白美健,李益農(nóng),涂書(shū)芳,劉群昌(1. 國(guó)家節(jié)水灌溉工程技術(shù)研究中心(北京),北京 100048; 2. 中國(guó)水利水電科學(xué)研究院水利所,北京 100048)
?
畦灌關(guān)口時(shí)間優(yōu)化改善灌水質(zhì)量分析
白美健,李益農(nóng),涂書(shū)芳,劉群昌
(1. 國(guó)家節(jié)水灌溉工程技術(shù)研究中心(北京),北京 100048;2. 中國(guó)水利水電科學(xué)研究院水利所,北京 100048)
摘要:灌溉關(guān)口時(shí)間是灌溉管理中的重要要素之一,合理關(guān)口時(shí)間的確定能有效改善田間灌水質(zhì)量。該文在提出畦灌控制指標(biāo)R和畦灌關(guān)口時(shí)間優(yōu)化方法的基礎(chǔ)上,將畦灌模擬模型與關(guān)口時(shí)間優(yōu)化方法相結(jié)合,對(duì)土質(zhì)、畦長(zhǎng)、坡度、田面平整精度和入流量不同的106 176個(gè)灌溉事件進(jìn)行灌溉模擬及關(guān)口時(shí)間尋優(yōu)分析,提出了不同灌溉條件下畦灌關(guān)口控制模式。畦長(zhǎng)小于70 m下R值不宜小于1,若同時(shí)坡度大于3‰且田面平整精度很好則R值不宜小于1.1;畦長(zhǎng)大于70 m下坡度小于1‰時(shí),R的范圍為0.8~1;坡度大于1‰時(shí),R的范圍為0.75~0.95。研究結(jié)果對(duì)畦灌關(guān)口控制依據(jù)具有重要的指導(dǎo)意義,實(shí)際灌溉中R準(zhǔn)確取值可參考表2給出的建議值。
關(guān)鍵詞:灌溉;調(diào)控;模型;畦灌控制;關(guān)口控制指標(biāo);灌溉模擬;最優(yōu)關(guān)口時(shí)間;灌水質(zhì)量
白美健,李益農(nóng),涂書(shū)芳,劉群昌. 畦灌關(guān)口時(shí)間優(yōu)化改善灌水質(zhì)量分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(2):105-110. doi:10.11975/j.issn.1002-6819.2016.02.016http://www.tcsae.org
Bai Meijian, Li Yinong, Tu Shufang, Liu Qunchang. Analysis on cutoff time optimization of border irrigation to improve irrigated water quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 105-110. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.02.016http://www.tcsae.org
畦灌是目前中國(guó)應(yīng)用最為廣泛的田間灌水方法,但現(xiàn)有畦灌田間管理粗放,灌溉水及肥利用率普遍偏低。優(yōu)化畦灌技術(shù)要素,提高田間灌溉管理水平具有較大節(jié)水潛力。圍繞灌水技術(shù)要素的優(yōu)化國(guó)內(nèi)外開(kāi)展了大量研究工作,許多學(xué)者[1-6]將田間試驗(yàn)與數(shù)值模擬相結(jié)合分析了不同地形和流量條件下,畦灌系統(tǒng)優(yōu)化布局模式,得出了適合不同地域條件的最優(yōu)灌水技術(shù)要素組合。但對(duì)于條件各異的畦田適宜的灌水時(shí)間的確定也是提高田間灌水效率的重要措施。以往的研究通常采用改水成數(shù)作為灌溉關(guān)口控制依據(jù),大量研究結(jié)果表明改水成數(shù)對(duì)灌溉性能影響顯著。Hector[7]模擬研究表明改水成數(shù)對(duì)灌水效率和尾部棄水量影響明顯;Santos[8]在分析入流量和改水成數(shù)對(duì)灌水均勻度影響的基礎(chǔ)上,給出了研究區(qū)最適宜的入流量和改水成數(shù)組合;王維漢[9]分析了畦灌改水成數(shù)及控制誤差對(duì)灌水質(zhì)量的影響,結(jié)果表明隨著改水成數(shù)的增加,灌水效率逐漸減小,灌水均勻度增加,且其影響趨勢(shì)與入流量大小關(guān)系明顯。現(xiàn)有關(guān)于合理關(guān)口時(shí)間方面的研究多針對(duì)典型條件,且主要考慮關(guān)口距離小于畦長(zhǎng)的情況。目前中國(guó)多數(shù)地方采用小畦灌,畦長(zhǎng)小于100 m的畦田比例較大,部分畦田為了達(dá)到較佳的灌水質(zhì)量,關(guān)口時(shí)間需要晚于水流推進(jìn)到畦尾的時(shí)間,此時(shí)不宜采用改水成數(shù)作為關(guān)口依據(jù);另一方面現(xiàn)有相關(guān)規(guī)范給出了畦灌改水成數(shù)不宜低于0.75,但合理的改水成數(shù)受田面平整精度、坡度、畦長(zhǎng)和入流量等多因素影響,針對(duì)不同灌溉條件采取何種關(guān)口控制指標(biāo),目前沒(méi)有系統(tǒng)的成果可供參考。為此,本文旨在提出更為全面的灌溉關(guān)口控制指標(biāo)的基礎(chǔ)上,通過(guò)系統(tǒng)模擬分析給出任意灌溉條件下的灌溉關(guān)口控制依據(jù)。
1.1數(shù)值模擬試驗(yàn)設(shè)計(jì)
灌溉模擬試驗(yàn)中考慮土質(zhì)、田面平整精度,同一田面平整精度下微地形空間分布差異,畦田長(zhǎng)度、田面坡度和入畦單寬流量6個(gè)要素。土質(zhì)考慮砂壤土和黏壤土2種,根據(jù)相關(guān)文獻(xiàn)[10-13]和研究團(tuán)隊(duì)在華北、西北和東北等多地的入滲實(shí)測(cè)值,對(duì)砂壤土、黏壤土的入滲參數(shù)k,ɑ和f0進(jìn)行取值,即砂壤土:k=55 mm/ha,ɑ=0.4,f0=24 mm/h;黏壤土:k=73 mm/ha,ɑ=0.33,f0=2.4 mm/h;田面平整精度Sd取5個(gè)水平:2、3、4、5和6 cm,根據(jù)白美?。?007)[14]的研究結(jié)果,不同田面平整精度下考慮微地形空間分布差異時(shí),Sd=2、3、4、5和6 cm下需隨機(jī)生成的田面微地形分布分別為4、12、15、20和28組;畦長(zhǎng)L取16個(gè)水平,最小值為50 m,最大值為200 m,每個(gè)水平間隔10 m;田面坡度Sp取6個(gè)水平:0、1‰、2‰、3‰、4‰和5‰;入畦單寬流量q取7個(gè)水平:2、3、4、5、6、7和8 L/s。對(duì)上述灌溉要素及水平進(jìn)行排列組合得到106 176個(gè)灌溉事件。對(duì)各設(shè)計(jì)灌溉事件進(jìn)行數(shù)值模擬時(shí),灌溉關(guān)口時(shí)間采取最優(yōu)關(guān)口時(shí)間優(yōu)化方法進(jìn)行確定(優(yōu)化方法見(jiàn)1.5(流程見(jiàn)圖1)),田面糙率系數(shù)根據(jù)以往田間灌溉試驗(yàn)資料,綜合考慮土質(zhì)、作物和田面平整條件等影響取均值0.1。同一田面平整精度下n組微地形空間分布會(huì)模擬得到相應(yīng)的n組灌溉性能指標(biāo)值,分析某一平整精度下的灌溉性能指標(biāo)值時(shí),取n組微地形分布對(duì)應(yīng)的灌溉性能指標(biāo)值的均值。
圖1 畦灌最優(yōu)關(guān)口時(shí)間計(jì)算流程Fig.1 Calculation flow diagram of optimum cutoff time for basin irrigation
1.2畦灌關(guān)口控制指標(biāo)
灌溉關(guān)口時(shí)間是地面灌溉管理中主要的控制參數(shù),其適宜值受畦長(zhǎng)、田面平整狀況、田面坡度、入畦流量等要素影響顯著,對(duì)于任意給定田塊很難直接給出地面灌溉技術(shù)要素約束下的最優(yōu)關(guān)口時(shí)間?;诤?jiǎn)單可行、易于指導(dǎo)用戶進(jìn)行合理灌溉為原則,本研究采用改水成數(shù)和灌溉延時(shí)率作為畦灌關(guān)口控制指標(biāo)R。對(duì)于水流不需要推到畦尾就關(guān)口的畦田采用改水成數(shù)作為關(guān)口控制指標(biāo),指標(biāo)值R為關(guān)口時(shí)水流推進(jìn)距離與畦長(zhǎng)的比值,其值小于1;對(duì)于水流推到畦尾后才能關(guān)口的畦田采用灌溉延時(shí)率作為關(guān)口控制指標(biāo),指標(biāo)值R為灌溉關(guān)口時(shí)間與水流推進(jìn)到畦尾所需時(shí)間的比值,其值大于1。
1.3畦灌模擬模型
本研究采用基于混合數(shù)值解法的一維全水動(dòng)力學(xué)畦灌模型[15]對(duì)畦灌水流運(yùn)動(dòng)過(guò)程進(jìn)行模擬。模型輸入?yún)?shù)為:畦田規(guī)格、田面各點(diǎn)高程、入畦單寬流量、關(guān)口時(shí)間、Kostiakov入滲參數(shù)及糙率系數(shù)、作物灌溉需水量;模型輸出結(jié)果為:田面各點(diǎn)水流推進(jìn)、消退時(shí)間,地表水深,入滲深度;灌水效率、灌水均勻度和儲(chǔ)水效率等。
一維全水動(dòng)力學(xué)模型方程
式中x為水平向坐標(biāo),m;t為水流運(yùn)動(dòng)時(shí)間,s;h為地表水深,m;g為重力加速度,m/s2;U為沿x水平坐標(biāo)向的垂向均布流速,m/s;q為沿x水平坐標(biāo)向的單寬流量,m3/(s·m);ic為地表水入滲率,m3/(s·m2);b為畦面高程,m;n為曼寧糙率系數(shù),m/s1/3。
1.4畦灌性能評(píng)價(jià)指標(biāo)
本研究采用灌水效率Ea、灌水均勻度CU(Irrigation uniformity)和儲(chǔ)水效率Es對(duì)灌溉性能進(jìn)行評(píng)價(jià)。計(jì)算公式如下
式中hi為灌后儲(chǔ)存在根區(qū)的平均灌水深度,m;Zavg為畦田內(nèi)平均灌水深度,m;Zi為田面各點(diǎn)的灌水深度,m;Zreq為作物灌溉需水量,m。
1.5畦灌最優(yōu)關(guān)口時(shí)間的確定方法
依據(jù)地面灌溉水流運(yùn)動(dòng)特點(diǎn),農(nóng)戶在實(shí)際灌溉時(shí)最基本的要求是灌溉水流能覆蓋田面各點(diǎn),及最小入滲水深Zmin>0,同時(shí)基于《地面灌溉工程技術(shù)管理規(guī)程》的要求,灌溉不能使田面各點(diǎn)都滿足作物需水量時(shí),建議儲(chǔ)水效率(Es)不應(yīng)低于80%?;谝陨显瓌t,以Zmin>0 和Es>80%為目標(biāo)函數(shù),根據(jù)圖1流程,自動(dòng)尋求各設(shè)計(jì)灌溉事件下最優(yōu)關(guān)口時(shí)間,獲得相應(yīng)的灌溉性能指標(biāo)值和灌溉關(guān)口控制指標(biāo)值。
1.6田間驗(yàn)證試驗(yàn)田塊基本信息
為了評(píng)價(jià)本研究分析提出的畦灌關(guān)口控制模式的合理性,選取了研究團(tuán)隊(duì)以往在山東、河北和新疆等地實(shí)測(cè)的具有不同畦長(zhǎng)、坡度、田面平整精度和入畦單寬流量的典型田塊進(jìn)行對(duì)比分析。典型田塊灌溉基本資料見(jiàn)表1。
表1 典型田塊灌溉基本信息Table 1 Basic irrigation information of typical fields
2.1灌溉關(guān)口控制指標(biāo)值對(duì)灌溉技術(shù)要素的響應(yīng)分析
圖2a~d分別給出了粘壤土質(zhì)下不同田面平整精度、入畦單寬流量、和畦長(zhǎng)下灌溉關(guān)口控制指標(biāo)值R隨坡度的變化曲線??傮w來(lái)看,R隨畦長(zhǎng)增加而減小,但大于50 m后趨勢(shì)變?nèi)?,不同畦長(zhǎng)間差異不明顯;R隨坡度先略微減小后增加,多數(shù)條件下坡度為0.002是分界點(diǎn),但田面平整精度較差時(shí),這種趨勢(shì)變?nèi)?;R隨流量增加而略微減小;除短畦坡度大的情況外田面平整精度越差R越大。這與田面平整精度越好,入畦流量和田面坡度越大,灌溉水流覆蓋田面各點(diǎn)所需時(shí)間越短有關(guān),此時(shí)對(duì)于50 m的短畦而言Zmin>0后,Es通常小于80%,故會(huì)適當(dāng)延長(zhǎng)灌水時(shí)間,R值也越大;反之灌溉水流覆蓋田面各點(diǎn)所需時(shí)間越長(zhǎng)。R取何值能同時(shí)滿足Zmin>0和Es>80%受坡度、入流量和田面平整精度的共同作用。
圖2 灌溉關(guān)口控制指標(biāo)值隨灌溉條件的變化趨勢(shì)圖Fig.2 Change trend of cutoff control index of irrigation with irrigation conditions
2.1.1田面坡度對(duì)灌溉關(guān)口控制指標(biāo)的影響分析
多元回歸分析結(jié)果表明,田面坡度與灌溉關(guān)口控制指標(biāo)R呈一元二次多項(xiàng)式相關(guān)關(guān)系,不同田面平整精度,畦長(zhǎng)、入畦流量下,相關(guān)程度存在差異,相關(guān)系數(shù)最大值為0.996,最小值為0.586,平均值為0.893。圖3給出3種典型相關(guān)程度下R與Sp的相關(guān)關(guān)系曲線。田面平整精度較好(Sd=2 cm),L為50和100 m時(shí)的相關(guān)程度較高,相關(guān)系數(shù)都大于0.95,R隨Sp呈現(xiàn)出明顯的高低高趨勢(shì);而L為150和200 m時(shí)相關(guān)程度略微低一些,R 隨Sp的變化趨勢(shì)小。田面平整精度較差(Sd=4和Sd=6 cm),L為50 m時(shí),當(dāng)坡度大于0.002后,R增加趨勢(shì)較為明顯,但其他畦長(zhǎng)下變化趨勢(shì)不太明顯。
圖3 典型相關(guān)程度下R與坡度間的相關(guān)曲線Fig.3 Correlation between R and Sp for typical case
2.1.2畦長(zhǎng)對(duì)灌溉關(guān)口控制指標(biāo)的影響分析
圖4給出了不同田面平整精度、坡度和入畦流量下,灌溉關(guān)口控制指標(biāo)值R隨畦長(zhǎng)L的變化趨勢(shì)線??傮w上R 隨L增大而減小,但畦長(zhǎng)大于100 m后趨勢(shì)變?nèi)?,兩者呈中度線性相關(guān);同一畦長(zhǎng)下由于其他條件不同R值間存在明顯差異,變幅約為0.6,且R=50 m時(shí)變幅最大。
2.1.3田面平整精度對(duì)灌溉關(guān)口控制指標(biāo)的影響分析
圖4 灌溉關(guān)口控制指標(biāo)R隨畦長(zhǎng)L的變化趨勢(shì)線Fig. 4 Change trend of R With L
圖5a~d給出了不同畦長(zhǎng)下灌溉關(guān)口控制指標(biāo)值R隨田面平整精度Sd的變化趨勢(shì)。L=50 m時(shí)總體上R隨Sd的增加而減小,對(duì)于50 m畦田,當(dāng)田面平整精度較好時(shí)灌溉水流能快速覆蓋整個(gè)田面,此時(shí)盡管Zmin>0,但Es不能滿足要求,需適當(dāng)延長(zhǎng)灌水時(shí)間,當(dāng)田面平整精度較差時(shí),水流推進(jìn)延緩,當(dāng)滿足Zmin>0時(shí),Es也基本能滿足要求。L=100 m時(shí),Sd對(duì)R的影響最不明顯;L=150 m 和200 m時(shí),Sd增加R略微增大,主要因?yàn)殚L(zhǎng)畦下灌溉時(shí)間相對(duì)較長(zhǎng),通常Es會(huì)先于Zmin達(dá)到目標(biāo),故田面平整精度較差時(shí),需適當(dāng)延長(zhǎng)灌水時(shí)間,以便保證Zmin>0。
2.1.4入畦流量對(duì)灌溉關(guān)口控制指標(biāo)的影響分析
圖6a~c分別給出了所有組合和2個(gè)典型組合下灌溉關(guān)口控制指標(biāo)值R隨入畦單寬流量q的變化趨勢(shì)。結(jié)果表明R隨著q增大而減小,二者成高度線性相關(guān),相關(guān)系數(shù)均在0.95以上;平整精度好,無(wú)坡度畦田變化趨勢(shì)更為顯著,反之較平緩。q=2時(shí),R受其他灌溉條件的影響相對(duì)較小,其變化幅度也相對(duì)小,而q為4,6,和8時(shí),不同灌溉條件下R的變幅相對(duì)大。
圖5 不同畦長(zhǎng)下灌溉關(guān)口控制指標(biāo)R隨田面平整精度Sd的變化趨勢(shì)Fig.5 Change trend of R with Sdunder different basin length
圖6 不同灌溉條件下灌溉關(guān)口控制指標(biāo)值R隨入畦單寬流量的變化曲線Fig.6 Change trend of R with q under different irrigation conditions
綜上以粘質(zhì)土壤為例的分析結(jié)果表明,坡度和入畦流量對(duì)適宜的灌溉關(guān)口控制指標(biāo)值影響顯著,畦長(zhǎng)的影響趨勢(shì)在小于100 m情況下較為明顯,大于100后不十分明顯。田面平整精度的影響趨勢(shì)受其他條件的影響非常顯著,畦長(zhǎng)小于100 m時(shí)具有減小趨勢(shì)、大于100 m時(shí)具有增加趨勢(shì)。砂壤土條件下趨勢(shì)性結(jié)果與粘壤土一致,只是針對(duì)具體灌溉條件R值大小存在差異。
2.2畦灌關(guān)口控制模式
表2 不同灌溉條件下適宜的灌溉關(guān)口控制指標(biāo)值RTable 2 Proposed irrigation control indexr R for different irrigation conditions
根據(jù)2.1分析所得灌溉關(guān)口控制指標(biāo)值R對(duì)各灌溉要素的響應(yīng)趨勢(shì),歸納提出不同灌溉條件下的控制模式,各類(lèi)型下相應(yīng)的R值根據(jù)模擬所得灌溉要素與R的對(duì)應(yīng)值,以及田間灌溉經(jīng)驗(yàn)概況提出。表2給出了黏壤土質(zhì)24種灌溉條件下的灌溉關(guān)口控制指標(biāo)值。由2.1的分析結(jié)果知,50 m畦長(zhǎng)下不同灌溉條件對(duì)應(yīng)的R值與其他畦長(zhǎng)下差異顯著,而其他畦長(zhǎng)下差異不明顯,故分類(lèi)時(shí)考慮短畦(30~70 m)和中長(zhǎng)畦(>70 m)2種。對(duì)于30~70 m長(zhǎng)的畦田,隨著田面坡度、平整精度和入流量條件的不同,適宜的灌溉關(guān)口控制指標(biāo)值范圍為0.9~1.15,同一類(lèi)型對(duì)應(yīng)的R值變幅不大,故表中給出了各類(lèi)型下R的確定值;對(duì)于大于70 m的畦田,不同灌溉條件下適宜的灌溉關(guān)口控制指標(biāo)值的范圍為0.75~1,由于同一類(lèi)型的R值存在一定變幅,故同一類(lèi)型下表中給出了R值的范圍。砂壤土質(zhì)下所得各類(lèi)型的R值與粘壤土質(zhì)下的平均差距約為0.05,故建議實(shí)際應(yīng)用中以表2的建議值為依據(jù),根據(jù)具體土質(zhì)不同按±0.05的范圍進(jìn)行調(diào)整。
2.3畦灌關(guān)口控制模式的合理性驗(yàn)證
根據(jù)表1給出的典型畦田灌溉基本資料,借助灌溉模型模擬得到采用實(shí)際灌溉關(guān)口控制指標(biāo)和本研究建議采用的關(guān)口控制指標(biāo)下的畦灌性能指標(biāo)值。表3給出了實(shí)際和建議控制模式下的灌溉關(guān)口控制指標(biāo)取值及相應(yīng)的畦灌性能指標(biāo)值。結(jié)果表明,采用本文研究提出的灌溉關(guān)口控制模式可獲得較佳的畦灌性能指標(biāo)值。5個(gè)典型試驗(yàn)田塊中田塊20swd7和Lq06的實(shí)際灌溉關(guān)口控制指標(biāo)與文中建議值差異較大,其中20swd7因?yàn)槠杼镙^短坡度較大土地平整精度較高,實(shí)際灌溉中水流能快速到達(dá)畦尾,實(shí)際灌溉所采用關(guān)口控制指標(biāo)值R為1,比推薦值1.15小,畦田灌溉關(guān)口太早,使得儲(chǔ)水效率偏低,而R采用推薦值時(shí)所得儲(chǔ)水效率值能得到大幅提高;根據(jù)田塊Lq06的灌溉條件本文推薦關(guān)口控制指標(biāo)R為0.75~0.85,實(shí)際灌溉時(shí)R取0.96,過(guò)晚的關(guān)口使得灌水效率偏低,而采用本文推薦的R值,在均勻度和儲(chǔ)水效率變化不大的情況下,灌水效率可從37%提高到59%。因此,本研究提出的不同灌溉條件下的灌溉關(guān)口控制指標(biāo)推薦值是可行的。
表3 實(shí)際與推薦灌溉關(guān)口控制指標(biāo)下的灌溉性能值Table 3 Irrigation performances under actual and proposed cutoff control index
將灌溉模擬模型與畦灌關(guān)口時(shí)間優(yōu)化方法相結(jié)合,對(duì)設(shè)計(jì)的106176種灌溉事件進(jìn)行模擬;基于模擬結(jié)果分析灌溉控制指標(biāo)對(duì)灌溉技術(shù)要素的響應(yīng),提出不同灌溉條件下畦灌關(guān)口控制技術(shù)模式;根據(jù)典型田塊灌溉資料,對(duì)本研究提出的灌溉關(guān)口控制模式可行性進(jìn)行驗(yàn)證。綜合分析得出以下結(jié)論。
1)合理的畦灌關(guān)口時(shí)間可有效改善灌水質(zhì)量,不同畦長(zhǎng)、坡度、田面平整精度和入流條件下畦灌關(guān)口控制指標(biāo)值R存在差異。其中,坡度和入畦流量對(duì)R值影響最顯著;R隨入流量增大而減?。黄栝L(zhǎng)小于70 m時(shí)R隨坡度增大而增大,其他畦長(zhǎng)下R隨坡度增大而減小;畦長(zhǎng)的影響在小于100 m下明顯,大于100后不十分明顯;田面平整精度的影響受其他條件影響顯著,畦長(zhǎng)小于70 時(shí)Sd越大R越小、大于70 m時(shí)具有增加趨勢(shì)。
2)針對(duì)不同灌溉條件下的典型田塊,采用本研究提出的R值控制灌溉關(guān)口可明顯改善灌水質(zhì)量,表2給出的控制模式可較好的指導(dǎo)田間灌溉。實(shí)際應(yīng)用中對(duì)畦長(zhǎng)小于70 m的田塊,R值建議不小于1,若坡度大于3‰,田面平整精度又很好的情況R值建議不小于1.1;對(duì)大于70 m的畦田,坡度小于1‰時(shí),R的范圍為0.8~1.0;坡度大于1‰時(shí),R的范圍為0.75~0.95,準(zhǔn)確取值可針對(duì)具體條件參照表2給出的建議值,也可以根據(jù)R對(duì)各要素的響應(yīng)趨勢(shì),在相應(yīng)范圍內(nèi)進(jìn)行適當(dāng)取值。
畦田灌溉條件千差萬(wàn)別,實(shí)際灌溉中合理灌溉時(shí)間難以確定,本研究提出灌溉控制指標(biāo)R,并通過(guò)系統(tǒng)模擬分析給出不同灌溉條件下R的合理取值范圍,研究結(jié)果對(duì)畦灌合理關(guān)口控制具有重要的實(shí)際指導(dǎo)意義。
[參考文獻(xiàn)]
[1] 劉鈺,惠士博. 畦田最優(yōu)灌水技術(shù)參數(shù)組合的確定[J]. 水利學(xué)報(bào),1986,1:9-21. Liu Yu, Hui Shibo. Determination of the optimum combination of technical parameters for border irrigation[J]. Journal of Hydraulic Engineering, 1986, 1: 9-21. (in Chinese with English abstract)
[2] 史學(xué)斌,馬孝義,李?lèi)? 畦灌水流運(yùn)動(dòng)規(guī)律與合理灌水技術(shù)要素組合研究[J]. 水利學(xué)報(bào),2005,12:360-365. Shi Xuebin, Ma Xiaoyi, Li Kai. Water current movement and reasonable technique elemental combination of border irrigation[J]. Journal of Hydraulic Engineering, 2005, 12: 360-365. (in Chinese with English abstract)
[3] 史學(xué)斌,馬孝義. 關(guān)中西部畦灌優(yōu)化灌水技術(shù)要素組合的初步研究[J]. 灌溉排水學(xué)報(bào),2005,24(2):39-43. Shi Xuebin, Ma Xiaoyi. Study on water price making in agriculture sustainable development[J]. Journal of Irrigation and Drainage, 2005, 24(2): 39-43. (in Chinese with English abstract)
[4] Bo Chen, Zhu Ouyang, Zhigang Sun, et al. Evaluation on the potential of improving border irrigation performance through border dimensions optimization: a case study on the irrigation districts along the lower Yellow River[J]. Irrigation Science,31(4): 715-728
[5] Alazba A. A. Design procedure for border irrigation[J]. Irrigation Science, 1997, 18: 33-43.
[6] 聶衛(wèi)波,費(fèi)良軍,馬孝義. 畦灌灌水技術(shù)要素組合優(yōu)化[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(1):83-88. Nie Weibo, Fei Liangjun, Ma Xiaoyi, Optimization for combination of irrigation technique element for border irrigation[J]. Transactions ofthe Chinese Society for Agricultural Machinery, 2012, 43(1): 83-88. (in Chinese with English abstract)
[7] Hector M, ialano, Michael E. Automation of border irrigation in South—East Australia:an overview[J]. Irrigation and Drainage Systems, 1992, 6(1): 9-26.
[8] Santos F L. Evaluation and adoption of irrigation technologies. I. management-design curves for furrow and level basin systems[J]. Agricultural Sysfems, 1996, 52(2/3): 317-329.
[9] 王維漢,繳錫云,朱艷,等. 畦灌改水成數(shù)的控制誤差及其對(duì)灌水質(zhì)量的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào),2010,26(2):291-294. Wang Weihan, Jiao Xiyun, Zhuyan, et al. The influence of control error of cutoff distance for border irrigation on the irrigation performances[J]. Chinese Agricultural Science Bulletin,2010, 26(2): 291-294. (in Chinese with English abstract)
[10] 白美健,許迪,李益農(nóng). 隨機(jī)模擬畦田微地形分布及其差異性對(duì)畦灌性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(6):28-32. Bai Meijian, Xu Di, Li Yinong. Impacts of atochastic modeling microtopograpy distribution and its discrepancy on basin irrigation performance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(6): 28-32. (in Chinese with English abstract)
[11] Burt C M, Clemmens A J, Strelkoff T S, et al. Irrigation performance measure: efficiency and uniformity[J]. Journal of Irrigation and Drainage Engineering, 1997, 123(6): 423-442.
[12] 黃昌勇. 土壤學(xué)[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2003.
[13] 邵明安,王全九,黃明斌. 土壤物理學(xué)[M]. 北京:高等教育出版社,2006.
[14] 白美健. 微地形和入滲時(shí)空變異及其對(duì)畦灌系統(tǒng)影響的二維模擬評(píng)價(jià)[D]. 北京:中國(guó)水利水電科學(xué)研究院,2007.
[15] 章少輝,許迪,李益農(nóng). 基于混合數(shù)值解法的一維全水動(dòng)力學(xué)畦灌模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009(9):7-14. Zhang Shaohui, Xu Di, Li Yinong. One--dimensional complete hydrodynamic model for border irrigation based on hybrid numerical method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009(9): 7-14. (in Chinese with English abstract)
Analysis on cutoff time optimization of border irrigation to improve irrigated water quality
Bai Meijian, Li Yinong, Tu Shufang, Liu Qunchang
(1. Nɑtionɑl Center of Efficient Irrigɑtion Engineering ɑnd Technology Reseɑrch, Beijing; 100048, Chinɑ; 2. Irrigɑtion ɑnd drɑinɑge depɑrtment,Chinɑ Institute of Wɑter Resources ɑnd Hydropower Reseɑrch, Beijing 100048, Chinɑ)
Abstract:Irrigation cutoff time is one of the important factors of irrigation management, and the determination of optimum cutoff time can effectively improve the irrigation performances. But for different irrigation conditions, the cutoff time of irrigation is very different, and it is difficult to directly determine the cutoff time of any given irrigation event. So, the cutoff control index of basin irrigation is used to study the cutoff control modes of basin irrigation. When the irrigation water is closed before the water advance to the end of basin, cutoff control index is equal to the ratio between the water advance distance when the irrigation water is closed and the basin length. On the contrary, R is equal to the ratio between the cutoff time and the time that water advance to the end. The optimization method of optimum cutoff time for basin irrigation was presented, and the minimum infiltration depth larger than zero and storage efficiency larger than 80% were set as the objective function to optimize cutoff time. One-dimensional hydrodynamic model of basin irrigation based on the hybrid numerical method was used to simulate the basin irrigation process. Combining the irrigation model with optimization method of cutoff time, the irrigation processes of 106176 irrigation events with different soil type, basin length, basin slope, land leveling precision and inflow rate were simulated, and for the same land leveling precision, the spatial variability of surface elevation was considered. For land leveling precision of 2, 3, 4, 5 and 6 cm, 4, 12, 15, 20 and 28 groups micro-topography data were respectively generated. The corresponding optimum cutoff time for each irrigation event was obtained, the influence of the irrigation factors on the optimum cutoff time was discussed, and the irrigation cutoff control modes were proposed. The irrigation data of typical fields were used to validate the rationality of the proposed cutoff control modes by comparing the irrigation performances under different cutoff time. Results showed that the optimum cutoff time of irrigation event was up to different irrigation factors. Cutoff control index changed with the basin length, basin slope, inflow rate and land leveling precision. Among these irrigation factors, the influence of slope and inflow rate on cutoff control index was the most obvious. Cutoff control index decreased with the increase of inflow rate. For the basins with the length of lower than 70 m, cutoff control index increased with the increase of slope, and for the basins with other lengths, cutoff control index conversely decreased with the increase of slope. Generally, cutoff control index decreased with the increase of basin length, but the influence of basin length on cutoff control index was obvious for the basins with >100 m length, when basin length was not more than 100 m, the influence weakened. The influence of land leveling precision was related with other irrigation factors,cutoff control index decreased with the increase of land leveling precision for <70 m basin, and increased with the increase of land leveling precision for other basins. By comparing the irrigation performances of typical basins under actual irrigation cutoff time and proposed cutoff control index, the rationality of proposed cutoff control index of basin irrigation was validated. For different basin length, slope, land leveling precision and inflow rate, the values of irrigation cutoff control index were presented. For the basins with the length of less than 70 m, the range of cutoff control index was 0.9-1.15. For most conditions cutoff control index should not be less than 1, but when basin slope was middle and leveling precision was not good, cutoff control index was about 0.9; and if slope was greater than 3‰ and land leveling precision was good, cutoff control index should not be less than 1.1. For the basins with the length of greater than 70 m and basin slope was less than 1‰, the range of cutoff control index was 0.8-1; but when basin slope was greater than 1‰, the range of cutoff control index was 0.75-0.95. The research results can supply reference for the cutoff control of basin irrigations, and the cutoff control index can be chosen according to the practical irrigation events.
Keywords:irrigation; control; models; border irrigation control; cutoff control index; irrigation simulation; optimum cutoff time; irrigation performance
作者簡(jiǎn)介:白美健,女,漢族,四川人,教授級(jí)高工,博士,主要從事節(jié)水灌溉技術(shù)研究。北京國(guó)家節(jié)水灌溉工程技術(shù)研究中心(北京),100048。Email:baimj@iwhr.com
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(51279225);國(guó)家863計(jì)劃重點(diǎn)項(xiàng)目課題(2011AA100505);國(guó)家支撐課題(2012BAD08B05)
收稿日期:2015-08-07
修訂日期:2015-12-20
中圖分類(lèi)號(hào):S275.3
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1002-6819(2016)-02-0105-06
doi:10.11975/j.issn.1002-6819.2016.02.016