
圖1 鐵芯薄片結構圖
考慮磁感應強度在鐵芯橫截面積分布不均勻,電場強度的解析表達式為:

將積分近似為求和可得第m個單元的電場強度為:

其中m為y軸方向的單位矢量,根據(jù)對稱性,可得第n+m個單元的電場強度為,根據(jù)歐姆定律可得在第m個單元的電流密度為:

第n+m個單元的電流密度為Jn+m=-Jm。根據(jù)畢奧-薩伐爾定律可知,渦流在第i個單元產生的磁感應強度為:

將Jn+m=-Jm代入上式可得:

將式(3)代入式(5),同時考慮激勵磁場Hsz,可得鐵芯內第i個單元的磁場。

2 鐵芯磁滯回線模型
本文所選磁滯回線模型是公式(7)所示的Jiles動態(tài)模型[10-13],該模型為微分磁化方程,它描述磁滯回線與頻率的關系。方程中δ為方向參數(shù),當dH/dt> 0時取+1,當dH/dt<0時取-1;a為形狀參數(shù),k為磁滯損失參數(shù),α為平均場參數(shù),c為磁疇壁彎曲常數(shù),Man為非磁滯磁化強度,μ0為真空磁導率,ρ為鐵芯材料電阻率,d和w分別表示薄片的厚度和寬度。該模型由四部分組成,其中前兩部分表示磁滯損耗,第三部分表示渦流損耗,第四部分表示額外損耗;在高頻情況下,第四部分可以忽略。

3 結果與分析
對式(6)在SPICE軟件中建模,聯(lián)立鐵芯材料的磁滯模型式(7)(即Bz(Hz)關系)SPICE模型,便可計算瞬態(tài)的鐵芯截面的磁場和磁感應強度的分布。因鐵芯材料模型選擇文獻[6]采用的Jiles模型,相關參數(shù)為d=0.5 mm,w=30 mm,ρ=45×10- 8Ωm,s=60 mm,B=1.5 T,a=130.22 A/m,k=56.855 A/m,α=1.69× 10-4,c=8.547×10e-3。并同Sebti Boukhtache等的實驗和仿真結果進行對比驗證。
圖3是當電壓源激勵頻率為500 Hz時,圖3(b)為本文的HSPICE仿真磁滯回線波形圖,與圖3(a)為文獻[6]模型和實驗圖相比,擬合較好。同時對電壓源激勵頻率為0.5 Hz、50 Hz和200 Hz這3種情況,利用HSPICE對磁滯回線進行了仿真。不同頻率下的仿真和實驗數(shù)據(jù)如表1所示。從表1的數(shù)據(jù)可以看出,當矯頑力Hc隨著頻率增加而增大時,剩磁Br基本不變。

圖3 500 Hz頻率下磁滯回線

表1 仿真與實驗數(shù)據(jù)比較
4 結論
本文采用不同于文獻[6]的方法,運用歐姆定律和畢奧-薩伐爾定律,推導得到渦流對磁滯回線影響的數(shù)學模型。該方法的優(yōu)勢在于渦流產生的寄生磁場分布可以解析表示,得到的方程組對空間不需要進行微分,形式簡單,易于求解。HSPICE仿真結果與文獻[6]的實驗和仿真結果對比表明,考慮磁場在截面的非均勻性和渦流影響的磁滯回線SPICE模型有較高的準確性。
參考文獻:
[1]de la Cheisserie E T,et al. Magnetisme II—Materiaux et Applica?tions,EDP Sciences,Paris,2000.
[2]Brissonneau P.Magnetisme et. Materiaux Magnetiques Pour L’Electro-Technique,Hermes,Paris,1997.
[3]Bertotti G,Mayergoyz I D. The Science of Hysteresis:3-Volume?set,Academic Press,G.B.,2005.
[4]Zirka S E,Moroz Y I,Marketos P,et al. Measurement and Model?ing of B-H Loops and Losses of High Silicon Nonoriented Steels [J]. IEEE Transactionson Magnetics,2006,42(10):3177-3179.
[5]Zirka S E,Moroz Y I,Marketos P,et al. General-Isation of the Classical Method for Calculating Dynamic Hysteresis Loopsin Grain Oriented Electrical Steel[J]. IEEE Transactionson Magnet?ics,2008,44(9):2113-2126.
[6]Sebti Boukhtache,Malika Yakhlef,Mabrouk Chabane. Magnetic Field Computation in a Non-Oriented Sheet Cross-Section Consid?ering the Hysteresis Phenomenon[J]. Journal of Magnetism and Magnetic Materials,2010,322:505-509.
[7]Rouve L L,Ossart F,Waeckerle T,et al. Magnetic Fluxand Losses Computation in Electrical Laminations[J]. IEEE Transactionson Magnetics,1996,32(5):4219-4221.
[8]Rouve L L,Waeckerle T,Kedous- Lebouc A,et al. Analytical Computation of Average Induction in a Sheet Cross-Section Con?sidering Magnetic Diffusion and Hysteretic Features[J]. IEEE Transactionson Magnetics,1997,33(2):1271-1274.
[9]Rouve L L,Waeckerle T,Kedous-Lebouc A,et al. Determination of the Parameter k of the Generalized Dynamic Preisach Model [J]. IEEE Transactions on Magnetics,1996,32(3):1124-1127.
[10]Jiles D C. Modelling the Effects of Eddy Current Losses on Fre?quency Dependant Hysteresis in Electrically Conducting Media [J]. IEEE Transactionson Magnetics,1994,30(6):4326-4328.
[11]Jiles D C. Frequency Dependence of Hysteresis Curves in Conduct?ing Magnetic Materials[J]. Appl Phys,1994,76(10):5849-5855.
[12]Boukhtache S,Azoui B,F(xiàn)eliachi M. A Novel Model for Magnetic Hysteresis of Silicon-Iron Sheets[J]. The European Physical Jour?nal—Applied Physics,2006,34:201-204.
[13]Bertotti G. Hysteresis in Magnetism for Physicists,and Engineers,Academic Press,USA,1998.
崔智軍(1978-),男,陜西渭南人,講師,西北工業(yè)大學電子信息學院在讀博士生,專業(yè)方向為微電子器件與微傳感器,現(xiàn)在主要從事微型磁通門傳感器研究,Cuizj_163@163.com;

劉詩斌(1960-),男,河南鞏義市人,西北工業(yè)大學電子信息學院教授,博士生導師。長期從事無人機傳感器系統(tǒng)研究工作,研究領域為磁場和壓力測量,智能傳感器系統(tǒng),微電子和計算機應用,liushibin@nwpu.edu.cn。

Research of Spiral Coil on EMAT to Improve Transduction Efficiency*
FAN Jizhi1,2,WU Yunxin1,2*,SHI Wenze1,2,GONG Hai1,2,TAN Liangchen1,2
(1.State Key Laboratory of High Performance Complex Manufacturing,Central South University,Changsha 410083,China;2.School of Mechanical and Electrical Engineering,Central South University,Changsha 410083,China)
Abstract:A novel method for improving the transduction efficiency of Electromagnetic Acoustic Transducer (EMAT)is introduced. In this paper,a model of a doubled-layer spiral coil EMAT for generating shear wave was modeled in the finite element software COMSOL Multiphysics. And then the effects of the substrate thickness,cop?per conductor thickness and lift-off on the efficiency are investigated. Results show that the reducement in the sub?strate thickness and lift-off,the increasement in the copper conductor thickness can help to improve the efficiency. And the simulation results are verified by the experiments.
Key words:electromagnetic acoustic transducer;finite element method;spiral coil;transduction efficiency
doi:EEACC:723010.3969/j.issn.1004-1699.2016.01.006
收稿日期:2014-05-10修改日期:2015-06-15
中圖分類號:TP212.1;TM936.2
文獻標識碼:A
文章編號:1004-1699(2016)01-0026-03
項目來源:高等學校博士學科點專項科研基金項目(20126102110031)