田會(huì)萍 姚鴻萍 王思文 馬 侗 封衛(wèi)毅
(西安交通大學(xué)第一附屬醫(yī)院藥學(xué)部,西安,710061)
?
基于AMPK的中藥有效成分治療2型糖尿病的研究進(jìn)展
田會(huì)萍 姚鴻萍 王思文 馬 侗 封衛(wèi)毅
(西安交通大學(xué)第一附屬醫(yī)院藥學(xué)部,西安,710061)
腺苷酸活化蛋白激酶(AMP-activated Protein Kinase,AMPK)在調(diào)節(jié)細(xì)胞和全身代謝中發(fā)揮著重要作用,是研究治療2型糖尿病藥物的關(guān)鍵靶點(diǎn)。本文介紹了AMPK的結(jié)構(gòu)及調(diào)節(jié)方式,并通過(guò)檢索文獻(xiàn),對(duì)通過(guò)調(diào)節(jié)AMPK及其相關(guān)信號(hào)通路干預(yù)2型糖尿病的中藥有效成分進(jìn)行歸納總結(jié)。
腺苷酸活化蛋白激酶;AMPK信號(hào)通路;2型糖尿??;中藥
2型糖尿病(Type 2 Diabetes Mellitus,T2DM)是一種慢性代謝性疾病,受環(huán)境、遺傳等多種因素的相互影響。目前,與糖尿病發(fā)病機(jī)制有關(guān)的假說(shuō)有未酯化脂肪酸、炎性反應(yīng)因子、脂肪因子、線粒體功能障礙導(dǎo)致的胰島素抵抗、糖毒性、脂毒性以及淀粉體形成的β-細(xì)胞功能障礙等[1]。近期研究發(fā)現(xiàn),脂肪在肝臟和胰腺的堆積所導(dǎo)致的自我增強(qiáng)循環(huán)促進(jìn)了2型糖尿病的發(fā)生[2]。國(guó)際糖尿病聯(lián)盟(International Diabetes Federation,IDF)的報(bào)道中指出,截止2014年全球共有糖尿病患者3.87億。而中國(guó)20~79歲的糖尿病患者約9 600萬(wàn),居全球首位,患病率為9.32%[3-4]。世界衛(wèi)生組織預(yù)測(cè),2030年糖尿病將成為第7位主要死因。世界各地的糖尿病患者中約90%患有2型糖尿病。血糖的持續(xù)增高可引起心血管系統(tǒng)疾病(主要指心臟病和中風(fēng))、足部神經(jīng)病變、糖尿病視網(wǎng)膜病變、糖尿病腎病等并發(fā)癥[5-7]。由于在調(diào)節(jié)細(xì)胞新陳代謝和維持全身水平能量平衡中所發(fā)揮的重要作用,AMPK已成為治療代謝性相關(guān)疾病,如肥胖、T2DM和非乙醇性脂肪肝等的關(guān)鍵靶點(diǎn)[8-9]。本文將對(duì)通過(guò)調(diào)節(jié)AMPK及其相關(guān)信號(hào)通路,治療T2DM的中藥有效成分的研究進(jìn)展進(jìn)行報(bào)道。
AMPK是蛋白激酶級(jí)聯(lián)的下游組分,細(xì)胞能量狀態(tài)的感受器,存在于所有的真核細(xì)胞中。AMPK以異源三聚復(fù)合體的形式存在,由催化α亞單位和調(diào)節(jié)β、γ亞單位組成。人和嚙齒類動(dòng)物體內(nèi)具有2種α(α1和α2)和β(β1和β2)亞型,3種γ(γ1、γ2和γ3)亞型。這些亞基的選擇性剪接可導(dǎo)致異源三聚體的多樣化組合[10-11]。在體內(nèi),任何干擾ATP產(chǎn)生或促進(jìn)ATP消耗所引起的細(xì)胞內(nèi)AMP:ATP比例的增加,都可激活A(yù)MPK。其典型性的激活途徑有代謝應(yīng)激(如:葡萄糖饑餓、缺氧、代謝抑制劑以及肌肉收縮等)、藥物和外源性物質(zhì);非典型性的有氧化應(yīng)激和基因毒性療法(如:依托泊苷、阿霉素和電離輻射等)等。其中,上游激酶LKB1(Liver Kinase B1)和Ca2+/鈣調(diào)素依賴性蛋白激酶激酶β(Ca2+/Calmodulin-dependent Protein Kinase kinase,CaMKKβ)在AMPK的磷酸化和激活中分別扮演著重要作用[12-13]。一旦被激活,AMPK將啟動(dòng)分解代謝途徑,生成ATP,并切斷ATP消耗過(guò)程,如生物合成、細(xì)胞生長(zhǎng)和增殖等[14-15]。AMPK激活的分解代謝途徑包括:通過(guò)葡萄糖轉(zhuǎn)運(yùn)載體-4(Glucose Transporter Type 4,GLUT4)和GLUT1促進(jìn)葡萄糖攝?。煌ㄟ^(guò)CD36促進(jìn)糖酵解和脂肪酸攝??;促進(jìn)脂肪酸氧化、線粒體生成和自噬等;AMPK抑制的合成代謝途徑包括:脂肪酸合成、脂肪合成酶的轉(zhuǎn)錄、三酰甘油合成、膽固醇合成、糖異生酶的轉(zhuǎn)錄、糖原合成、蛋白合成以及rRNA的合成等[16-17]。
目前,已報(bào)道的通過(guò)調(diào)節(jié)AMPK及其相關(guān)信號(hào)通路干預(yù)2型糖尿病的中藥有效成分可分為以下幾類。
2.1 萜類 化合物K(Compound K,CK)是原人參二醇型人參皂苷的代謝終產(chǎn)物。Wei等[18]研究發(fā)現(xiàn),CK可抑制肝臟和HepG2細(xì)胞磷酸烯醇丙酮酸羧基酶(Phosphoenolpyruvate Carboxykinase,PEPCK)和葡萄糖-6-磷酸酶(Glucose-6-phosphatase,G6Pase)的表達(dá),降低過(guò)氧化物酶體增殖物激活受體γ輔助活化因子-1α(PGC-1α)、肝細(xì)胞核因子4α(HNF-4α)和叉頭轉(zhuǎn)錄因子O1(FOXO1)的表達(dá),同時(shí)顯著增強(qiáng)AMPK活性。CK的上述作用可被AMPK抑制劑化合物C部分逆轉(zhuǎn),表明CK可能通過(guò)激活A(yù)MPK活性抑制肝糖異生。Deepti等[19]發(fā)現(xiàn)去氧穿心蓮內(nèi)酯(Deoxyandrographolide,DeoAn)可降低糖尿病大鼠餐后血糖水平,降低db/db小鼠空腹血糖、血清胰島素(Insulin,INS)、三酰甘油(Triglyceride,TG)以及低密度脂蛋白膽固醇水平等。DeoAn還可劑量依賴性地促進(jìn)L6肌肉細(xì)胞蘇氨酸-172位點(diǎn)AMPK和絲氨酸-79位點(diǎn)乙酰輔酶A羧化酶(Acetyl CoA Carboxylase,ACC)的磷酸化。該研究提示DeoAn改善T2DM的作用可能與激活A(yù)MPK信號(hào)通路有關(guān)。委陵菜酸(Tormentic Acid,TA)是一種三萜類化合物,存在于翻白草(Potentilla Discolor Bung.)、蛇莓(Duchesnea Indica Focke)等植物中。Jin等[20]發(fā)現(xiàn)TA能降低實(shí)驗(yàn)小鼠的內(nèi)臟脂肪重量和肝臟TG含量,減少肝細(xì)胞脂肪變性和氣球樣變性,促進(jìn)骨骼肌AMPK、Akt的磷酸化,增強(qiáng)GLUT4蛋白表達(dá),下調(diào)肝臟PEPCK、G6Pase表達(dá)。另外,TA還可促進(jìn)肝臟pAMPK的表達(dá)。因此,TA很可能通過(guò)激活A(yù)MPK信號(hào)通路,降低肝臟葡萄糖生成,增加骨骼肌GLUT4含量,從而改善糖尿病狀態(tài)。
2.2 酚類 Qiang等[21]發(fā)現(xiàn)丹參酚酸A(Salvianolic Acid A,SalA)可劑量依賴性地降低(1型和2型)糖尿病動(dòng)物FPG,減少24 h飲食和水的攝入量;顯著增加HepG2細(xì)胞和L6肌肉細(xì)胞的ATP生成,減少HepG2細(xì)胞線粒體膜電位(MMP);改善肝臟和骨骼肌線粒體功能,增加ATP生成,減少M(fèi)MP。其機(jī)制可能與SalA通過(guò)激活CaMKKβ/AMPK信號(hào)通路,促進(jìn)AMPK磷酸化有關(guān)。Cai等[22]發(fā)現(xiàn)表沒(méi)食子兒茶素沒(méi)食子酸酯(Epigallocatechin Gallate,EGCG)可刺激大鼠胰島β細(xì)胞胰島素受體底物2(Insulin Receptor Substrate 2,IRS2)信號(hào)通路,保護(hù)胰島素分泌功能,并通過(guò)激活A(yù)MPK信號(hào)通路抑制脂肪生成酶的活性、改善線粒體功能產(chǎn)生降糖脂的效應(yīng)。Jiménez等[23]發(fā)現(xiàn),給予db/db小鼠0.75%的姜黃素(Curcumin)連續(xù)8周,可顯著增強(qiáng)AMPK和PPARγ蛋白表達(dá),降低核轉(zhuǎn)錄因子κB(NF-κB)蛋白表達(dá),有利于T2DM及其并發(fā)癥的治療。Sha等[24]研究發(fā)現(xiàn),綠原酸(Chlorogenic Acid,CGA)可降低db/db小鼠FPG和糖化血紅蛋白(HbA1c)水平,增加肝臟和肌肉組織pAMPK蛋白表達(dá)。
2.3 黃酮類 Hana等[25]發(fā)現(xiàn),山柰酚(Kaempferol)可顯著改善高脂飲食小鼠高血糖、高血脂及血脂循環(huán),逆轉(zhuǎn)小鼠肌肉組織和脂肪組織受損的GLUT4和AMPK表達(dá);促進(jìn)脂肪分解,抑制糖原合成,并增強(qiáng)小鼠骨骼肌細(xì)胞AMPK活性和GLUT4的表達(dá)。Jia等[26]發(fā)現(xiàn),新橙皮苷(Neohesperidin)可通過(guò)激活A(yù)MPK信號(hào)通路調(diào)節(jié)其目標(biāo)基因,如硬脂酰輔酶A去飽和酶1(SCD-1)、脂肪酸合成酶(FAS)和酰基輔酶A氧化酶(ACOX)的表達(dá),從而發(fā)揮降血糖、血脂的效果。Goto等[27]發(fā)現(xiàn),蒙花苷(Tiliroside)可降低實(shí)驗(yàn)動(dòng)物血清INS、游離脂肪酸及TG水平,增加血清脂聯(lián)素水平;上調(diào)肝臟脂聯(lián)素受體-1(Adiponectin Receptor 1,AdipoR 1)和AdipoR 2表達(dá),并通過(guò)激活A(yù)MPK和PPARα增加脂肪酸氧化,改善肥胖誘導(dǎo)的代謝紊亂。
2.4 生物堿 研究表明除了抗炎、抗氧化等作用外,小檗堿(Berberine)還具有降血糖、降脂的作用[28]。Lee等[29]研究發(fā)現(xiàn),小檗堿可降低T2DM模型大鼠的血脂、INS和胰島素抵抗指數(shù)(HOMA-IR),顯著改善葡萄糖耐受,促進(jìn)T2DM模型大鼠肝臟AMPK、pAMPK以及LKB1蛋白表達(dá)。Shu等[30]研究發(fā)現(xiàn),小檗堿可促進(jìn)GLUT4的膜轉(zhuǎn)運(yùn),促進(jìn)AMPK、ACC和p38AMPK的磷酸化,降低脂肪細(xì)胞脂質(zhì)含量,增強(qiáng)脂質(zhì)氧化相關(guān)基因的表達(dá),同時(shí)抑制脂質(zhì)合成相關(guān)基因的表達(dá)。Jiang[31]等發(fā)現(xiàn)小檗堿可有效改善軟脂酸誘導(dǎo)的HepG2細(xì)胞的胰島素抵抗??锵嫉萚32]發(fā)現(xiàn)小檗堿可降低高脂飲食誘導(dǎo)的糖尿病大鼠的血糖、血脂水平,改善葡萄糖耐受和胰島素抵抗,抑制糖異生作用。且兩項(xiàng)研究均認(rèn)為其機(jī)制可能與小檗堿調(diào)節(jié)LKB1-AMPK-TORC2信號(hào)有關(guān)。以上結(jié)果表明,小檗堿改善T2DM的作用可能與激活A(yù)MPK信號(hào)通路有關(guān)。
2.5 苷類 Tao等[33]發(fā)現(xiàn),紅景天苷(Salidroside)可通過(guò)調(diào)節(jié)AMPK和PI3K/Akt信號(hào)通路,劑量依賴性地促進(jìn)肝細(xì)胞糖原合成激酶3β(GSK3β)和ACC的磷酸化、抑制PEPCK、G6Pase表達(dá),降低實(shí)驗(yàn)動(dòng)物外周組織的脂質(zhì)蓄積,改善胰島素抵抗。
2.6 多糖 Feng等[34]發(fā)現(xiàn),黃芪多糖(Astragalus Polysaccharide,APS)能改善T2DM模型大鼠的高糖狀態(tài),提高胰島素敏感性,促進(jìn)葡萄糖攝取,促進(jìn)AMPK蛋白表達(dá)。在體外,APS還可通過(guò)激活A(yù)MPK表達(dá),緩解糖毒性。鮑芳等[35]研究發(fā)現(xiàn)APS可刺激L6成肌細(xì)胞的葡萄糖攝取,且其機(jī)制可能與活化AMP-AMPK-AS160信號(hào)通路有關(guān)。
2.7 萘類衍生物 Ha等[36]發(fā)現(xiàn),酸模素(乙酰-1,8-二羥基-3-甲基萘,Nepodin)可通過(guò)促進(jìn)AMPK磷酸化和細(xì)胞質(zhì)膜GLUT4的轉(zhuǎn)運(yùn),劑量依賴性地促進(jìn)葡萄糖攝取,從而抑制db/db小鼠的FPG水平、改善葡萄糖耐受、緩解小鼠骨骼肌受損的AMPK磷酸化。
2.8 其他提取物 Hai等[37]發(fā)現(xiàn),人參提取物在含果膠酶的酶溶液中培養(yǎng)24 h,可降低實(shí)驗(yàn)小鼠FPG、INS和HOMA-IR水平,促進(jìn)骨骼肌GLUT4和AMPK蛋白表達(dá)。Han等[38]發(fā)現(xiàn),知母提取物可顯著降低鏈脲佐菌素(STZ)誘導(dǎo)的糖尿病小鼠的FPG和血清INS水平,增加胰島β細(xì)胞的數(shù)量和大?。桓纳瓶ń槊缯T導(dǎo)的胰島素抵抗大鼠的葡萄糖攝入率,促進(jìn)AMPK磷酸化,并下調(diào)ACC表達(dá)。Yang等[39]發(fā)現(xiàn),苦參乙酸乙酯提取物可通過(guò)促進(jìn)AMPK磷酸化和膜GLUT4的轉(zhuǎn)運(yùn),改善KK-ay小鼠的口服糖耐量,增加血清HDL-C水平,降低體重、血糖水平及其他血脂相關(guān)參數(shù)。
目前,同過(guò)調(diào)節(jié)AMPK及其信號(hào)通路治療2型糖尿病的藥物有二甲雙胍、噻唑烷二酮類等。盡管存在不良反應(yīng)[40-42],但作為細(xì)胞和機(jī)體的能量調(diào)節(jié)器,AMPK仍然是抗2型糖尿病藥物的研發(fā)熱點(diǎn)[43]。以上報(bào)道提示,部分中藥活性成分可通過(guò)干預(yù)AMPK信號(hào)通路發(fā)揮抗糖尿病作用。因而,基于以上基礎(chǔ)研究的中醫(yī)組方或通過(guò)分離純化的中藥有效成分有望成為抗糖尿新藥研發(fā)的潛在目標(biāo)。
[1]Stumvoll M,Goldstein BJ,van Haeften TW.Type 2 diabetes:principles of pathogenesis and therapy[J].Lancet,2005,365(9467):1333-1346.
[2]Taylor R.Type 2 diabetes:etiology and reversibility[J].Diabetes Care,2013,36(4):1047-1055.
[3]International Diabetes Federation.IDF Diabetes Atlas(sixth edition)[S].Basel:Switzerland,2013.
[4]International Diabetes Federation Guideline Development Group.Global guideline for type 2 diabetes[J].Diabetes Research & Clinical Practice,2014,104(1):1-52.
[5]Khalil C A,Taheri S.Obesity and Type 2 Diabetes[J].Journal of Diabetes Mellitus,1999,23 Suppl 7(2):111-114(4).
[6]畢艷.中國(guó)糖尿病慢性并發(fā)癥的流行病學(xué)研究現(xiàn)況[J].中國(guó)糖尿病雜志,2015(8):467-469.
[7]王燕杰,苗桂珍,苗莉,等.2型糖尿病慢性并發(fā)癥相關(guān)因素分析[J].世界中醫(yī)藥,2014,9(7):908-911.
[8]魏強(qiáng)強(qiáng),段文虎,周金培,等.小分子AMPK直接激動(dòng)劑的最新研究進(jìn)展[J].中國(guó)藥科大學(xué)學(xué)報(bào),2015,46(4):406-415.
[9]劉永貴,解學(xué)星,吳疆,等.治療2型糖尿病的新靶點(diǎn)藥物研究進(jìn)展[J].現(xiàn)代藥物與臨床,2015(2):222-227.
[10]Hardie D G.AMPK:a key regulator of energy balance in the single cell and the whole organism[J].International Journal of Obesity,2008,32 suppl 4(9):S7-12.
[11]Si C,Ping Z,Hui-Ming G,et al.Alpha1 catalytic subunit of AMPK modulates contractile function of cardiomyocytes through phosphorylation of troponin I[J].Life Sciences,2014,98(2):75-82.
[12]Carling D,Sanders M J,Woods A.The regulation of AMP-activated protein kinase by upstream kinases[J].International Journal of Obesity,2008,32 suppl 4(9):S55-59.
[13]Fujiwara Y,Kawaguchi Y,F(xiàn)ujimoto T,et al.Differential AMP-activated Protein Kinase(AMPK)Recognition Mechanism of Ca2+/Calmodulin-dependent Protein Kinase Kinase Isoforms[J].Journal of Biological Chemistry,2016,291(26):13802-13808.
[14]Towler MC,Hardie DG.AMP-activated protein kinase in metabolic control and insulin signaling[J].Circulation Research,2007,100(3):328-341.
[15]Hardie D G.AMPK:positive and negative regulation,and its role in whole-body energy homeostasis[J].Current Opinion in Cell Biology,2015(33):1-7.
[16]Hardie D G,Ross F A,Hawley S A.AMPK:a nutrient and energy sensor that maintains energy homeostasis[J].Nature Reviews Molecular Cell Biology,2012,13(4):251-262.
[17]曹可,馮智輝,劉健康.天然AMPK激活劑防治代謝綜合征的研究進(jìn)展[J].生命科學(xué)研究,2014(6):543-549.
[18]Wei S,Li W,Yu Y,et al.Ginsenoside compound K suppresses the hepatic gluconeogenesis via activating adenosine-5′monophosphate kinase:A study in vitro and in vivo[J].Life Sciences,2015(139):8-15.
[19]Arha D,Pandeti S,Mishra A,et al.Deoxyandrographolide promotes glucose uptake through glucose transporter-4 translocation to plasma membrane in L6 myotubes and exerts antihyperglycemic effect in vivo[J].Eur J Pharmacol,2015(768):207-216.
[20]Jin-Bin W,Yueh-Hsiung K,Cheng-Hsiu L,et al.Tormentic acid,a major component of suspension cells of Eriobotrya japonica,suppresses high-fat diet-induced diabetes and hyperlipidemia by glucose transporter 4 and AMP-activated protein kinase phosphorylation[J].Journal of Agricultural & Food Chemistry,2014,62(44):10717-10726.
[21]Qiang G,Yang X,Shi L,et al.Antidiabetic Effect of Salvianolic Acid A on Diabetic Animal Models via AMPK Activation and Mitochondrial Regulation[J].Cell Physiol Biochem,2015,36(1):395-408.
[22]Cai EP,Lin JK.Epigallocatechin gallate(EGCG)and rutin suppress the glucotoxicity through activating IRS2 and AMPK signaling in rat pancreatic beta cells[J].J Agric Food Chem,2009,57(20):9817-9827.
[23]Jiménez-Flores LM,López-Briones S,Macías-Cervantes MH,et al.A PPARγ,NF-κB and AMPK-dependent mechanism may be involved in the beneficial effects of curcumin in the diabetic db/db mice liver[J].Molecules,2014,19(6):8289-8302.
[24]Shasha J,Cuiqing C,Lantao Z,et al.Chlorogenic acid improves late diabetes through adiponectin receptor signaling pathways in db/db mice[J].Plos One,2015,10(4):1-15.
[25]Hana Alkhalidy,William Moore,Yanling Zhang,et al.Small Molecule Kaempferol Promotes InsulinSensitivity and Preserved Pancreatic β-Cell Mass in Middle-Aged Obese Diabetic Mice[J].Journal of Diabetes Research,2015(2015):532984.
[26]Jia S,Hu Y,Zhang W,et al.Hypoglycemic and hypolipidemic effects of neohesperidin derived from Citrus aurantium L.in diabetic KK-A(y)mice[J].Food Funct,2015,6(3):878-886.
[27]Goto T,Teraminami A,Lee JY,et al.Tiliroside,a glycosidic flavonoid,ameliorates obesity-induced metabolic disorders via activation of adiponectin signaling followed by enhancement of fatty acid oxidation in liver and skeletal muscle in obese-diabetic mice[J].J Nutr Biochem,2012,23(7):768-776.
[28]張青,李琰,陳磊.黃連素對(duì)2型糖尿病及其并發(fā)癥的治療作用及相關(guān)機(jī)制研究進(jìn)展[J].中國(guó)中藥雜志,2015,40(9):1660-1665.
[29]Lee YS,Kim WS,Kim KH,et al.Berberine,a natural plant product,activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states[J].Diabetes,2006,55(8):2256-2264.
[30]Shu-Jun Jiang,Hui Dong,Jing-Bin Li,et al.Berberine inhibits hepatic gluconeogenesis via the LKB1-AMPK-TORC2 signaling pathway in streptozotocin-induced diabetic rats[J].World J Gastroenterol,2015,21(25):7777-7785.
[31]Jiang SJ,Dong H,Li JB,et al.Berberine inhibits hepatic gluconeogenesis via the LKB1-AMPK-TORC2 signaling pathway in streptozotocin-induced diabetic rats[J].World J Gastroenterol,2015,21(25):7777-7785.
[32]匡霞,陸付耳,易屏.小檗堿對(duì)HepG2胰島素抵抗細(xì)胞模型中LKB1-AMPK-TORC2信號(hào)網(wǎng)絡(luò)的影響[J].中國(guó)中西醫(yī)結(jié)合消化雜志,2015,23(7):467-471.
[33]Tao Zheng,Xiaoyan Yang,Dan W,et al.Salidroside ameliorates insulin resistance through activation of a mitochondria-associated AMPK/PI3K/Akt/GSK3β pathway[J].British Journal of Pharmacology,2015,172(13):3284-3301.
[34]Feng Z,Xian-Qing M,Nian W,et al.Astragalus polysaccharides alleviates glucose toxicity and restores glucose homeostasis in diabetic states via activation of AMPK[J].Acta pharmacologica Sinica,2009,30(12):1607-1615.
[35]鮑芳,吳勝英,歐陽(yáng)靜萍,等.AMP-AMPK-AS160信號(hào)通路在黃芪多糖刺激L6成肌細(xì)胞葡萄糖攝取中的作用[J].中國(guó)病理生理雜志,2015(10):1869.
[36]Ha BG,Yonezawa T,Son MJ,et al.Antidiabetic effect of nepodin,a component of Rumex roots,and its modes of action in vitro and in vivo[J].Biofactors,2014,40(4):436-447.
[37]Hai Dan Yuan,Hai Yan Quan,Mi Song Jung,et al.Anti-diabetic effect of pectinase-processed Ginseng radix(GINST)in high fat diet-fed ICR mice[J].Journal of Ginseng Research,2011,35(3):308-314.
[38]Han J,Yang N,Zhang F,et al.Rhizoma Anemarrhenae extract ameliorates hyperglycemia and insulin resistance via activation of AMP-activated protein kinase in diabetic rodents[J].Journal of Ethnopharmacology,2015(172):368-376.
[39]Yang X,Yang J,Xu C,et al.Antidiabetic effects of flavonoids from Sophora flavescens EtOAc extract in type 2 diabetic KK-ay mice[J].J Ethnopharmacol,2015(171):161-170.
[40]Huang W,Castelino R L,Peterson G M.Adverse event notifications implicating metformin with lactic acidosis in Australia[J].Journal of Diabetes & Its Complications,2015,29(8):1261-1265.
[41]Chang C,Lin J,Wu L,et al.Association of thiazolidinediones with liver cancer and colorectal cancer in type 2 diabetes mellitus[J].Hepatology,2012,55(5):1462-1472.
[42]Soccio RE,Chen ER,Lazar MA.Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes[J].Cell Metab,2014,20(4):573-591.
[43]耿鳳豪,張鵬,董玲,等.AMPK-能量代謝感受器與可激活A(yù)MPK相關(guān)的藥物研究進(jìn)展[J].心臟雜志,2014(1):97-100.
(2016-02-14收稿 責(zé)任編輯:張文婷)
Research Progress on Traditional Chinese Medicine in Treatment of Type 2 Diabetes Based on AMPK
Tian Huiping, Yao Hongping, Wang Siwen, Ma Tong, Feng Weiyi
(DepartmentofPharmacy,theFirstHospitalAffiliatedtoXi′anJiaotongUniversity,Xi′an710061,China)
The AMP-activated protein kinase (AMPK) is a key senor in cellular and systematic metabolism, and has become a key target in research of anti-diabetic drugs. This article is to introduce the structure and regulation mechanism of the AMPK. By literature searching, it is to summarize research progress on traditional Chinese medicine in the treatment of type 2 diabetes based on the AMP-activated protein kinase and related signaling pathway.
AMP-activated protein kinase; AMPK signaling pathway; Type 2 diabetes; Chinese Materia Medica
2015年陜西省自然科學(xué)基金面上項(xiàng)目(編號(hào):2015JM8447)——二甲雙胍與細(xì)胞毒藥物脂質(zhì)體對(duì)腫瘤干細(xì)胞引起腫瘤復(fù)發(fā)和轉(zhuǎn)移研究
田會(huì)萍(1986.05—),女,碩士,藥師,研究方向:醫(yī)院藥學(xué),E-mail:tianhuiping002@163.com
R587.1;R2-03
A
10.3969/j.issn.1673-7202.2016.11.069