(xì)胞因子的選擇研究較少。學(xué)術(shù)界一方面在生物力學(xué)性能和細(xì)胞因子的問(wèn)題上已經(jīng)達(dá)成了一致的共識(shí),一方面未來(lái)可能緣于釋放模型的需要會(huì)結(jié)合生物力學(xué)性能精確控制,也可能因傳統(tǒng)細(xì)胞因子平庸而啟動(dòng)新細(xì)胞因子合成研究。CGFB在骨修復(fù)和骨重建研究富有臨床意義,也為今后研究提供了思路和依據(jù)。
神經(jīng)修復(fù)是組織工程的另一重要領(lǐng)域,但由于神經(jīng)細(xì)胞高分化,故神經(jīng)修復(fù)要較骨重建困難一些。此外,中樞神經(jīng)系統(tǒng)和周圍神經(jīng)系統(tǒng)在結(jié)構(gòu)功能上有著巨大差別,由于這些差異性和復(fù)雜性,所以CGFB在神經(jīng)修復(fù)中的研究側(cè)重點(diǎn)完全不同于前文提到的骨組織修復(fù)。CGFB在神經(jīng)修復(fù)中根據(jù)修復(fù)對(duì)象采用了不同膠原設(shè)計(jì)。
在神經(jīng)修復(fù)中,神經(jīng)細(xì)胞能否有效增殖和遷移相當(dāng)重要。過(guò)去,細(xì)胞通常培養(yǎng)于二維環(huán)境中,不能很好地模擬細(xì)胞增殖和遷移的環(huán)境,于是細(xì)胞環(huán)境的設(shè)計(jì)開(kāi)始受到重視,開(kāi)始出現(xiàn)三維環(huán)境的設(shè)計(jì)[15,33]。Labour等[34]設(shè)計(jì)了一種由高純度ECM構(gòu)成,較普通培養(yǎng)基厚,膠原密度和多孔性以及纖維大小適合神經(jīng)細(xì)胞生長(zhǎng)的三維培養(yǎng)基,并加入適量NGF和腦源性神經(jīng)營(yíng)養(yǎng)因。該精心設(shè)計(jì)的仿生三維膠原基質(zhì),可有效地促進(jìn)神經(jīng)突的生成,而神經(jīng)突的生成對(duì)于周圍神經(jīng)系統(tǒng)修復(fù)非常重要。正如前文提到的骨緩釋系統(tǒng)設(shè)計(jì),神經(jīng)細(xì)胞培養(yǎng)環(huán)境設(shè)計(jì)也模仿了天然ECM的成分和結(jié)構(gòu),可見(jiàn)這種仿生思路能有效應(yīng)用于多種領(lǐng)域,而三維環(huán)境的設(shè)計(jì)在針對(duì)神經(jīng)突的周圍神經(jīng)系統(tǒng)修復(fù)中也很有發(fā)展前景。
在中樞神經(jīng)系統(tǒng)修復(fù)中,凝膠態(tài)膠原也能為神經(jīng)細(xì)胞的生長(zhǎng)提供良好的環(huán)境。過(guò)去直接將細(xì)胞移植到特定部分,細(xì)胞因缺少適宜穩(wěn)定的微環(huán)境,其生長(zhǎng)和增殖受到抑制,治療效果常常難盡如人意,而膠原凝膠的注入能為細(xì)胞提供了良好的微環(huán)境。Egawa等[35]將神經(jīng)干細(xì)胞置于結(jié)合了EGF的膠原凝膠中,干細(xì)胞明顯增殖且成功分化為多種神經(jīng)細(xì)胞亞群。Macaya等[36]發(fā)現(xiàn),結(jié)合有成纖維細(xì)胞生長(zhǎng)因子-2膠原水凝膠的星形膠質(zhì)細(xì)胞能有效滲入凝膠并遷移到移植體部位。由此可見(jiàn),膠原凝膠適宜的環(huán)境,神經(jīng)細(xì)胞能有效地增殖、分化和遷移,從而有利于神經(jīng)修復(fù)進(jìn)行,有望應(yīng)用于中樞神經(jīng)系統(tǒng)的臨床修復(fù)。
神經(jīng)修復(fù)還可能需要特殊基質(zhì)形態(tài)來(lái)滿足修復(fù)的要求,這可能是神經(jīng)修復(fù)與其他組織最大的區(qū)別。在周圍神經(jīng)系統(tǒng)修復(fù)中,鑒于神經(jīng)軸突的特殊形態(tài),通常會(huì)采用與其形態(tài)相符合的神經(jīng)導(dǎo)管。神經(jīng)導(dǎo)管的基本作用是為損傷神經(jīng)末端創(chuàng)造一個(gè)能再生、通過(guò)和連接的穩(wěn)定環(huán)境。神經(jīng)缺損的距離越長(zhǎng),修復(fù)難度越大,為了延長(zhǎng)修復(fù)距離,有研究[37]將細(xì)胞因子刺激與導(dǎo)管膠原支架結(jié)合起來(lái),希望能促進(jìn)神經(jīng)斷端重新接合。Cui等[38]將結(jié)合了睫狀神經(jīng)營(yíng)養(yǎng)因子和bFGF的膠原支架連接到微型豬缺損長(zhǎng)度達(dá)35 mm的神經(jīng)間隙近端和遠(yuǎn)端之間,成功誘導(dǎo)了長(zhǎng)距離神經(jīng)再生。該研究證明了短距離修復(fù)可應(yīng)用于長(zhǎng)距離修復(fù)[39]。
CGFB在神經(jīng)組織修復(fù)的研究范圍遠(yuǎn)遠(yuǎn)不如骨組織修復(fù)多樣,或者說(shuō)還處于一個(gè)相對(duì)初級(jí)的階段,這可能緣于修復(fù)本身的復(fù)雜性和神經(jīng)組織的多樣性。到目前為止,只側(cè)重于有利的修復(fù)環(huán)境的設(shè)計(jì),至于生長(zhǎng)因子的選擇,基本上是一些常用的細(xì)胞因子和一些神經(jīng)營(yíng)養(yǎng)因子,顯得針對(duì)性不強(qiáng);但是,神經(jīng)組織的修復(fù)不僅需關(guān)注神經(jīng)修復(fù)環(huán)境的問(wèn)題,神經(jīng)系統(tǒng)不同部分、不同細(xì)胞的差異性也是需關(guān)注的重點(diǎn),因此,修復(fù)的研究也逐漸走向具體和精細(xì)化的方向。人們有理由相信,CGFB在神經(jīng)組織重建方面還會(huì)有更多精細(xì)化的環(huán)境設(shè)計(jì),同時(shí)也期待更多突破現(xiàn)有瓶頸的研究成果出現(xiàn)。
[1] 饒燕剛, 田衛(wèi)東. 組織工程骨培養(yǎng)的分子機(jī)制[J].國(guó)際口腔醫(yī)學(xué)雜志, 2007, 34(1):53-55. Rao YG, Tian WD. Molecule mechanism of cultivation of tissue engineering bone[J]. Int J Stomatol, 2007, 34(1):53-55.
[2] 白曉峰, 田衛(wèi)東. 組織工程血管化的研究進(jìn)展[J].國(guó)際口腔醫(yī)學(xué)雜志, 2005, 32(4):297-299. Bai XF, Tian WD. Research progress on tissue engineering blood vessel[J]. Int J Stomatol, 2005, 32 (4):297-299.
[3] Ito Y, Tada S. Bio-orthogonal and combinatorial approaches for the design of binding growth factors [J]. Biomaterials, 2013, 34(31):7565-7574.
[4] Lin H, Chen B, Sun W, et al. The effect of collagentargeting platelet-derived growth factor on cellularization and vascularization of collagen scaffolds [J]. Biomaterials, 2006, 27(33):5708-5714.
[5] Chen FM, Zhang M, Wu ZF. Toward delivery of multiple growth factors in tissue engineering[J]. Biomaterials, 2010, 31(24):6279-6308.
[6] Nicholl MB, Ledgewood CL, Chen X, et al. IL-35 promotes pancreas cancer growth through enhancement of proliferation and inhibition of apoptosis: evidence for a role as an autocrine growth factor[J]. Cytokine, 2014, 70(2):126-133.
[7] Hunt NC, Grover LM. Cell encapsulation using biopolymer gels for regenerative medicine[J]. Biotechnol Lett, 2010, 32(6):733-742.
[8] Lai HJ, Kuan CH, Wu HC, et al. Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing[J]. Acta Biomater, 2014, 10(10): 4156-4166.
[9] Liu S, Qin M, Hu C, et al. Tendon healing and antiadhesion properties of electrospun fibrous membranes containing bFGF loaded nanoparticles[J]. Biomaterials, 2013, 34(19):4690-4701.
[10] Thomopoulos S, Kim HM, Silva MJ, et al. Effect of bone morphogenetic protein 2 on tendon-to-bone healing in a canine flexor tendon model[J]. J Orthop Res, 2012, 30(11):1702-1709.
[11] Cheng X, Tsao C, Sylvia VL, et al. Platelet-derived growth-factor-releasing aligned collagen-nanoparticle fibers promote the proliferation and tenogenic differentiation of adipose-derived stem cells[J]. Acta Biomater, 2014, 10(3):1360-1369.
[12] Sun W, Sun C, Lin A, et al. The effect of collagenbinding NGF-β on the promotion of sciatic nerve regeneration in a rat sciatic nerve crush injury mode l[J]. Biomaterials, 2009(27):4649-4656.
[13] Li Q, Tao L, Chen B, et al. Extrahepatic bile duct regeneration in pigs using collagen scaffolds loaded with human collagen-binding bFGF[J]. Biomaterials, 2012, 33(17):4298-4308.
[14] Hoyng SA, De Winter F, Gnavi S, et al. A comparative morphological, electrophysiological and functional analysis of axon regeneration through peripheral nerve autografts genetically modified to overexpress BDNF, CNTF, GDNF, NGF, NT3 or VEGF[J]. Exp Neurol, 2014, 261:578-593.
[15] Borselli C, Ungaro F, Oliviero O, et al. Bioactivation of collagen matrices through sustained VEGF release from PLGA microspheres[J]. J Biomed Mater Res A, 2010, 92(1):94-102.
[16] Lu S, Lam J, Trachtenberg JE, et al. Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair[J]. Biomaterials, 2014, 35(31):8829-8839.
[17] Xie Z, Paras CB, Weng H, et al. Dual growth factor releasing multi-functional nanofibers for wound healing[J]. Acta Biomater, 2013, 9(12):9351-9359.
[18] Assal Y, Mie M, Kobatake E. The promotion of angiogenesis by growth factors integrated with ECM proteins through coiled-coil structures[J]. Biomaterials, 2013, 34(13):3315-3323.
[19] Grinnell F, Ho CH. The effect of growth factor environment on fibroblast morphological response tosubstrate stiffness[J]. Biomaterials, 2013, 34(4):965-974.
[20] Ayvazyan A, Morimoto N, Kanda N, et al. Collagengelatin scaffold impregnated with bFGF accelerates palatal wound healing of palatal mucosa in dogs[J]. J Surg Res, 2011, 171(2):e247-e257.
[21] Miyagi Y, Chiu L L Y, Cimini M, et al. Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair[J]. Biomaterials, 2011, 32(5):1280-1290.
[22] Pang Y, Wang X, Ucuzian AA, et al. Local delivery of a collagen-binding FGF-1 chimera to smooth muscle cells in collagen scaffolds for vascular tissue engineering[J]. Biomaterials, 2010, 31(5):878-885.
[23] Hagerty P, Lee A, Calve S, et al. The effect of growth factors on both collagen synthesis and tensile strength of engineered human ligaments[J]. Biomaterials, 2012, 33(27):6355-6361.
[24] Guo R, Xu S, Ma L, et al. The healing of full-thickness burns treated by using plasmid DNA encoding VEGF-165 activated collagen-chitosan dermal equivalents[J]. Biomaterials, 2011, 32(4):1019-1031.
[25] Haidar ZS, Hamdy RC, Tabrizian M. Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part B: delivery systems for BMPs in orthopaedic and craniofacial tissue engineering[J]. Biotechnol Lett, 2009, 31(12):1825-1835.
[26] Kolambkar YM, Boerckel JD, Dupont KM, et al. Spatiotemporal delivery of bone morphogenetic protein enhances functional repair of segmental bone defects[J]. Bone, 2011, 49(3):485-492.
[27] Lee SS, Huang BJ, Kaltz SR, et al. Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds [J]. Biomaterials, 2013, 34(2):452-459.
[28] Branco da Cunha C, Klumpers DD, Li WA, et al. Influence of the stiffness of three-dimensional alginate/collagen-I interpenetrating networks on fibroblast biology[J]. Biomaterials, 2014, 35(32): 8927-8936.
[29] Banks JM, Mozdzen LC, Harley BA, et al. The combined effects of matrix stiffness and growth factor immobilization on the bioactivity and differentiation capabilities of adipose-derived stem cells[J]. Biomaterials, 2014, 35(32):8951-8959.
[30] Yamano S, Haku K, Yamanaka T, et al. The effect of a bioactive collagen membrane releasing PDGF or GDF-5 on bone regeneration[J]. Biomaterials, 2014, 35(8):2446-2453.
[31] Kleinschmidt K, Ploeger F, Nickel J, et al. Enhanced reconstruction of long bone architecture by a growth factor mutant combining positive features of GDF-5 and BMP-2[J]. Biomaterials, 2013, 34(24):5926-5936.
[32] Jung RE, Thoma DS, Hammerle CH. Assessment of the potential of growth factors for localized alveolar ridge augmentation: a systematic review[J]. J Clin Periodontol, 2008, 35(8 Suppl):255-281.
[33] Lutolf MP, Gilbert PM, Blau HM. Designing materials to direct stem-cell fate[J]. Nature, 2009, 462 (7272):433-441.
[34] Labour MN, Banc A, Tourrette A, et al. Thick collagenbased 3D matrices including growth factors to induce neurite outgrowth[J]. Acta Biomater, 2012, 8 (9):3302-3312.
[35] Egawa EY, Kato K, Hiraoka M, et al. Enhanced proliferation of neural stem cells in a collagen hydrogel incorporating engineered epidermal growth factor[J]. Biomaterials, 2011, 32(21):4737-4743.
[36] Macaya DJ, Hayakawa K, Arai K, et al. Astrocyte infiltration into injectable collagen-based hydrogels containing FGF-2 to treat spinal cord injury[J]. Biomaterials, 2013, 34(14):3591-3602.
[37] Forden J, Xu QG, Khu KJ, et al. A long peripheral nerve autograft model in the sheep forelimb[J]. Neurosurgery, 2011, 68(5):1354-1362.
[38] Cui Y, Lu C, Meng D, et al. Collagen scaffolds modified with CNTF and bFGF promote facial nerve regeneration in minipigs[J]. Biomaterials, 2014, 35 (27):7819-7827.
[39] Angius D, Wang H, Spinner RJ, et al. A systematic review of animal models used to study nerve regeneration in tissue-engineered scaffolds[J]. Biomaterials, 2012, 33(32):8034-8039.
(本文采編 王晴)
Application of collagen and growth factors for bone and nerve healing processes
Zhu Chenyou, Cao Yubin, Deng Jia, Qi Wenting, Cao Cong, Shi Bing.
(State Key Laboratory of Oral Diseases, Dept. of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China)
This study was supported by Undergraduate Student Innovation and Entrepreneurship Training Program of Sichuan University(20140759)
Collagen possesses weak antigenic activity, high biocompatibility, biodegradability, and biomechanical properties. It has been widely used in tissue engineering of various organs, such as skin, tendons, blood vessels, nerves, and bones. Growth factors are a class of molecules that effectively regulate cell metabolism and tissue repair. Collagengrowth factor biomaterials(CGFB) exhibit desirable biological and biomechanical properties in osteogenesis, nerve repair, tendon reconstruction, and repair of chronic wounds. In the process of osteogenesis, CGFB ideally release growth factors, effectively inducing osteogenic differentiation of stem cells, thus promoting repair in bone defects. In the process of nerve repair, a specific design of CGFB for a purpose can effectively promote neuritis generation. In the process of central nervous system repair, the injection of collagen gel can provide a desirable microenvironment for cells, which is beneficial for central nervous system repair. This article reviews the basic properties and recent studies in bone and nerve repair of CGFB to provide future direction of improvement.
collagen; growth factor; tissue engineering; bone regeneration; nerve regeneration
R 783.1
A [doi] 10.7518/gjkq.2016.06.024
2016-02-05;
2016-04-21
四川大學(xué)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃(20140759)
朱宸佑,學(xué)士,Email:tn00992786@qq.com
石冰,教授,博士,Email:shibingcn@sina.com