• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      淡水魚類對低氧的抗氧化防護響應(yīng)

      2016-03-28 17:11:13趙燕靜狄桂蘭蔣昕彧孔祥會
      水產(chǎn)科學(xué) 2016年5期
      關(guān)鍵詞:歧化酶超氧化物過氧化物

      趙燕靜,狄桂蘭,蔣昕彧,李 慧,孔祥會

      ( 河南師范大學(xué) 水產(chǎn)學(xué)院,河南省水產(chǎn)動物養(yǎng)殖工程技術(shù)研究中心,水產(chǎn)動物疾病控制河南省工程實驗室,河南 新鄉(xiāng) 453007 )

      淡水魚類對低氧的抗氧化防護響應(yīng)

      趙燕靜,狄桂蘭,蔣昕彧,李 慧,孔祥會

      ( 河南師范大學(xué) 水產(chǎn)學(xué)院,河南省水產(chǎn)動物養(yǎng)殖工程技術(shù)研究中心,水產(chǎn)動物疾病控制河南省工程實驗室,河南 新鄉(xiāng) 453007 )

      低氧; 淡水魚類; 氧化應(yīng)激;抗氧化防護

      氧氣對需氧生物的生存至關(guān)重要。同一分壓下,水中氧含量僅為陸地空氣氧含量的1/30,水生脊椎動物氧的可利用性比陸生動物更重要。此外,氧氣在水中的擴散速度只有空氣中的1/10 000[1]。所以,無論是生物或非生物過程中引起氧的可利用性或氧消耗變化,均顯著影響水環(huán)境中溶解氧的含量變化。因此,大多數(shù)海洋、河口和淡水較容易發(fā)生連續(xù)或慢性的低氧現(xiàn)象。低溫下淡水水體表面結(jié)冰,限制了大氣中氧擴散進入水體,或者由于熱梯度而造成水體垂直分層,限制了表面水和深層水的交換,加劇了淡水水域的缺氧現(xiàn)狀[2-3]。因此,水體中溶氧含量較低,擴散速度較慢,變動幅度較大,較易受其他因素影響,相對于陸生動物來說,水生動物尤其是淡水動物,更易受到低氧的脅迫[4]。

      在水產(chǎn)養(yǎng)殖中,魚類可利用的溶解氧水平是水質(zhì)常規(guī)監(jiān)測的關(guān)鍵變量之一,也是影響魚類生長發(fā)育、行為代謝和免疫的最重要因素之一[5-7]。溶氧含量的變動不僅受水溫、鹽度、水流速度、晝夜變化等的影響,表層和底層水的交換、水體的垂直分布、藻類光合作用速率和有機物呼吸強度變化也會影響溶氧量的變動[8-9]。低氧脅迫不僅制約魚類生長,還影響魚類的先天性免疫,引起魚體的氧化應(yīng)激反應(yīng),抗病力和免疫力下降,增加對病菌的易感性[10-11]。一般情況下,溶解氧質(zhì)量濃度需維持在4 mg/L以上,魚類才能正常生長;當(dāng)溶解氧水平低于2 mg/L時,一般養(yǎng)殖魚類會浮頭,長期浮頭影響魚類生長;若溶解氧質(zhì)量濃度低于1 mg/L時,魚就會嚴重浮頭以致窒息死亡。高密度養(yǎng)殖下,魚類易受到低氧脅迫[12]。人類活動也會造成水體富營養(yǎng)化,使魚類遭受低氧脅迫。因此,了解魚類低氧脅迫響應(yīng)及作用機制對指導(dǎo)水產(chǎn)養(yǎng)殖水質(zhì)調(diào)控具有重要的意義。

      1 魚體中的氧化應(yīng)激反應(yīng)

      需氧生物中氧分子作為線粒體呼吸鏈電子的最終受體,參與氧化磷酸化反應(yīng),以支持氧的代謝過程,代謝中約有10%~15%的胞內(nèi)氧分子作為單氧酶、加氧雙酶、氧化酶和過氧化物酶等催化反應(yīng)的基質(zhì)而被消耗[13-16]。因此,低氧不僅影響氧化磷酸化反應(yīng), 還影響許多胞內(nèi)相關(guān)的需氧反應(yīng)。低氧環(huán)境下魚類有氧呼吸速率下降,氧化磷酸化作用突然降低, 使呼吸鏈的電子流到達復(fù)合體Ⅳ時停止,引發(fā)電子流返回到復(fù)合體Ⅲ/Ⅰ,導(dǎo)致產(chǎn)生的活性氧自由基種類增加[17]。因此,低氧環(huán)境可促使魚體內(nèi)活性氧種類,如超氧陰離子自由基、過氧化氫和羥基自由基增加[18]。細胞有氧呼吸會產(chǎn)生活性氧種類,如通過單價途徑產(chǎn)生超氧陰離子自由基,超氧陰離子自由基繼續(xù)被還原為過氧化氫,接著過氧化氫還原為羥基自由基,最終還原為羥離子和水[19]。

      正常生物體內(nèi),活性氧自由基種類的產(chǎn)生和清除處于一個動態(tài)平衡。當(dāng)活性氧自由基產(chǎn)生過多時,超過魚體自身的清除能力,多余的活性氧自由基便會氧化生物大分子,如蛋白、核酸、類固醇及細胞膜中的不飽和脂肪酸等,產(chǎn)生不穩(wěn)定的過氧化物[20],破壞細胞結(jié)構(gòu)的完整性,造成氧化損傷,使其功能紊亂,導(dǎo)致多種疾病發(fā)生。此外,這些脂質(zhì)過氧化產(chǎn)物再次分解為氧自由基,使脂質(zhì)過氧化鏈?zhǔn)椒磻?yīng)惡性循環(huán)[21]。活性氧自由基還可作為第二信使對一些轉(zhuǎn)錄因子和信號轉(zhuǎn)導(dǎo)因子,如熱休克誘導(dǎo)因子、核酸因子、細胞循環(huán)基因p53、促分裂原活化蛋白激酶、 oxyR基因產(chǎn)物的表達調(diào)節(jié)具有重要作用[22-24]。研究發(fā)現(xiàn),氧化應(yīng)激可通過細胞循環(huán)因子參與細胞凋亡和細胞壞死過程。

      缺氧引起許多魚類,如虹鱒(Oncorhynchusmykiss)[25]、斑點叉尾(Ictaluruspunctatus)[11]、歐亞鱸魚(Percafluviatilis)[3,26]、鰱魚(Hypophthalmichthysmolitrix)[27]、鯉魚(Cyprinuscarpio)[28]、銀鲇(Rhamdiaquelen)[29-30]、三刺魚(Gasterosteusaculeatus)[31]等的氧化應(yīng)激反應(yīng),對于魚類生化、生理、生長發(fā)育、繁殖、行為、代謝、免疫等產(chǎn)生不利影響[16,32-34]。為了能在低氧環(huán)境下生存,魚類已進化形成了一系列的適應(yīng)策略,如行為方面,通過改變游泳速率和呼吸方式、減少捕食來適應(yīng)低氧壞境[35-39];形態(tài)方面,改變魚鰾的形態(tài)和大小[40],通過鰓小片突出改變鰓的形態(tài)來增加呼吸表面積[41-44];代謝方面,通過降低三磷酸腺苷消耗和需氧代謝率,增強厭氧代謝等方式以減少魚體的氧化損傷[28,32];魚類還會激活抗氧化防御系統(tǒng)[17,30,45]和改變相關(guān)基因的表達[16,27,46]來應(yīng)對低氧環(huán)境。

      2 低氧下淡水魚類抗氧化防護的響應(yīng)

      1986年, Reischl[47]首次揭示了低氧耐受與抗氧化防御之間具有相關(guān)性,低氧環(huán)境誘導(dǎo)魚類使用厭氧途徑,促使活性氧產(chǎn)生增加,而內(nèi)源性抗氧化防御系統(tǒng)可清除細胞內(nèi)多余的氧自由基,在保護細胞免受氧化應(yīng)激方面起至關(guān)重要的作用[48]。該系統(tǒng)由抗氧化酶(超氧化物歧化酶、過氧化氫酶、谷胱甘肽過氧化物酶)和小分子抗氧化劑(類胡蘿卜素、維生素、谷胱甘肽、硫氧還原蛋白)組成。超氧化物歧化酶是降解活性氧自由基的第一道防線,可將超氧陰離子自由基轉(zhuǎn)化為過氧化氫;然后由過氧化氫酶將過氧化氫轉(zhuǎn)化為水和氧氣;谷胱甘肽過氧化物酶可清除胞內(nèi)過氧化氫和有機過氧化物[17]。

      2.1 抗氧化酶

      2.1.1 超氧化物歧化酶

      超氧化物歧化酶,由McCord等[49]最先發(fā)現(xiàn),是一種天然金屬酶,廣泛存在于動植物及微生物中,可消除細胞產(chǎn)生的活性氧自由基,是魚體抗氧化防護的第一道防線;對維持魚體內(nèi)環(huán)境穩(wěn)定和天然免疫具有重要生理功能。根據(jù)金屬蛋白的不同,通常分為銅鋅超氧化物歧化酶、錳超氧化物歧化酶、鎳超氧化物歧化酶和鐵超氧化物歧化酶4種類型[50]。目前,在魚類中僅發(fā)現(xiàn)了銅鋅超氧化物歧化酶和錳超氧化物歧化酶,廣泛研究了其基因結(jié)構(gòu)和在淡水魚類中的功能,發(fā)現(xiàn)它們可使魚體降低或免受氧化應(yīng)激的損傷。

      低氧下鰱魚肝胰臟銅鋅超氧化物歧化酶和錳超氧化物歧化酶的mRNA表達量均顯著下調(diào)[27],表明低氧環(huán)境促使活性氧自由基產(chǎn)生增加,超過魚體自身清除能力,使魚體活性氧自由基積累,以導(dǎo)致氧化應(yīng)激;大頭兔脂鯉(Leporinusmacrocephalus)[51]、胡鲇(Clariasbatrachus)[52]低氧處理后肝胰臟組織超氧化物歧化酶活性變化與鰱魚相似。然而,鰱魚鰓中銅鋅超氧化物歧化酶和錳超氧化物歧化酶的mRNA表達量均顯著上調(diào)[27],低氧下胡鲇[48]和平口鯧魚(Leiostomusxanthurus)[53]鰓組織中超氧化物歧化酶活性顯著上升;這表明低氧下超氧化物歧化酶 mRNA的表達具有組織特異性,超氧化物歧化酶活性變化具有物種特異性或組織特異性。

      2.1.2 過氧化氫酶

      過氧化氫酶又名觸酶,是一類廣泛存在于動物、植物和微生物體內(nèi)的末端氧化酶。對過氧化氫具有高親和性,以過氧化氫為底物, 通過催化一對電子的轉(zhuǎn)移而最終將其分解為水和氧分子,可清除體內(nèi)較高含量的過氧化氫,在食品、醫(yī)藥、紡織、造紙、環(huán)保等行業(yè)具有重要的作用。過氧化氫酶具有光高敏感性,見光易分解,這可能是由于血紅素對光的吸收造成[20]。按照結(jié)構(gòu)和序列水平的異同,將過氧化氫酶劃分為3個亞群[54],即單功能過氧化氫酶(典型過氧化氫酶)、雙功能過氧化氫酶和錳過氧化氫酶。按照催化中心結(jié)構(gòu)差異過氧化氫酶可分為兩類:含鐵卟啉結(jié)構(gòu)的過氧化氫酶(又稱鐵卟啉酶)和以錳離子替代卟啉結(jié)構(gòu)中鐵離子的錳過氧化氫酶。目前,在淡水魚類中僅發(fā)現(xiàn)典型過氧化氫酶。

      葛氏鱸塘鱧(Perccottusglenii)在低氧脅迫后,腦組織的過氧化氫酶活性顯著升高,肌肉組織的過氧化氫酶活性顯著下降,而肝臟組織的過氧化氫酶活性未見明顯變化[55];而金魚(Carassiusauratus)在缺氧8 h后肝胰臟過氧化氫酶活性顯著升高,但腦和肌肉中過氧化氫酶活性保持不變[56],顯示低氧對過氧化氫酶活性的影響具有組織特異性和物種特異性。胡鲇在低氧處理后過氧化氫酶活性變化也呈現(xiàn)出明顯的組織特異性[52]。不同魚類對低氧響應(yīng)的差異是長期對環(huán)境適應(yīng)和進化的結(jié)果。

      2.1.3 谷胱甘肽過氧化物酶

      谷胱甘肽過氧化物酶是一類多酶家族的統(tǒng)稱。它可以消除體內(nèi)的過氧化氫及脂質(zhì)過氧化物,阻斷活性氧自由基對機體的進一步損傷,是生物體內(nèi)重要的活性氧自由基清除劑。根據(jù)包含的硒代半胱氨酸的不同,可將谷胱甘肽過氧化物酶分為含硒和不含硒兩大類。根據(jù)分布和催化底物的不同,含硒谷胱甘肽過氧化物酶又分為4個亞型,即典型谷胱甘肽過氧化物酶、胃腸型谷胱甘肽過氧化物酶、血漿型谷胱甘肽過氧化物酶和磷脂氫谷胱甘肽過氧化物酶[57]。

      金魚低氧處理8 h后,腦中谷胱甘肽過氧化物酶活性顯著上升,但肝胰臟和肌肉中谷胱甘肽過氧化物酶活性未發(fā)生明顯變化[56];鯉魚低氧(0.9 mg/L)脅迫5.5 h后,腦谷胱甘肽過氧化物酶活性顯著升高[58],與金魚低氧下腦中谷胱甘肽過氧化物酶活性上升的結(jié)果一致;然而,Mustafa等[59]研究顯示,鯉魚肝胰臟和鰓在低氧(1.8 mg/L)下處理30 d后,谷胱甘肽過氧化物酶活性未明顯變化。這些研究結(jié)果表明,低氧對谷胱甘肽過氧化物酶活性的影響不僅具有物種特異性和組織特異性,還與低氧暴露的含量和時間有關(guān)。葛氏鱸塘鱧[55]腦中谷胱甘肽過氧化物酶活性未發(fā)生明顯變化,與金魚肝胰臟和肌肉的結(jié)果一致,說明在應(yīng)對低氧脅迫時,并不是所有魚類都會發(fā)生抗氧化酶活性升高。

      2.2 非酶抗氧化劑

      非酶抗氧化劑主要包括抗壞血酸、谷胱甘肽、生育酚、類胡蘿卜素、尿酸等小分子抗氧化劑[48]??箟难釣槎喾N活性氧自由基的還原劑,不僅可以清除過氧化氫,還可以清除超氧陰離子自由基、羥基自由基和脂質(zhì)過氧化物,在降低氧化應(yīng)激對機體損傷中具有重要作用。生育酚(即維生素E),主要通過清除單態(tài)氧和過氧化物發(fā)揮抗氧化性能。維生素E可妨礙大麻哈魚(Oncorhynchusketa)魚卵的脂質(zhì)過氧化過程,增強其抗氧化保護性能[60];類胡蘿卜素是一種脂溶性分子,是一種有效的活性氧自由基清除劑,可降低氧化損傷的程度而保護魚體[61]。目前,低氧對淡水魚類小分子抗氧化劑的影響研究大多是關(guān)于谷胱甘肽,尚未發(fā)現(xiàn)關(guān)于其他非酶抗氧化劑的報道。

      谷胱甘肽為一類小分子抗氧化劑,參與一系列至關(guān)重要的細胞保護功能,包括消除氧自由基,解毒親電體,維持巰基—二硫鍵的平衡和信號轉(zhuǎn)導(dǎo)等。研究顯示,還原型谷胱甘肽在魚類應(yīng)對氧化壓力中起重要作用[9],是谷胱甘肽過氧化物酶發(fā)揮反應(yīng)的基質(zhì),主要通過與氧分子、超氧陰離子自由基和羥基自由基反應(yīng)發(fā)揮其抗氧化功能。當(dāng)出現(xiàn)氧化壓力時,谷胱甘肽的合成重新開始,在氧化狀態(tài)下谷胱甘肽可形成硫自由基,與另一個氧化狀態(tài)的谷胱甘肽反應(yīng)形成二硫鍵,即氧化型谷胱甘肽,還原型/氧化型的比率經(jīng)常作為細胞氧化應(yīng)激的指標(biāo)。缺氧下金頭鯛(Sparusaurata)肝臟中還原型谷胱甘肽和氧化型谷胱甘肽含量顯著降低[62],說明低氧對肝臟組織造成氧化損傷,影響還原型谷胱甘肽和氧化型谷胱甘肽的正常功能;低氧下銀鲇腦中還原型谷胱甘肽含量顯著上升,而在腎臟中未發(fā)生明顯變化[29];在低氧下尼羅羅非魚(Oreochromisniloticus)[63]和胡鲇[48]肝臟組織中還原型谷胱甘肽含量的變化與銀鲇腎臟中還原型谷胱甘肽結(jié)果相似,均未發(fā)生明顯變化,這表明魚類在應(yīng)對低氧引起的氧化應(yīng)激時,小分子抗氧化劑并不總發(fā)生變化。

      3 小結(jié)與展望

      大量研究顯示,低氧對魚類抗氧化酶活性和非酶抗氧化劑的影響具有多樣性,這可能與魚的種類、生長發(fā)育階段、組織器官、低氧水平和暴露時間有關(guān)。低氧脅迫下,大多淡水魚類抗氧化酶活性和小分子抗氧化劑水平均發(fā)生顯著變化,但也有些魚類變化不明顯,表明不同魚類在應(yīng)對低氧引起的氧化應(yīng)激時,抗氧化酶活性變化不同。淡水魚類應(yīng)對低氧壓力所表現(xiàn)出的抗氧化酶多樣性變化的機制尚不清楚。目前,廣泛研究了低氧對魚類抗氧化防護的影響,但大多研究關(guān)注于抗氧化酶活性或mRNA表達的變化。關(guān)于抗氧化酶超氧化物歧化酶、過氧化氫酶、谷胱甘肽過氧化物酶對低氧的響應(yīng)信號調(diào)節(jié)以及抗氧化通路的報道較少,應(yīng)加強這方面的研究,以揭示低氧下抗氧化防護作用及信號調(diào)節(jié)的分子機制。

      [1] Dejours P. Principles of comparative respiratory physiology[M]. North Holland:Amsterdam, 1975:1-253.

      [2] Nikinmaa M, Rees B B. Oxygen-dependent gene expression in fishes[J]. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 2005,288(5):1079-1090.

      [3] Rimoldi S, Terova G, Ceccuzzi P, et al. HIF-1α mRNA levels in Eurasian perch (Percafluviatilis) exposed to acute and chronic hypoxia[J]. Molecular Biology Reports, 2012,39(4):4009-4015.

      [4] Nikinmaa M. Haemoglobin function in vertebrates: evolutionary changes in cellular regulation in hypoxia[J]. Respiration Physiology, 2001,128(3):317-329.

      [5] Stickney R R. Dissolved oxygen[G]// Encyclopedia of aquaculture. New York: John Wiley and Sons,2000:229-232.

      [6] 董曉煜.溶氧水平與養(yǎng)殖密度對褐牙鲆幼魚生長及其生理機能的影響[D].青島: 中國海洋大學(xué),2008.

      [7] 宋協(xié)法,陳義明,彭磊,等.溶解氧、非離子氨和亞硝酸氮對大菱鲆幼魚生長代謝的影響研究[J].漁業(yè)現(xiàn)代化,2012,39(6):35-38.

      [8] Lushchak V I,Bagnyukova T V.Effects of different environmental oxygen levels on free radical processes in fish[J].Comparative Biochemistry and Physiology-Part B,2006,144(3):283-289.

      [9] 劉旭佳,黃國強,彭銀輝.不同溶氧變動模式對鯔生長、能量代謝和氧化應(yīng)激的影響[J].水產(chǎn)學(xué)報,2015,39(5):679-690.

      [11] Welker T L, Mcnulty S T, Klesius P H. Effect of sublethal hypoxia on the immune response and susceptibility of channel catfish,Ictaluruspunctatus, to enteric septicemia[J]. Journal of the World Aquaculture Society, 2007,38(1):12-23.

      [12] Terova G, Rimoldi S, Corà S, et al. Acute and chronic hypoxia affects HIF-1a mRNA levels in sea bass (Dicentrarchuslabrax)[J]. Aquaculture, 2008,279(1):150-159.

      [13] Wenger R H. Mammalian oxygen sensing, signaling and gene regulation[J]. The Journal of Experimental Biology, 2000,203(8):1253-1263.

      [14] Mandic M, Todgham A E, Richards J G. Mechanisms and evolution of hypoxia tolerance in fish[J]. Proceedings of the Royal Society B-Biological Sciences, 2009,276(1657):735-744.

      [15] Rees B B, Figueroa Y G, Wiese T E, et al. A novel hypoxia-response element in the lactate dehydrogenase-B gene of the killifishFundulusheteroclitus[J]. Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology, 2009,154(1):70-77.

      [16] Zhang Z P, Ju Z L, Wells M C, et al. Genomic approaches in the identification of hypoxia biomarkers in model fish species[J]. Journal of Experimental Marine Biology and Ecology, 2009,381(S1):180-187.

      [17] Hoffman D L, Salter J D, Brookes P S. Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signaling[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2007, 292(1):101-108.

      [18] Storey K B. Oxidative stress: animal adaptations in nature[J]. Brazilian Journal of Medical Biological Research, 1996,29(12):1715-1733.

      [19] Fridovich I. Oxygen toxicity: a radical explanation[J]. The Journal of Experimental Biology, 1998,201(8):1203-1209.

      [20] Halliwell B, Gutteridge J M C. Free Radicals in Biology and Medicine[M].Oxford: Oxford University Press, 2001:936.

      [21] Martinez-Alvarez R M, Morales A E, Sanz A. Antioxidant defenses in fish: biotic and abiotic factors[J]. Reviews in Fish Biology and Fisheries, 2005,15(1/2):75-88.

      [22] Zheng M,?slund F, Storz G. Activation of the OxyR transcription factor by reversible disulfide bond formation[J].Science,1998,279(5357):1718-1722.

      [23] Martindale J L, Holbrook N J. Cellular response to oxidative stress: signaling for suicide and survival[J]. Journal of Cellular Physiology, 2002,192(1):1-15.

      [24] Johnson T M, Yu Z, Ferrans V J,et al. Reactive oxygen species are downstream mediators of p53-dependent apoptosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996,93(21):11848-11852.

      [25] Bernier N J, Craig P M. CRF-related peptides contribute to stress response and regulation of appetite in hypoxic rainbow trout[J]. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 2005,289(4):982-990.

      [26] Douxfils J, Deprez M, Mandiki S N M, et al. Physiological and proteomic responses to single and repeated hypoxia in juvenile Eurasian perch under domestication—clues to physiological acclimation and humoral immune modulations[J]. Fish and Shellfish Immunology, 2012,33(5):1112-1122.

      [27] Zhang Z W, Li Z, Liang H W, et al. Molecular cloning and differential expression patterns of copper/zinc superoxide dismutase and manganese superoxide dismutase inHypophthalmichthysmolitrix[J]. Fish and Shellfish Immunology,2011,30(2):473-479.

      [28] Moyson S, Liew H J, Diricx M, et al. The combined effect of hypoxia and nutritional status on metabolic and ionoregulatory responses of common carp (Cyprinuscarpio)[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2015(179):133-143.

      [29] Dolci G S, Dias V T, Roversi K, et al. Moderate hypoxia is able to minimize the manganese-induced toxicity in tissues of silver catfish (Rhamdiaquelen)[J]. Ecotoxicology and Environmental Safety,2013(91):103-109.

      [30] Dolci G S, Vey L T, Schuster A J, et al. Hypoxia acclimation protects against oxidative damage and changes in prolactin and somatolactin expression in silver catfish (Rhamdiaquelen) exposed to manganese[J].Aquatic Toxicology, 2014(157):175-185.

      [31] Leveelahti L, Rytk?nen K T, Renshaw G M C, et al. Revisiting redox-active antioxidant defenses in response to hypoxic challenge in both hypoxia-tolerant and hypoxia-sensitive fish species[J]. Fish Physiology and Biochemistry, 2014,40(1):183-191.

      [32] Dan X M, Yan G J, Zhang A J, et al. Effects of stable and diel-cycling hypoxia on hypoxia tolerance, postprandial metabolic response, and growth performance in juvenile qingbo (Spinibarbussinensis)[J]. Aquaculture, 2014,428/429(5):21-28.

      [33] Gan L, Liu Y J, Tian L X, et al. Effects of dissolved oxygen and dietary lysine levels on growth performance, feed conversion ratio and body composition of grass carp,Ctenopharyngodonidella[J]. Aquaculture Nutrition,2013,19(6):860-869.

      [34] Yang H, Cao Z D, Fu S J. The effects of diel-cycling hypoxia acclimation on the hypoxia tolerance, swimming capacity and growth performance of southern catfish (Silurusmeridionalis)[J]. Comparative Biochemistry and Physiology, Part A, Molecular and Integrative Physiology, 2013,165(2):131-138.

      [35] Cook D G, Brown E J, Lefevre S, et al. The response of striped surfperchEmbiotocalateralisto progressive hypoxia: swimming activity, shoal structure, and estimated metabolic expenditure [J]. Journal of Experimental Marine Biology and Ecology, 2014(460):162-169.

      [36] Urbina M A, Glover C N. Should I stay or should I go?: physiological, metabolic and biochemical consequences of voluntary emersion upon aquatic hypoxia in the scaleless fishGalaxiasmaculatus[J].Journal of Comparative Physiology B,2012,182(8):1057-1067.

      [37] Monteiro D A, Thomaz J M, Rantin F T, et al. Cardiorespiratory responses to graded hypoxia in the neotropical fish matrinx? (Bryconamazonicus) and traíra (Hopliasmalabaricus) after waterborne or trophic exposure to inorganic mercury[J]. Aquatic Toxicology, 2013(140):346-355.

      [38] Bel?o T C, Leite C A C, Florindo L H, et al. Cardiorespiratory responses to hypoxia in the African catfish,Clariasgariepinus(Burchell 1822), an air-breathing fish[J].Journal of Comparative Physiology B,2011,181(7):905-916.

      [39] Da Cruz A L, Da Silva H R, Lundstedt L M, et al. Air-breathing behavior and physiological responses to hypoxia and air exposure in the air-breathing loricariid fish,Pterygoplichthysanisitsi[J]. Fish Physiology and Biochemistry, 2013, 39(2):243-256.

      [40] Brauner C J, Matey V, Wilson J M, et al. Transition in organ function during the evolution of air breathing: insights fromArapaimasgigas, an obligate air breathing teleost from the Amazon[J].The Journal of Experimental Biology,2004,207(9):1433-1438.

      [41] Sollid J, De Angelis P, Gundersen K, et al. Hypoxia induces adaptive and reversible gross morphological changes in crucian carp gills[J].The Journal of Experimental Biology,2003,206(20):3667-3673.

      [42] Sollid J, Kjernsli A, De Angelis P M, et al. Cell proliferation and gill morphology in anoxic crucian carp[J]. American Journal of Physio1ogy, Regulatory, Integrative and Comparative Physiology, 2005, 289(4):1196-1201.

      [43] Nilsson G E. Gill remodeling in fish—a new fashion or an ancient secret[J].The Journal of Experimental Biology,2007,210(14):2403-2409.

      [44] Matey V, Richards J G, Wang Y, et al. The effect of hypoxia on gill morphology and ion oregulatory status in the Lake Qinghai scaleless carp,Gymnocyprisprzewalskii[J].The Journal of Experimental Biology,2008,211(7):1063-1074.

      [45] Huang C Y, Lin H C, Lin C H. Effects of hypoxia on ionic regulation, glycogen utilization and antioxidative ability in the gills and liver of the aquatic air-breathing fishTrichogastermicrolepis[J].Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2015(179):25-34.

      [46] Ton C, Stamatiou D, Liew C C. Gene expression profile of zebrafish exposed to hypoxia during development[J].Physiological Genomics,2003,13(2):97-106.

      [47] Reischl E. High sulfhydryl content in turtle erythrocytes: is there a relation with resistance to hypoxia?[J]. Comparative Biochemistry and Physiology B—Biochemistry & Molecular Biology, 1986,85(4):723-726.

      [48] Lesser M P.Oxidative stress in marine environments: biochemistry and physiological ecology[J].Annual Review of Physiology,2006(68):253-278.

      [49] McCord J M, Fridovich I. Superoxide dismutase, an enzymatic function for erythrocuprein[J].Journal of Biological Chemistry,1969,244(22):6049-6055.

      [50] Bowler C, Montagu M V, Inze D.Superoxide dismutase and stress tolerance[J].Annual Review of Plant Physiology and Plant Molecular Biology,1992,43(1):83-116.

      [51] Riffel A P K, Garcia L O, Finamor I A, et al. Redox profile in liver ofLeporinusmacrocephalusexposed to different dissolved oxygen levels[J].Fish Physiology and Biochemistry,2012,38(3):797-805.

      [52] Tripathi R K, Mohindra V, Singh A, et al. Physiological responses to acute experimental hypoxia in the air-breathing Indian catfish,Clariasbatrachus(Linnaeus, 1758)[J].Journal of Biosciences,2013,38(2):373-383.

      [53] Cooper R U, Clough L M, Farwell M A, et al. Hypoxia-induced metabolic and antioxidant enzymatic activities in the estuarine fishLeiostomusxanthurus[J]. Journal of Experimental Marine Biology and Ecology, 2002,279(1):1-20.

      [54] Zámocky M, Koller F. Understanding the structure and function of catalase: clues from molecular evolution and in vitro mutagenesis[J].Progress in Biophysics and Molecular Biology,1999,72(1):19-66.

      [55] Lushchak V I, Bagnyukova T V. Hypoxia induces oxidative stress in tissues of a goby, the rotanPerccottusglenii[J].Comparative Biochemistry and Physiology B—Biochemistry & Molecular Biology, 2007,148(4):390-397.

      [56] Lushchak V, Lushchak L, Mota A, et al. Oxidative stress and antioxidant defenses in goldfishCarassiusauratusduring anoxia and reoxygenation[J]. American Journal of Physiology—Regulatory Integrative and Comparative Physiology,2001,280(1):100-107.

      [57] Arthur J R. The glutathione peroxidases[J]. Cellular and Molecular Life Sciences,2000,57(13/14):1825-1835.

      [58] Lushchak V I,Bagnyukova T V,Lushchak O V,et al.Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp (Cyprinuscarpio) tissues[J].International Journal of Biochemistry & Cell Biology,2005,37(6):1319-1330.

      [59] Mustafa S A, Al-Subiai S N, Davies S J, et al. Hypoxia induced oxidative DNA damage links with higher level biological effects including specific growth rate in common carp,CyprinuscarpioL.[J].Ecotoxicology,2011,20(6):1455-1466.

      [60] Yamamoto Y, Fujisawa A, Hara A, et al. An unusual vitamin E constituent (α-tocomonoenol) provides enhanced antioxidant protection in marine organisms adapted to cold-water environments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001,98(23):13144-13148.

      [61] Miki W, Otaki N, Shimidzu N, et al. Carotenoids as free radical scavengers in marine animals[J]. The Journal of Marine Biotechnology, 1994(21):35-37.

      [62] Pérez-Jiménez A, Peres H, Rubio V C, et al. The effect of hypoxia on intermediary metabolism and oxidative status in gilthead sea bream (Sparusaurata) fed on diets supplemented with methionine and white tea[J]. Comparative Biochemistry and Physiology C—Toxicology & Pharmacology, 2012,155(3):506-516.

      [63] Welker A F, Campos E G, Cardoso L A, et al. Role of catalase on the hypoxia/reoxygenation stress in the hypoxia-tolerant Nile tilapia[J].American Journal of Physiology—Regulatory Integrative and Comparative Physiology,2012,302(9):1111-1118.

      ResponsesofAntioxidantDefensestoHypoxiainFreshwaterFish

      ZHAO Yanjing,DI Guilan, JIANG Xinyu, LI Hui, KONG Xianghui

      ( College of Fisheries,Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Engineering Lab of Henan Province for Aquatic Animal Disease Control, Henan Normal University, Xinxiang 453007, China )

      hypoxia; freshwater fish; oxidative stress; antioxidant defense

      10.16378/j.cnki.1003-1111.2016.05.024

      S917.4

      C

      1003-1111(2016)05-0591-06

      2015-11-09;

      2016-01-04.

      河南省高??萍紕?chuàng)新團隊支持計劃項目(15IRTSTHN018); 河南省國際合作項目(144300510017); 河南省水產(chǎn)學(xué)重點學(xué)科項目(2012).

      趙燕靜(1991—), 女, 碩士研究生;研究方向: 魚類免疫和疾病控制. E-mail: yanjing217907@126.com.通訊作者: 孔祥會(1968—), 男, 教授,博士;研究方向: 水產(chǎn)動物免疫與疾病控制. E-mail: xhkong@htu.cn.

      猜你喜歡
      歧化酶超氧化物過氧化物
      銀納米團簇的過氧化物模擬酶性質(zhì)及應(yīng)用
      Co3O4納米酶的制備及其類過氧化物酶活性
      新型耐高溫超氧化物歧化酶SOD的產(chǎn)業(yè)化
      過氧化物交聯(lián)改性PE—HD/EVA防水材料的研究
      中國塑料(2016年3期)2016-06-15 20:30:00
      超氧化物歧化酶保健飲用水及其制取方法探討
      提高有機過氧化物熱穩(wěn)定性的方法
      麥苗中超氧化物歧化酶抗氧化活性研究
      芒康县| 苍山县| 湘潭县| 陆良县| 佛坪县| 唐山市| 千阳县| 松滋市| 湖南省| 政和县| 沂源县| 德昌县| 巧家县| 宝兴县| 福建省| 天门市| 介休市| 板桥市| 汾阳市| 南昌县| 剑川县| 绥棱县| 中牟县| 万宁市| 凤台县| 达孜县| 类乌齐县| 常德市| 临猗县| 天峻县| 兴国县| 彝良县| 建平县| 香港| 江源县| 会昌县| 宜兰县| 阿拉善左旗| 乌拉特前旗| 竹山县| 耒阳市|