劉曉玲,姜健準(zhǔn),張明森
(中國石化化工股份有限公司北京化工研究院,北京 100013)
?
綜述與展望
合成多級(jí)孔分子篩的研究進(jìn)展
劉曉玲,姜健準(zhǔn),張明森*
(中國石化化工股份有限公司北京化工研究院,北京 100013)
摘要:構(gòu)建多級(jí)孔分子篩是提高分子篩擴(kuò)散性能的重要手段,是目前催化領(lǐng)域研究的熱點(diǎn)之一。多級(jí)孔分子篩的合成方法較多,從脫除骨架元素、原位合成和重結(jié)晶3個(gè)方面綜述近年來多級(jí)孔分子篩的合成研究。脫除骨架元素主要有蒸汽處理和化學(xué)處理;原位合成法主要包括硬模板法和軟模板法;重結(jié)晶是分子篩晶體經(jīng)堿溶解后在表面活性劑條件下自組裝形成多級(jí)孔分子篩,并對(duì)多級(jí)孔分子篩的發(fā)展前景進(jìn)行展望。
關(guān)鍵詞:催化劑工程;多級(jí)孔分子篩;脫除骨架元素;原位合成;重結(jié)晶
分子篩具有均一的孔徑分布、較好的(水)熱穩(wěn)定性和良好的酸性,作為重要的催化材料廣泛應(yīng)用于石油加工和有機(jī)合成等領(lǐng)域。分子篩具有分子尺寸的多維孔道結(jié)構(gòu),被稱為“微反應(yīng)器”,具有分子擇形功能,但由于微孔分子篩孔體積較小,不利于反應(yīng)物和產(chǎn)物的擴(kuò)散,增加積炭初級(jí)產(chǎn)物反應(yīng)二次反應(yīng)幾率,積炭前驅(qū)物易沉積在微孔孔道內(nèi)堵塞孔道,導(dǎo)致催化劑失活,影響產(chǎn)物的選擇性和催化劑穩(wěn)定性,限制其應(yīng)用[1]。有效的催化劑應(yīng)具有更容易接近的活性位和更短的擴(kuò)散路徑,進(jìn)一步調(diào)變分子篩的物化性質(zhì)一直是分子篩領(lǐng)域研究的重點(diǎn)。
介孔材料的孔徑分布均一,為(2~50) nm,孔體積和比表面積較大,在大分子催化轉(zhuǎn)化中具有潛在的應(yīng)用前景,但介孔材料的水熱穩(wěn)定性差,酸性弱,在石油化工和精細(xì)化工領(lǐng)域中的應(yīng)用受到限制。結(jié)合微孔分子篩與介孔材料的優(yōu)勢,構(gòu)建具有多級(jí)孔的新型催化材料已經(jīng)成為催化領(lǐng)域的研究熱點(diǎn)之一,合成多級(jí)孔分子篩以增加分子篩內(nèi)表面的擴(kuò)散性能成為主要研究內(nèi)容。
Kloetstra K R等[2]最先報(bào)道了多級(jí)孔分子篩的合成,合成方法較多,微孔分子篩進(jìn)行再加工可以制備多級(jí)孔分子篩,改進(jìn)合成過程,亦可以獲得多級(jí)孔分子。本文綜述合成多級(jí)孔分子篩的研究進(jìn)展,對(duì)多級(jí)孔分子篩合成的發(fā)展前景進(jìn)行展望。
1脫除骨架元素
以蒸汽、化學(xué)試劑酸或堿處理預(yù)先合成分子篩,選擇性脫除分子篩骨架元素即硅物種和鋁物種,是目前合成多級(jí)孔分子篩的重要方法之一,依據(jù)脫除骨架元素的不同,分為脫鋁和脫硅。理想條件下,選擇性脫除骨架元素可以在分子篩晶體內(nèi)部產(chǎn)生介孔而不降低分子篩結(jié)晶度。
1.1鋁物種脫除
蒸汽處理和酸處理是簡單易行的分子篩脫鋁方法。以蒸汽處理低硅鋁比Y分子篩,Si—O—Al鍵發(fā)生斷裂,鋁物種從骨架中移出,穩(wěn)定性弱可移動(dòng)的硅物種與其他位置的硅羥基發(fā)生縮聚,從而導(dǎo)致介孔的形成,且球形介孔可以延展到圓柱形的孔道中[3]。Agostini G等[4]采用原位同步輻射XRPD和原位X射線光譜法研究Y分子篩的脫鋁過程,隨著溫度升高,Y分子篩只有少量的骨架鋁物種從骨架中遷出;溫度降低到(177~227) ℃,水分子進(jìn)入分子篩骨架,導(dǎo)致大量的骨架鋁從骨架中脫除。
以水熱處理“棺材形”的ZSM-5分子篩脫除鋁物種可以形成不均的介孔結(jié)構(gòu)[5],蒸汽處理ZSM-5分子篩生成介孔的尺寸和數(shù)量與硅鋁物種的分布密切相關(guān)。鋁物種一定程度聚積在ZSM-5分子篩晶體特定區(qū)域,ZSM-5分子篩晶體頂部區(qū)域A的介孔量少于側(cè)面B和中間區(qū)域C,3個(gè)區(qū)域孔的平均尺寸分別為6.2 nm、8.2 nm和8.0 nm,鋁物種含量分別為23%、40%和37%,整個(gè)晶體介孔尺寸不超過10 nm。正弦孔道比直通孔道受到脫鋁的影響明顯,直通孔道中的鋁物種更不容易脫除??量痰恼羝幚聿拍芤瞥X物種,降低骨架鋁含量。蒸汽處理不能導(dǎo)致明顯的介孔形成,但對(duì)晶體邊緣造成破壞,提高B酸位的可接近性。
以不同濃度的酸溶液對(duì)微孔分子篩進(jìn)行處理,也可以將鋁物種從分子篩骨架中移除,但形成的介孔不明顯[6-7]。Tromp M等[8]研究了酸處理絲光分子篩負(fù)載Pt正己烷加氫異構(gòu)性能,催化活性增加,這歸因于擴(kuò)散路徑縮短,活性位更易接近,產(chǎn)物的脫附速率提高。
采用焙燒和其他化學(xué)處理方法如氟硅酸銨、四氯化硅和乙二胺四乙酸等方法進(jìn)行脫鋁,也可制備多級(jí)孔分子篩[9]。以蒸汽或化學(xué)試劑處理分子篩脫除骨架鋁物種,可以合成多級(jí)孔分子篩,但分子篩酸中心數(shù)量減少,對(duì)分子篩在催化反應(yīng)中的活性有明顯影響。在脫鋁過程中形成的是孤立籠狀結(jié)構(gòu),不是連通的介孔結(jié)構(gòu),對(duì)解決分子篩擴(kuò)散方面效果不明顯。蒸汽處理形成的無定形碎片沉積在分子篩外表面,可能堵塞部分微孔孔道,有必要進(jìn)行溫和酸處理以移除無定形碎片。
1.2硅物種脫除
分子篩脫除硅物種,可以改善分子篩的孔道分布,形成明顯的介孔,堿處理是簡單易行的脫硅方法。Ogura M等[10]首次報(bào)道了NaOH處理ZSM-5分子篩晶體形成的明顯介孔。Johan C Groen等[11]研究了鋁物種對(duì)堿處理脫硅合成多級(jí)孔ZSM-5分子篩的影響,結(jié)果表明,堿處理ZSM-5分子篩形成介孔時(shí),最佳硅鋁物質(zhì)的量比為25~50。硅鋁物質(zhì)的量比小于20時(shí),OH-和骨架負(fù)電荷相互作用,抑制硅物種的脫除,不能有效形成介孔;硅鋁物質(zhì)的量比大于50時(shí),硅物種的脫除無選擇性,也不能形成明顯的介孔。骨架鋁物種作為介孔導(dǎo)向劑,可以調(diào)節(jié)晶內(nèi)介孔的形成。除了硅鋁比,鋁物種分布對(duì)于介孔的形成也有明顯影響。用NaOH處理表面富鋁的ZSM-5分子篩可以獲得中空結(jié)構(gòu)[12],而用NaOH處理骨架鋁分布均勻的ZSM-5分子篩則能得到均勻介孔分布[13]。分子篩形貌如大單晶或具有大外表面交錯(cuò)生長的小晶粒,對(duì)于硅物種的溶解也有明顯影響[14],晶粒的邊界和缺陷更容易受到堿溶液侵蝕。
Pérez-Ramírez J等[15-16]研究發(fā)現(xiàn),模板劑在堿處理過程中起到保護(hù)分子篩骨架的作用。堿處理前,通過焙燒調(diào)控模板劑含量,可以調(diào)變介孔含量。Van Laak A N C等[17]也發(fā)現(xiàn)含有有機(jī)模板劑的分子篩脫硅可以形成晶內(nèi)介孔,且微孔孔容基本沒有損失。
對(duì)于硅鋁物質(zhì)的量比小于25的分子篩需要先將其脫鋁,使硅鋁比達(dá)到最佳,才能通過后續(xù)的堿處理引入介孔結(jié)構(gòu)。Li X等[18]和Van Laak A N C等[19]采用連續(xù)酸堿處理,制備了多級(jí)孔絲光分子篩,通過酸處理將絲光分子篩硅鋁物質(zhì)的量比從13降至28,再堿處理,即生成介孔結(jié)構(gòu)。Verboekend D等[20]采用串聯(lián)的酸堿處理制備了多級(jí)孔的Clinoptiolite和L分子篩,脫鋁后進(jìn)行堿處理,可以將介孔面積提高約4倍。Krijn P de Jong等[21]采用蒸汽處理和酸處理Y型分子篩,將硅鋁物質(zhì)的量比提高至28,再進(jìn)行堿處理,獲得了具有3個(gè)層次不同孔徑分布的復(fù)合孔,孔徑分別為 1 nm、3 nm和30 nm。
在脫硅過程中引入無機(jī)物種[Al(OH)3或Ga(OH)3]和有機(jī)物種(四丙基銨或四丁基銨)作為介孔導(dǎo)向劑,可以調(diào)變晶內(nèi)介孔的形成。
Pérez-Ramírez J等[22-24]研究發(fā)現(xiàn),堿處理過程中,介孔導(dǎo)向劑與分子篩表面的相互作用可以適當(dāng)抑制分子篩晶體的溶解。在堿處理過程中,這種抑制作用可以使得到的介孔孔徑更小(約5 nm),更好地保護(hù)微孔結(jié)構(gòu)。在不同有機(jī)介孔導(dǎo)向劑條件下,堿處理不同硅鋁比的USY和BEA分子篩,均可以獲得介孔結(jié)構(gòu)[25]。添加介孔導(dǎo)向劑進(jìn)行堿處理的優(yōu)點(diǎn)在于硅鋁比不再是堿處理的先決條件,高硅鋁比分子篩也可以通過添加孔結(jié)構(gòu)導(dǎo)向劑控制硅物種脫除,形成介孔結(jié)構(gòu)。此外,在脫硅過程中,添加有機(jī)介孔導(dǎo)向劑可以抑制鋁再結(jié)晶,硅鋁比與原始的樣品相比,變化不大。
分子篩骨架脫硅過程不可避免會(huì)影響分子篩的骨架硅鋁比,脫硅后,由于鋁的再晶化過程,經(jīng)常出現(xiàn)非骨架鋁物種。因此,堿處理后,需要進(jìn)行酸處理或離子交換移除非骨架鋁物種,從而保證微孔或介孔暢通。
2原位合成法
2.1硬模板路線
硬模板路線即在分子篩合成凝膠中添加具有剛性結(jié)構(gòu)的固體材料作為介孔模板劑合成多級(jí)孔分子篩,碳材料作為硬模板劑最為廣泛。碳材料具有一定的化學(xué)惰性,結(jié)構(gòu)多樣,焙燒后可移除,常用的碳材料有碳納米顆粒、碳納米管、碳纖維、氣凝膠和有序介孔碳材料等。
分子篩合成凝膠中,碳納米顆??梢缘玫骄哂写罅拷榭追植糩(5~50) nm]的單個(gè)分子篩晶體[26]。該方法廣泛應(yīng)用于其他各種類型分子篩的合成過程,如MFI(TS-1和silicatite-1)、MEL(ZSM-11、TS-2和Silicalite-2)、MTW(ZSM-12)、BEA(Beta)、AFI(AIPO-5)和CHA(AIPO-34)30-33。多級(jí)孔分子篩的擴(kuò)散性能明顯改善,與傳統(tǒng)分子篩相比,催化性能明顯提高,但合成的分子篩介孔分布不均一,類似于籠狀結(jié)構(gòu),且通過微孔相連,對(duì)于改善傳質(zhì)作用不大。
Schmidt I等[27]采用工業(yè)化多層碳納米管,合成了具有連續(xù)均一介孔的silicalite-1分子篩,其介孔孔道貫穿整個(gè)晶體。Schmidt F等[28]采用碳納米管合成的多級(jí)孔SAPO-34分子篩,與碳納米顆粒合成的樣品相比,正丁烷吸附和甲醇轉(zhuǎn)化性能明顯改善,歸因于多級(jí)孔體系可接近性的提高。
Tao Y等[29-31]以苯二酚和甲醛制備的氣凝膠為模板劑,制備了多級(jí)孔分子篩,相關(guān)介孔孔道連通性較好,孔徑分布窄,與碳?xì)饽z的孔壁厚度相當(dāng)。Li W C等[32]對(duì)該方法進(jìn)行改進(jìn),采用兩步浸漬,制備了機(jī)械穩(wěn)定性高的Silicalite-1樣品。
通過有序介孔硅材料復(fù)制或注入硅凝膠中制備的有序介孔碳材料,近年來作為新型的合成多級(jí)孔分子篩的硬模板劑受到廣泛關(guān)注[33-40]。Yang Z X等[33]和Sakthivel A等[34]使用有序介孔碳CMK-1和CMK-3合成了多級(jí)孔分子篩。Fan Y等[35]以介孔碳CMK-5合成了有序介孔硅鋁材料,其孔壁具有結(jié)晶的分子篩結(jié)構(gòu)。Cho H S等[36]研究了CMK類介孔碳模板劑合成有序介孔MFI分子篩,合成的關(guān)鍵在于孔尺寸、濕度和骨架剛性的匹配。以膠狀介孔硅壓印的有序介孔碳為模板也可合成多級(jí)孔分子篩[37-40]。Fan W等[39]首次報(bào)道了以三維有序介孔碳為模板劑合成三維有序介孔silicalite-1分子篩,但需要水蒸汽輔助晶化,抑制合成過程中分子篩前驅(qū)體從介孔到外表面的遷移。Chen H等[40]采用壓印的三維有序介孔為模板劑,水熱合成了BEA、FAU、LTA和LTL等分子篩,這些分子篩均具有有序的介孔結(jié)構(gòu),孔徑(3~7) nm,但晶化時(shí)間長,成本昂貴,限制其實(shí)際應(yīng)用,可以用于研究多級(jí)孔結(jié)構(gòu)對(duì)催化性能的影響。
從廉價(jià)的糖如蔗糖和葡萄糖中獲取的介孔碳材料也是一種很好的介孔模板劑[41-44]。Kustova M等[41]將糖直接分解形成碳模板劑,制備具有連貫晶內(nèi)介孔的多級(jí)孔分子篩,通過調(diào)節(jié)碳硅比,調(diào)變介孔尺寸,但介孔分布無序。此外,從生物質(zhì)中獲得的含有卵清蛋白的葡萄糖通過水熱碳化制備的含氮碳?xì)饽z也可合成具有晶內(nèi)介孔的ZSM-5分子篩,介孔孔徑(12~16) nm[44]。通過前驅(qū)體比例、溶液體積和合成后熱處理?xiàng)l件調(diào)變含氮碳?xì)饽z的多級(jí)孔道、結(jié)構(gòu)、尺寸和化學(xué)性質(zhì)。
分子篩的介孔結(jié)構(gòu)還可通過其他的硬模板劑合成,如聚苯乙烯微球[45-46]、樹脂微球[47-48]、甲醛樹脂[49-50]、CaCO3[51]和一些生物材料,如細(xì)菌[52]、木屑[53-54]、甘蔗渣[55]等。在合成過程中,分子篩圍繞模板劑以納米晶體團(tuán)聚的形式出現(xiàn)。
2.2軟模板路線
軟模板路線采用了分子尺寸相對(duì)靈活的物種如表面活性劑和聚合物作為介孔模板,常用的方法有晶種硅烷化、有機(jī)硅烷、硅烷基離子聚合物、雙功能多季銨鹽表面活性和雙功能聚合物等。
晶種硅烷化合成多級(jí)孔分子篩是將分子篩凝膠在一定溫度下預(yù)晶化形成晶種,再合成凝膠中添加有機(jī)硅烷如苯基胺基丙基三甲氧基硅烷后水熱晶化[56]。分子篩晶化初始階段添加有機(jī)硅烷,將硅烷固定在分子篩外表面以阻止分子篩晶體長大,合成的ZSM-5多級(jí)孔分子篩由極小的晶體顆粒(<10 nm)交互生長,形成(300~400) nm顆粒,介孔均一,孔徑約4.5 nm。通過合成條件如預(yù)晶化溫度、硅烷化試劑濃度及有機(jī)基團(tuán)尺寸可以調(diào)變納米晶和晶間介孔的尺寸[57-58]。
在晶種硅烷化過程中添加烷氧基物種,如2-丙醇和甲醇,可以降低合成凝膠的黏度,提高硅烷化試劑的疏水作用,改善膠束的穩(wěn)定性,增強(qiáng)有機(jī)硅烷和分子篩晶粒間的相互作用,且烷氧基物種在分子篩晶粒表面發(fā)生烷氧基化反應(yīng),進(jìn)一步抑制分子篩晶粒的生長,改善分子篩的織構(gòu)性質(zhì)[59]。
以帶有正電荷、含有長鏈?zhǔn)杷鶊F(tuán)和可水解烷氧基的兩親有機(jī)硅烷作為介孔模板劑可以一步合成多級(jí)孔ZSM-5分子篩,如3-(三甲氧基硅烷)丙基十六烷基二甲基氯化銨(TPHAC)[60]。正電荷和硅烷基團(tuán)與其他硅鋁物種形成共價(jià)鍵,附著在晶體表面,長鏈?zhǔn)杷鶊F(tuán)形成介孔尺寸的微球抑制晶粒生長。合成的多級(jí)孔ZSM-5顆粒由非常小的納米晶體堆積而成,表面粗糙,介孔尺寸均一,通過調(diào)節(jié)晶化溫度和有機(jī)硅烷分子結(jié)構(gòu)可以調(diào)變介孔尺寸。該方法也可應(yīng)用于其他分子篩上,如以兩親性有機(jī)硅烷或烷基磷酸作為介孔導(dǎo)向劑可以合成具有相對(duì)均一介孔的LTA和SOD分子篩以及磷鋁和硅磷鋁分子篩[61-64]。Inayat A等[65]采用TPHAC合成了多級(jí)孔X分子篩,呈現(xiàn)出“房磚形”納米薄層堆積形貌,可歸因?yàn)門PHA+表面活性和合成凝膠中無機(jī)離子的電荷平衡效應(yīng)相互影響所致。Khaleel M等[66]研究發(fā)現(xiàn),FAU類納米薄層中存在少量EMT結(jié)構(gòu)在導(dǎo)向形成相互貫穿和轉(zhuǎn)角為70.5°的樹葉狀不規(guī)則形貌時(shí)起到關(guān)鍵作用。
Wang H等[67]采用硅烷化聚乙烯亞胺聚合物作為介孔模板劑合成了具有晶內(nèi)介孔的ZSM-5分子篩,聚合物中的SiO3物種使其附著在分子篩前驅(qū)體表面,在晶化初期,通過Si—O—Si共價(jià)鍵連接;隨著分子篩晶體生長,聚合物與分子篩晶體相分離,聚合物形成網(wǎng)狀,與分子篩晶體內(nèi)的骨架通過共價(jià)原子相連,獲得的晶內(nèi)介孔孔徑(2.0~3.0) nm,孔徑分布較窄。
離子型聚合物模板劑能夠高效地與無機(jī)硅物種的負(fù)電荷相匹配,且在堿性條件下穩(wěn)定性高,溫度升至200 ℃也不會(huì)分解。Xiao F S等[68]以四乙基氫氧化銨和聚二烯丙基二甲基氯化銨為模板劑,制備了多級(jí)孔BEA分子篩,與傳統(tǒng)BEA分子篩相比,多級(jí)孔BEA分子篩在烷基化反應(yīng)中表現(xiàn)出高的催化活性,擴(kuò)散性能明顯改善。采用兩親性共聚物聚苯乙烯-co-乙烯基吡啶為模板劑,可以合成具有b-軸取向的多級(jí)孔ZSM-5分子篩,孔徑為(10~50) nm[69]。特定取向介孔的獲得可能是由于在分子篩晶體組裝過程中,聚合物模板劑有利于(010)晶面形成。
雙功能多級(jí)季銨鹽表面活性劑實(shí)現(xiàn)了單一模板劑同時(shí)導(dǎo)向微孔結(jié)構(gòu)和介孔結(jié)構(gòu)。Choi Minkee等[70]采用C22H45N+(CH3)2C6H12N+(CH3)2C6H13(Br-)2為模板劑首次合成了超薄MFI納米薄片分子篩,兩個(gè)親水季銨基團(tuán)通過C6烷基相連,導(dǎo)向形成微孔結(jié)構(gòu),疏水長鏈C22基團(tuán)形成介孔尺寸的膠束,限制分子篩晶體的繼續(xù)生長。該方法可以制備單層或多層的納米薄片分子篩,多層的納米薄片厚度(20~40) nm,由2.0 nm厚的MFI骨架和2.8 nm厚的表面活性劑膠束交叉組成。與多層納米薄片相比,單層納米薄片具有更高的表面積。延長晶化時(shí)間,單層結(jié)構(gòu)通過溶解再結(jié)晶過程向有序多層結(jié)構(gòu)轉(zhuǎn)化[71]。
雙功能多銨表面活性劑結(jié)構(gòu)可以通過調(diào)變銨中心數(shù)量、連接鏈與疏水鏈長度和結(jié)構(gòu),導(dǎo)向形成不同的介孔和微孔結(jié)構(gòu),如以[C18H37-N+(CH3)2-C6H12-N+(CH3)2-C6H12-N+(CH3)2-C18H37][Br-]3(C18-N3-C18)為模板劑,可以合成六方形有序介孔結(jié)構(gòu),介孔尺寸3.5 nm,孔壁厚度1.7 nm,僅為MFI分子篩晶胞尺寸的3/4,具有較大的外表面積。以C22-N4-C22為模板劑時(shí),介孔尺寸3.8 nm,孔壁厚度2.3 nm,具有完整MFI分子篩結(jié)構(gòu)。增加銨中心數(shù)量和在連接基團(tuán)中引入苯環(huán),可以合成具有無序的介孔結(jié)構(gòu)類似BEA骨架結(jié)構(gòu)的微孔分子篩[72]。調(diào)變疏水鏈長度或添加膠束膨脹劑如1,3,5-三甲基苯可以調(diào)變介孔孔壁厚度和孔徑尺寸。
Xu D等[73]將雙苯基或環(huán)烯基引入兩親性模板劑烷基鏈中形成的單季銨鹽,通過π-π堆疊,可以導(dǎo)向合成納米薄片MFI結(jié)構(gòu)分子篩,焙燒后,由于縮聚與常規(guī)MFI結(jié)構(gòu)分子篩的外表面積相似。以具有雙苯基的雙季銨鹽Bola型兩親性模板劑合成納米薄片MFI結(jié)構(gòu)分子篩時(shí),薄片之間存在90°轉(zhuǎn)角,薄片之間相互柱化,焙燒后,外表面積較大。多銨兩親結(jié)構(gòu)作為雙功能模板劑也可以合成多級(jí)孔磷鋁材料及其衍生物,如硅磷鋁、鈷磷鋁和磷鎵材料[74]。
除了表面活性劑,聚合物也是研究較多的合成多級(jí)孔分子篩的雙功能模板劑。Zhu J等[75]以離子型聚合物聚二甲基二烯丙基氯化銨作為雙功能模板劑合成了多級(jí)孔BEA單晶。在合成過程中,聚合物中的季銨鹽基團(tuán)作為微孔導(dǎo)向劑形成分子篩,雖然聚二甲基二烯丙基氯化銨本身不能作為雙功能模板劑自組裝形成介孔尺寸的膠束,但作為致孔劑可以導(dǎo)向形成無序的介孔。通過調(diào)變聚二甲基二烯丙基氯化銨的分子量,可在(4~10) nm調(diào)變介孔尺寸。Jo C等[76]以多銨側(cè)基隨機(jī)分布的線性聚苯乙烯為模板劑合成了多級(jí)孔分子篩和AlPO4結(jié)構(gòu)納米籠,通過靜電力將多銨基團(tuán)和無機(jī)物種中的負(fù)電荷沿著聚合物的長鏈匹配,從而使無機(jī)物種聚合形成介孔結(jié)構(gòu)凝膠。而多銨基團(tuán)在分子篩晶化過程中起到了微孔模板劑的作用,聚合物主干聚集在分子篩晶體表面,限制分子篩晶體生長,晶體厚度僅幾個(gè)納米,通過調(diào)變多銨基團(tuán)數(shù)目可以調(diào)變介孔尺寸。
Choi M等[77]以一種偽同晶生長的新方法合成具有晶內(nèi)介孔的納米晶分子篩,該方法以環(huán)狀雙季銨鹽(CDA)為結(jié)構(gòu)導(dǎo)向劑,抑制合成過程中硅物種的遷移,合成由約20 nm晶體堆積形成的BEA分子篩,具有較大的介孔體積、微孔體積和外表面積。以硅藻土為硅源時(shí),進(jìn)一步證明了CDA對(duì)硅物種遷移的抑制作用,晶化過程中保留了初始的大孔結(jié)構(gòu),形成微孔-介孔-大孔類型孔。改變CDA的結(jié)構(gòu)還可以合成具有晶內(nèi)介孔的MFI和MTW納米晶[78]。
淀粉[79-82]和糖[83-84]也可以作為合成多級(jí)孔分子篩的模板劑,且成本較低,但其導(dǎo)向形成的介孔位于分子篩晶體內(nèi)部,連通性較低,對(duì)于改善氣體分子的擴(kuò)散性能有限。以軟模板劑制備多級(jí)孔分子篩的優(yōu)點(diǎn)是較容易通過模板劑的體積調(diào)變介孔尺寸,但通過焙燒移除模板劑,生成介孔,模板劑不能重復(fù)利用,成本較高,限制其大規(guī)模應(yīng)用。
3重結(jié)晶
將分子篩溶解,在表面活性劑存在下,重結(jié)晶使分子篩骨架重排可以制備有序多級(jí)孔分子篩,但需要精細(xì)控制合成條件,否則得到的是分子篩和介孔氧化物的簡單復(fù)合[85-89]。
Ivanova I I等[85]以NaOH和十六烷基三甲基溴化銨處理絲光分子篩,隨著堿溶液濃度的增加,微孔孔容逐漸降低,甚至完全消失,介孔孔容逐漸增至0.93 cm3·g-1。通過苛刻的處理,分子篩可以完全移除,形成有序介孔MCM-41結(jié)構(gòu)。在溫和條件下,采用低NaOH濃度,絲光分子篩重結(jié)晶可以形成多級(jí)孔結(jié)構(gòu)。進(jìn)一步研究表明,介孔分為兩類,一類是溶解的物種在表面活性劑膠束導(dǎo)向下形成的(3~4) nm孔;另一類是在堿性條件下脫硅形成的(3~20) nm孔[89]。Yoo W C等[90]通過脫硅和重結(jié)晶自組裝過程制備介孔ZSM-5分子篩的過程中發(fā)現(xiàn)了雙介孔結(jié)構(gòu)。
Garcia-Martinez J等[91]采用氨水和十六烷基三甲基溴化銨,在溫度150 ℃對(duì)Y分子篩水熱處理(10~12) h,制備具有均一晶內(nèi)介孔的多級(jí)孔Y分子篩,通過表面活性劑的碳鏈尺寸調(diào)變介孔尺寸。在表面活性劑條件下,堿引發(fā)Si—O—Si鍵斷裂,使分子篩晶體結(jié)構(gòu)發(fā)生重組。制備的多級(jí)孔USY分子篩性能與軟模板劑制備的樣品相比,具有更高的汽油和輕質(zhì)油品收率和更低的重質(zhì)油品與焦炭產(chǎn)率,產(chǎn)物選擇性的提高歸因于介孔結(jié)構(gòu)的引入,改善了擴(kuò)散性能。
4結(jié)語與展望
多級(jí)孔分子篩的合成方法分為后處理脫除骨架元素、原位合成和重結(jié)晶。后處理脫除骨架元素主要有蒸汽處理和化學(xué)處理,蒸汽處理和酸處理可以脫除骨架鋁物種,堿處理可以脫除骨架硅物種,通常蒸汽處理和堿處理后再進(jìn)行酸處理,可以有效脫除鋁物種,避免處理過程中形成的無定形硅鋁堵塞分子篩的孔道。原位合成多級(jí)孔分子篩主要分為硬模板法和軟模板路線,其優(yōu)點(diǎn)可以通過模板劑尺寸調(diào)變介孔尺寸。分子篩堿處理重結(jié)晶方法制備的多級(jí)孔分子篩,對(duì)微孔的保留最好。
后處理脫除骨架元素和分子篩堿處理重結(jié)晶需要對(duì)過程精細(xì)調(diào)變才可以制備多級(jí)孔分子篩,重復(fù)性差,而原位合成法中添加的模板劑價(jià)格較高,合成過程復(fù)雜,限制其實(shí)際應(yīng)用。雖然在多級(jí)孔分子篩的合成領(lǐng)域已經(jīng)取得了突破性進(jìn)展,但尋求低成本、環(huán)保、易控制和適應(yīng)強(qiáng)的合成方法仍然是目前研究的重點(diǎn)。
參考文獻(xiàn):
[1]Perez-Ramirez J,Christensen C H,Egeblad K,et al.Hierarchical zeolites:enhanced utilisation of microporous crystals in catalysis by advances in materials design[J].Chemical Society Reviews,2008,37(11):2530-2542.
[2]Kloetstra K R,Zandbergen H W,Jansen J C,et al.Overgrowth of mesoporous MCM-41 on faujasite[J].Microporous Materials,1996,6(5/6):287-293.
[3]Donk S van,Janssen A H,Bitter J H,et al.Generation,characterization,and impact of mesopores in zeolite catalysts[J].Catalysis Reviews,2003,45(2):297-319.
[4]Agostini G,Lamberti C,Palin L,et al.In situ XAS and XRPD parametric rietveld refinement to understand dealumination of Y zeolite catalyst[J].Journal of the American Chemical Society,2010,132(2):667-678.
[5]Karwacki L,de Winter D A M,Aramburo L R,et al.Architecture-dependent distribution of mesopores in steamed zeolite crystals as visualized by FIB-SEM tomography[J].Angewandte Chemie International Edition,2011,50(6):1294-1298.
[6]Roberge D M,Hausmann H,Holderich W F.Dealumination of zeolite beta by acid leaching:a new insight with two-dimensional multi-quantum and cross polarization27Al MAS NMR[J].Physical Chemistry Chemical Physics,2002,4(13):3128-3135.
[7]Chung K H.Dealumination of mordenites with acetic acid and their catalytic activity in the alkylation of cumene[J].Microporous and Mesoporous Materials,2008,111(1/3):544-550.
[8]Tromp M,Van Bokhoven J A,Garriga Oostenbrink M T,et al.Influence of the generation of mesopores on the hydroisomerization activity and selectivity ofn-hexane over Pt/mordenite[J].Journal of Catalysis,2000,190(2):209-214.
[9]Chal R,Gérardin C,Bulut M,et al.Overview and industrial assessment of synthesis strategies towards zeolites with mesopores[J].ChemCatChem,2011,3(1):67-81.
[10]Ogura M,Shinomiya S Y,Tateno J,et al.Formation of uniform mesopores in ZSM-5 zeolite through treatment in alkaline solution[J].Chemistry Letters,2000,29(8):882-883.
[11]Johan C Groen,Moulijn J A,Louk A A Peffer,et al.Mechanism of hierarchical porosity development in MFI zeolites by desilication:the role of aluminium as a pore-directing agent[J].Chemistry A European Journal,2005,11(17):4983-4994.
[12]Groen J C,Bach T,Ziese U,et al.Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals[J].Journal of the American Chemical Society,2005,127(31):10792-10793.
[13]Groen J C,Zhu W,Brouwer S,et al.Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication[J].Journal of the American Chemical Society,2006,129(2):355-360.
[14]Svelle S,Sommer L,Barbera K,et al.How defects and crystal morphology control the effects of desilication[J].Catalysis Today,2011,168:38-47.
[15]Verboekend D,Mitchell S,Milina M,et al.Full compositional flexibility in the preparation of mesoporous MFI zeolites by desilication[J].The Journal of Physical Chemistry C,2011,115(29):14193-14203.
[16]Pérez-Ramírez J,Abelló S,Bonilla A,et al.Tailored mesoporosity development in zeolite crystals by partial detemplation and desilication[J].Advanced Functional Materials,2009,19(1):164-172.
[17]Van Laak A N C,Zhang L,Parvulescu A N,et al.Alkaline treatment of template containing zeolites:introducing mesoporosity while preserving acidity[J].Catalysis Today,2011,168(1):48-56.
[18]Li X,Prins R,Van Bokhoven J A.Synthesis and characterization of mesoporous mordenite[J].Journal of Catalysis,2009,262(2):257-265.
[19]Van Laak A N C,Sagala S L,Ze?evi? J,et al.Mesoporous mordenites obtained by sequential acid and alkaline treatments-catalysts for cumene production with enhanced accessibility[J].Journal of Catalysis,2010,276(1):170-180.
[20]Verboekend D,Keller T C,Milina M,et al.Hierarchy brings function:mesoporous clinoptilolite and L zeolite catalysts synthesized by tandem acid-base treatments[J].Chemistry of Materials,2013,25(9):1947-1959.
[21]de Jong Krijn P,Heiner Friedrich,de Jongh Petra E,et al.Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts[J].Angewandte Chemie International Edition,2010,49:10074-10078.
[22]Pérez-Ramírez J,Verboekend D,Bonilla A,et al.Zeolite catalysts with tunable hierarchy factor by pore-growth moderators[J].Advanced Functional Materials,2009,19(24):3972-3979.
[23]Abelló S,Bonilla A,Pérez-Ramírez J.Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching[J].Applied Catalysis A:General,2009,364(1/2):191-198.
[24]Verboekend D,Vile G,Perez-Ramirez J.Hierarchical Y and USY zeolites designed by post-synthetic strategies[J].Advanced Functional Materials,2012,22(5):916-928.
[25]Verboekend D,Vilé G, Pérez-Ramírez J.Mesopore formation in USY and beta zeolites by base leaching:selection criteria and optimization of pore-directing agents[J].Crystal Growth & Design,2012,12(6):3123-3132.
[26]Jacobsen C J H,Madsen C,Houzvicka J,et al.Mesoporous zeolite single crystals[J].Journal of the American Chemical Society,2000,122(29):7116-7117.
[27]Schmidt I,Boisen A,Gustavsson E,et al.Carbon nanotube templated growth of mesoporous zeolite single crystals[J].Chemistry of Materials,2001,13(12):4416-4418.
[28]Schmidt F,Paasch S,Brunner E,et al.Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction[J].Microporous and Mesoporous Materials,2012,164(4):214-221.
[29]Tao Y,Kanoh H,Kaneko K.ZSM-5 monolith of uniform mesoporous channels[J].Journal of the American Chemical Society,2003,125(20):6044-6045.
[30]Tao Y,Kanoh H,Kaneko K.Uniform mesopore-donated zeolite Y using carbon aerogel templating[J].The Journal of Physical Chemistry B,2003,107(40):10974-10976.
[31]Tao Y,Kanoh H,Kaneko K.Synthesis of mesoporous zeolite a by resorcinol-formaldehyde aerogel templating[J].Langmuir,2005,21(2):504-507.
[32]Li W C,Lu A H,Palkovits R,et al.Hierarchically structured monolithic silicalite-1 consisting of crystallized nanoparticles and its performance in the beckmann rearrangement of cyclohexanone oxime[J].Journal of the American Chemical Society,2005,127(36):12595-12600.
[33]Yang Z X,Xi Y D,Mokaya R.Zeolite ZSM-5 with unique supermicropores synthesized using mesoporous carbon as a template[J].Advanced Materials,2004,16(8):727-732.
[34]Sakthivel A,Huang S J,Chen W H,et al.Replication of mesoporous aluminosilicate molecular sieves (RMMs) with zeolite framework from mesoporous carbons(CMKs)[J].Chemistry of Materials,2004,16(16):3168-3175.
[35]Fang Y,Hu H.An ordered mesoporous aluminosilicate with completely crystalline zeolite wall structure[J].Journal of the American Chemical Society,2006,128(33):10636-10637.
[36]Cho H S,Ryoo R.Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates[J].Microporous and Mesoporous Materials,2012,151:107-112.
[37]Kim S S,Shah J,Pinnavaia T J.Colloid-imprinted carbons as templates for the nanocasting synthesis of mesoporous ZSM-5 zeolite[J].Chemistry of Materials,2003,15(8):1664-1668.
[38]Li H,Sakamoto Y,Liu Z,et al.Mesoporous silicalite-1 zeolite crystals with unique pore shapes analogous to the morphology[J].Microporous and Mesoporous Materials,2007,106(1/3):174-179.
[39]Fan W,Snyder M A,Kumar S,et al.Hierarchical nanofabrication of microporous crystals with ordered mesoporosity[J].Nat Mater,2008,7(12):984-991.
[40]Chen H,Wydra J,Zhang X,et al.Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure[J].Journal of the American Chemical Society,2011,133(32):12390-12393.
[41]Kustova M,Egeblad K,Zhu K,et al.Versatile route to zeolite single crystals with controlled mesoporosity:in situ sugar decomposition for templating of hierarchical zeolites[J].Chemistry of Materials,2007,19(12):2915-2917.
[42]Zhu K,Egeblad K,Christensen C H.Mesoporous carbon prepared from carbohydrate as hard template for hierarchical zeolites[J].European Journal of Inorganic Chemistry,2007,2007(25):3955-3960.
[43]Wang X,Li G,Wang W,et al.Synthesis,characterization and catalytic performance of hierarchical TS-1 with carbon template from sucrose carbonization[J].Microporous and Mesoporous Materials,2011,142(2/3):494-502.
[44]White R J,Fischer A,Goebel C,et al.A sustainable template for mesoporous zeolite synthesis[J].Journal of the American Chemical Society,2014,136(7):2715-2718.
[45]Holland B T,Abrams L,Stein A.Dual templating of macroporous silicates with zeolitic microporous frameworks[J].Journal of the American Chemical Society,1999,121(17):4308-4309.
[46]Rhodes K H,Davis S A,Caruso F,et al.Hierarchical assembly of zeolite nanoparticles into ordered macroporous monoliths using core-shell building blocks[J].Chemistry of Materials,2000,12(10):2832-2834.
[47]Naydenov V,Tosheva L,Sterte J.Palladium-containing zeolite beta macrostructures prepared by resin macrotemplating[J].Chemistry of Materials,2002,14(12):4881-4885.
[48]Naydenov V,Tosheva L,Sterte J.Vanadium modified AlPO-5 spheres through resin macrotemplating[J].Microporous and Mesoporous Materials,2003,66(2/3):321-329.
[49]Kang Y,Shan W,Wu J,et al.Uniform nanozeolite microspheres with large secondary pore architecture[J].Chemistry of Materials,2006,18(7):1861-1866.
[50]Shi Y,Li X,Hu J,et al.Zeolite microspheres with hierarchical structures:formation,mechanism and catalytic performance[J].Journal of Materials Chemistry,2011,21(40):16223-16230.
[51]Zhu H,Liu Z,Wang Y,et al.Nanosized CaCO3as hard template for creation of intracrystal pores within silicalite-1 crystal[J].Chemistry of Materials,2008,20(3):1134-1139.
[52]Zhang B,Davis S A,Mendelson N H,et al.Bacterial templating of zeolite fibres with hierarchical structure[J].Chemical Communications,2000,(9):781-782.
[53]Dong A,Wang Y,Tang Y,et al.Zeolitic tissue through wood cell templating[J].Advanced Materials,2002,14(12):926-929.
[54]de laI glesiaó,Sánchez J L,Coronas J.Hierarchical silicalite-1 structures based on pyrolized materials[J].Materials Letters,2011,65(19/20):3124-3127.
[55]Ocampo F,Cunha J A,de Lima Santos M R,et al.Synthesis of zeolite crystals with unusual morphology application in acid catalysis[J].Applied Catalysis A:General,2010,390(1/2):102-109.
[56]Serrano D P,Aguado J,Escola J M,et al.Hierarchical zeolites with enhanced textural and catalytic properties synthesized from organofunctionalized seeds[J].Chemistry of Materials,2006,18(10):2462-2464.
[57]Serrano D P,Aguado J,Morales G,et al.Molecular and meso-and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization[J].Chemistry of Materials,2009,21(4):641-654.
[58]Serrano D P,Aguado J,Escola J M,et al.Effect of the organic moiety nature on the synthesis of hierarchical ZSM-5 from silanized protozeolitic units[J].Journal of Materials Chemistry,2008,18(35):4210-4218.
[59]Serrano D P,Aguado J,Escola J M,et al.Synthesis of hierarchical ZSM-5 by silanization and alkoxylation of protozeolitic units[J].Catalysis Today,2011,168(1):86-95.
[60]Minkee Chol H S C,Rajendra Srivastava,Chithracel Venkatesan,et al.Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity[J].Nature Materials,2006,5(9):718-723.
[61]Shanbhag G V,Choi M,Kim J,et al.Mesoporous sodalite:a novel,stable solid catalyst for base-catalyzed organic transformations[J].Journal of Catalysis,2009,264(1):88-92.
[62]Choi M,Srivastava R,Ryoo R.Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks[J].Chemical Communications,2006,(42):4380-4382.
[63]Cho K,Cho H S,Meenorval L C de,et al.Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application[J].Chemistry of Materials,2009,21(23):5664-5673.
[64]Fan Y,Xiao H,Shi G,et al.Alkylphosphonic acid and small amine-templated synthesis of hierarchical silicoaluminophosphate molecular sieves with high isomerization selectivity to di-branched paraffins[J].Journal of Catalysis,2012,285(1):251-259.
[65]Inayat A,Knoke I,Spiecker E,et al.Assemblies of mesoporous FAU-type zeolite nanosheets[J].Angewandte Chemie International Edition,2012,51(8):1962-1965.
[66]Khaleel M,Wagner A J,Mkhoyan K A,et al.On the rotational intergrowth of hierarchical FAU/EMT zeolites[J].Angewandte Chemie International Edition,2014,53(36):9456-9461.
[67]Wang H,Pinnavaia T J.MFI zeolite with small and uniform intracrystal mesopores[J].Angewandte Chemie International Edition,2006,45(45):7603-7606.
[68]Xiao F S,Wang L,Yin C,et al.Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers[J].Angewandte Chemie International Edition,2006,45(19):3090-3093.
[69]Liu F,Willhammar T,Wang L,et al.ZSM-5 zeolite single crystals withb-axis-aligned mesoporous channels as an efficient catalyst for conversion of bulky organic molecules[J].Journal of the American Chemical Society,2012,134(10):4557-4560.
[70]Minkee Choi,Kyungsu Na,Jeongnam Kim,et al.Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J].Nature Letters,2009,461(10):246-250.
[71]Na K,Park W,Seo Y,et al.Disordered assembly of MFI zeolite nanosheets with a large volume of intersheet mesopores[J].Chemistry of Materials,2011,23(5):1273-1279.
[72]Na K,Jo C,Kim J,et al.Directing zeolite structures into hierarchically nanoporous architectures[J].Science,2011,333(6040):328-332.
[73]Xu D,Ma Y,Jing Z,et al.π-π Interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets[J].Nature Communicationsis,2014,5:4262.
[74]Seo Y,Lee S,Jo C,et al.Microporous aluminophosphate nanosheets and their nanomorphic zeolite analogues tailored by hierarchical structure-directing amines[J].Journal of the American Chemical Society,2013,135(24):8806-8809.
[75]Zhu J,Zhu Y,Zhu L,et al.Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template[J].Journal of the American Chemical Society,2014,136(6):2503-2510.
[76]Jo C,Seo Y,Cho K,et al.Random-graft polymer-directed synthesis of inorganic mesostructures with ultrathin frameworks[J].Angewandte Chemie International Edition,2014,53(20):5117-5121.
[77]Choi M,Na K,Ryoo R.The synthesis of a hierarchically porous BEA zeolitevia pseudomorphic crystallization[J].Chemical Communications,2009,(20):2845-2847.
[78]Na K,Choi M,Ryoo R.Cyclic diquaternary ammoniums for nanocrystalline BEA,MTW and MFI zeolites with intercrystalline mesoporosity[J].Journal of Materials Chemistry,2009,19(37):6713-6719.
[79]Liu Y,Zhang W,Liu Z,et al.Direct observation of the mesopores in ZSM-5 zeolites with hierarchical porous structures by laser-hyperpolarized 129Xe NMR[J].The Journal of Physical Chemistry C,2008,112(39):15375-15381.
[80]Mei C,Wen P,Liu Z,et al.Selective production of propylene from methanol:mesoporosity development in high silica HZSM-5[J].Journal of Catalysis,2008,258(1):243-249.
[81]Wang L,Yin C,Shan Z,et al.Bread-template synthesis of hierarchical mesoporous ZSM-5 zeolite with hydrothermally stable mesoporosity[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,340(1/3):126-130.
[82]Tao H,Li C,Ren J,et al.Synthesis of mesoporous zeolite single crystals with cheap porogens[J].Journal of Solid State Chemistry,2011,184(7):1820-1827.
[83]Wang W,Li G,Liu L,et al.Synthesis and catalytic performance of hierarchical TS-1 directly using agricultural products sucrose as meso/macropores template[J].Microporous and Mesoporous Materials,2013,179:165-171.
[84]Nandan D,Saxena S K,Viswanadham N.Synthesis of hierarchical ZSM-5 using glucose as a templating precursor[J].Journal of Materials Chemistry A,2014,2(4):1054-1059.
[85]Ivanova I I,Kuznetsov A S,Yuschenko V V,et al.Design of composite micro/mesoporous molecular sieve catalysts[J].Pure and Applied Chemistry,2004,76(9):1647-1658.
[86]Wang S,Dou T,Li Y,et al.A novel method for the preparation of MOR/MCM-41 composite molecular sieve[J].Catalysis Communications,2005,6(1):87-91.
[87]Ordomsky V V,Murzin V Y,Monakhova Y V,et al.Nature,strength and accessibility of acid sites in micro/mesoporous catalysts obtained by recrystallization of zeolite BEA[J].Microporous and Mesoporous Materials,2007,105(1/2):101-110.
[88]Ivanova I I,Kuznetsov A S,Knyazeva E E,et al.Design of hierarchically structured catalysts by mordenites recrystallization:application in naphthalene alkylation[J].Catalysis Today,2011,168(1):133-139.
[89]Khitev Y P,Kolyagin Y G,Ivanova I I,et al.Synthesis and catalytic properties of hierarchical micro/mesoporous materials based on FER zeolite[J].Microporous and Mesoporous Materials,2011,146(1/3):201-207.
[90]Yoo W C,Zhang X,Tsapatsis M,et al.Synthesis of mesoporous ZSM-5 zeolites through desilication and re-assembly processes[J].Microporous and Mesoporous Materials,2012,149(1):147-157.
[91]Garcia-Martinez J,Johnson M,Valla J,et al.Mesostructured zeolite Y-high hydrothermal stability and superior FCC catalytic performance[J].Catalysis Science & Technology,2012,2(5):987-994.
CLC number:TQ426.65;TQ424.25Document code: AArticle ID: 1008-1143(2016)03-0010-09
Research advance in synthesis of hierarchical molecular sieves
LiuXiaoling,JiangJianzhun,ZhangMingsen*
(Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, China)
Abstract:Constructing hierarchical molecular sieves is an important method to enhance accessibility of molecular sieves and the research hotspot in catalytic field. A great number of synthetic methods for adjusting the pore structure of hierarchical molecular sieves were developed. The synthetic researches on hierarchical molecular sieves were reviewed from three different aspects as follows:demetalization, in-situ crystallization and recrystallization. Demetalization mainly included steaming treatment and chemical treatment. In-situ crystallization included hard template and soft template methods. Recrystallization was a method of synthesizing hierarchical molecular sieves, which was obtained by the alkali treatment of zeolite crystal under the existence of surfactants. In addition, the prospect of hierarchical molecular sieves was also outlined.
Key words:catalyst engineering; hierarchical molecular sieves; demetalization; in-situ synthesis; recrystallization
中圖分類號(hào):TQ426.65;TQ424.25
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1008-1143(2016)03-0010-09
doi:10.3969/j.issn.1008-1143.2016.03.002 10.3969/j.issn.1008-1143.2016.03.002
作者簡介:劉曉玲,1984年生,女,河北省冀州市人,博士,研究方向?yàn)楣I(yè)催化。
收稿日期:2015-09-14;修回日期:2015-11-18
通訊聯(lián)系人:張明森。