鄒莉芳,沈以紅,黃先智,丁曉雯,*(.西南大學(xué)食品科學(xué)學(xué)院,重慶市農(nóng)產(chǎn)品加工重點(diǎn)實(shí)驗(yàn)室,重慶 40075;.家蠶基因組生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,重慶 40075)
?
食品功能性成分降血脂作用機(jī)理研究進(jìn)展
鄒莉芳1,沈以紅2,黃先智2,丁曉雯1,*
(1.西南大學(xué)食品科學(xué)學(xué)院,重慶市農(nóng)產(chǎn)品加工重點(diǎn)實(shí)驗(yàn)室,重慶 40071
5;2.家蠶基因組生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,重慶 400715)
摘 要:高脂飲食的攝入打破了體內(nèi)脂質(zhì)代謝平衡,是目前高脂血癥患者數(shù)量急劇增加的原因之一。具有降血脂功效的食品很多,其功能成分主要為膳食纖維、多糖類、多酚類、生物堿類、皂苷等。本文綜述了食物中常見(jiàn)的具有降血脂作用成分的功效及其作用機(jī)制的最新研究進(jìn)展,為降血脂研究及功能食品的開(kāi)發(fā)提供參考。
關(guān)鍵詞:降血脂;膽固醇;脂肪酸;甘油三酯
引文格式:
鄒莉芳,沈以紅,黃先智,等.食品功能性成分降血脂作用機(jī)理研究進(jìn)展[J].食品科學(xué),2016,37(5):239-244.
ZOU Lifang,SHEN Yihong,HUANG Xianzhi,et al.Progress in research on hypolipidemic mechanisms of functional food components[J].Food Science,2016,37(5):239-244.(in Chinese with English abstract)DOI:10.7506/spkx1002-6630-201605042.http://www.spkx.net.cn
心血管疾?。╟ardiovascular disease,CVD)是全世界死亡的首要原因,而高脂血癥是導(dǎo)致心血管疾病最重要的危險(xiǎn)因素之一。高脂血癥是指血漿總膽固醇(total cholesterol,TC)、甘油三酯(triglyceride,TG)和低密度脂蛋白膽固醇(low-density lipoprotein cholesterol,LDL-C)過(guò)高,高密度脂蛋白膽固醇(high-density lipoprotein cholesterol,HDL-C)偏低[1-2]。血脂的高低與膳食習(xí)慣和身體代謝能力關(guān)系密切,減少飽和、反式脂肪酸和膳食膽固醇的攝入,增加降血脂保健食品攝入都有助于降低血脂[3]。研究發(fā)現(xiàn),有許多食品的功能性成分具有降血脂功效[4]。本文總結(jié)降血脂功能食品的最新研究成果,就食品中存在具有降血脂功能的成分及其降血脂機(jī)制進(jìn)行綜述,為降血脂功能食品的開(kāi)發(fā)提供參考。
1.1膽固醇代謝平衡機(jī)制
人體膽固醇的來(lái)源主要是從食物中獲取和體內(nèi)合成,體內(nèi)膽固醇的平衡主要受小腸吸收、內(nèi)源性合成和在肝臟的轉(zhuǎn)化、排泄的調(diào)控[1]。膽固醇吸收至少由C型尼曼-匹克蛋白(Niemann-pick protein C1,NPC1L1)和兩種ATP結(jié)合盒式蛋白G5/G8(ATP-binding cassette proteinG5/G8,ABCG5/G8)調(diào)控,前者為流入轉(zhuǎn)運(yùn)蛋白,后者為流出轉(zhuǎn)運(yùn)蛋白,在小腸和肝臟細(xì)胞中膽固醇平衡是通過(guò)NPC1L1流入和ABCG5/G8流出控制的[5]。過(guò)氧化物酶體增殖物激活受體-δ(peroxisome proliferator activated receptor-δ,PPAR-δ)與配體結(jié)合激活后,可以通過(guò)上調(diào)ATP結(jié)合盒式蛋白A1的表達(dá)提高HDL水平[6],通過(guò)降低小腸NPC1L1的表達(dá)減少膽固醇的吸收[7],PPAR-δ激活后還可以增加脂肪酸的β-氧化[8]。
在人血漿中,膽固醇酯轉(zhuǎn)運(yùn)蛋白(cholesteryl ester transfer protein,CETP)是從HDL向LDL和極低密度脂蛋白(very low density lipoprotein,VLDL)傳送膽固醇酯[9]。HDL-C B族Ⅰ型清道夫受體將HDL-C運(yùn)送至肝臟或類固醇生成器官;LDL-C受體將LDL-C從循環(huán)中除去[10-11]。3-羥基-3-甲基戊二酰輔酶A還原酶(3-hydroxy-3-methyl glutaryl coenzyme A reductase,HMGR)是體內(nèi)合成膽固醇的限速酶,固醇調(diào)節(jié)元件結(jié)合蛋白2(sterol-regulatory element binding protein 2,SREBP-2)控制LDL-C受體和HMGR的轉(zhuǎn)錄,當(dāng)肝細(xì)胞膽固醇水平低,通過(guò)轉(zhuǎn)錄因子SREBP-2上調(diào)HMGR的表達(dá);SREBP-2可激活LDL受體的表達(dá),LDL受體升高將有利于血漿膽固醇含量的下降[12-13]。
膽固醇-7α-羥化酶(cholesterol-7α-hydroxylase,CYP7A1)是啟動(dòng)肝臟膽固醇合成膽汁酸途徑的關(guān)鍵調(diào)節(jié)點(diǎn)[14]。肝臟中膽汁酸含量較高時(shí),通過(guò)激活法尼醇X受體(farnesoid X receptor,F(xiàn)XR)反饋抑制CYP7A1的轉(zhuǎn)錄[15];肝X受體(liver X receptor,LXR)可促進(jìn)CYP7A1的轉(zhuǎn)錄,加速膽汁酸的生成[16]。
MicroRNA-122(miR-122)可影響與機(jī)體膽固醇和脂肪酸代謝相關(guān)的脂肪酸合成酶(fatty acid synthetase,F(xiàn)AS)、乙酰輔酶A羧化酶1(acetyl-CoA carboxylase 1,ACC1)、HMGR和SREBP-1c的活性與含量,從而影響脂肪酸和膽固醇合成[17-18]。miR-33位于SREBP基因的內(nèi)含子中,同時(shí)還調(diào)控另一膽固醇轉(zhuǎn)運(yùn)體ATP結(jié)合盒式蛋白G1,在調(diào)節(jié)脂質(zhì)代謝平衡中起重要作用[19]。
綜上所述,在膽固醇的代謝平衡中,通過(guò)轉(zhuǎn)運(yùn)蛋白調(diào)節(jié)肝臟和小腸膽固醇平衡;通過(guò)調(diào)節(jié)SREBP-2 mRNA的表達(dá)抑制HMGR的活性來(lái)控制體內(nèi)膽固醇的合成;通過(guò)調(diào)節(jié)FXR和LXR的活性,抑制CYP7A1的活性和mRNA的表達(dá),降低膽汁酸的合成,阻斷膽汁酸肝腸循環(huán),減少肝細(xì)胞膽固醇的來(lái)源,進(jìn)而降低體內(nèi)膽固醇水平。
1.2甘油三酯和脂肪酸代謝平衡機(jī)制
在肝臟中SREBP-1c基因調(diào)控脂肪的重新合成,由胰島素以及內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng)激活[20-21]。SREBP-1c調(diào)節(jié)參與脂肪酸和甘油三酯基因的轉(zhuǎn)錄合成,如ACC、FAS和硬脂酰CoA去飽和酶(stearoyl CoA desaturasescd,SCD)的合成[22-23]。AMP蛋白激酶(activated protein kinase,AMPK)通過(guò)抑制SREBP-1c,控制整個(gè)脂肪生成途徑或通過(guò)直接抑制FAS活性降低脂肪酸的合成,降低肝臟組織的甘油三酯水平,促進(jìn)脂肪酸的β-氧化;還可以通過(guò)調(diào)節(jié)SCD-1和?;o酶A氧化酶(acyl-CoA oxidase,COX)的表達(dá)起到降血脂的作用[24]。線粒體外膜上的肝臟肉毒堿棕櫚酰轉(zhuǎn)移酶1A(carnitine palmitoyltransferase 1A,CPT1A)是脂肪酸氧化限速酶,可加速脂肪酸氧化,降低肝臟TG水平[25]。PPAR-α基因在肝、腎和肌肉中高度表達(dá),直接調(diào)控與脂肪酸β-氧化、膽固醇分解有關(guān)的基因[26]。脂肪的消化和吸收需要胰脂肪酶的參與,抑制胰脂肪酶的活性可以抑制脂肪的分解;脂蛋白脂肪酶(lipoprotein lipase,LPL)可以催化甘油三酯水解成甘油和脂肪酸,繼續(xù)氧化提供能量[27]。
在甘油三酯和脂肪酸代謝平衡中,通過(guò)調(diào)節(jié)AMPK信號(hào)通路中的信號(hào)因子(SREBP-1c、ACC、CPT1A)的活性而達(dá)到抑制肝臟中脂肪酸合成,促進(jìn)脂肪酸氧化的作用;通過(guò)對(duì)與脂肪消化吸收有關(guān)的酶活性的調(diào)節(jié)來(lái)抑制脂肪在體內(nèi)的積累,達(dá)到降低血脂的目的。
天然食物中含有大量具有降血脂功能的活性成分,不同活性成分的降血脂機(jī)制有所不同,下文對(duì)常見(jiàn)的幾種活性成分的降血脂作用機(jī)理進(jìn)行歸納總結(jié)。
2.1膳食纖維
膳食纖維是國(guó)際上公認(rèn)的第七營(yíng)養(yǎng)素[28]。研究表明,可溶性膳食纖維可預(yù)防和治療心腦血管疾病[29]。燕麥[30]、蘋果果膠[31]、歐車前水溶性纖維[32]和羥乙基甲基纖維素[33]等膳食纖維都具有降血脂的功效。
膳食纖維的降血脂機(jī)制主要有:通過(guò)減少肝臟膽固醇的生成,促進(jìn)肝臟膽固醇轉(zhuǎn)化成膽汁酸而降低肝臟中的膽固醇含量。Tong Litao等[34]通過(guò)給倉(cāng)鼠喂飼麥麩阿拉伯木聚糖,發(fā)現(xiàn)其可通過(guò)下調(diào)HMGR活性和提高CYP7A1的活性,增加丙酸和短鏈脂肪酸的濃度,從而降低膽固醇的合成和增加膽固醇的排泄。Kim等[35]用添加了質(zhì)量分?jǐn)?shù)為5%的羥丙基甲基纖維素(hydroxypropyl methylcellulose,HPMC)的大麥和燕麥面包喂飼敘利亞金黃地鼠,與對(duì)照組比較,發(fā)現(xiàn)富含HPMC的大麥和燕麥面包可通過(guò)下調(diào)SREBP-2的mRNA表達(dá)來(lái)抑制HMGR的mRNA表達(dá),從而降低血或肝臟中的膽固醇或甘油三酯。
膳食纖維的降血脂機(jī)制還可以是調(diào)控與脂肪酸氧化相關(guān)酶的活性、誘導(dǎo)脂肪酸氧化、降低肝臟TG水平來(lái)實(shí)現(xiàn)。Kim等[36]采用添加62.9%的發(fā)酵大豆纖維喂食C57BL/6J小鼠12 周,與對(duì)照組比較,發(fā)現(xiàn)實(shí)驗(yàn)組小鼠與脂肪酸氧化相關(guān)的B類清道夫受體CD36基因的表達(dá)、酰基輔酶A合成酶(acyl-CoA synthetase,ACS)、CPT1A 和COX1的活性顯著上調(diào)。Zhang Wei等[37]用添加3%的殼聚糖納米粉末喂飼Sprague-Dawley(SD)大鼠6 周,與對(duì)照組相比,顯著提高了實(shí)驗(yàn)組大鼠肝臟LPL和肝脂酶(hepatic lipase,HL)的活性,促使VLDL中的TG水解為甘油和脂肪酸,具有良好的降血脂活性。
2.2多糖
多糖已被廣泛研究作為一個(gè)新來(lái)源的膳食補(bǔ)充劑和功能性食品原料。研究發(fā)現(xiàn),大棗多糖[38]、海帶多糖[39]、南瓜多糖[40]、當(dāng)歸多糖[41]、條斑紫菜多糖[42]等多糖都具有降血脂的功效。
活性多糖降血脂可以通過(guò)抑制膽固醇合成、阻斷膽固醇的肝腸循環(huán)、降低血漿膽固醇含量來(lái)實(shí)現(xiàn)。Wang Hong等[43]從秋葵中提取多糖喂飼雄性C57BL/6小鼠,結(jié)果表明秋葵多糖通過(guò)上調(diào)CYP7A1的mRNA表達(dá),下調(diào)SREBP1c和FAS的mRNA表達(dá),從而降低總膽固醇和甘油三酯,增強(qiáng)糞便膽汁酸排泄,達(dá)到了降血脂的功效。Hoang等[44]研究了從礁膜中提取的硫酸多糖的降血脂機(jī)理,發(fā)現(xiàn)硫酸多糖的降血脂功能是通過(guò)抑制HMG-CoA還原酶的表達(dá)和CYP7A1的活性,增加LDL受體的表達(dá),從而阻斷體內(nèi)膽固醇的合成,抑制膽汁酸和膽固醇的吸收來(lái)實(shí)現(xiàn)的。
多糖的降脂機(jī)理還可以通過(guò)調(diào)控脂肪細(xì)胞分化、抑制脂肪酸分解相關(guān)酶的活性、促進(jìn)脂肪酸氧化、清除體內(nèi)多余的自由基抑制脂質(zhì)過(guò)氧化來(lái)實(shí)現(xiàn)。Yu Chenhuan等[45]認(rèn)為從金櫻子中提取的多糖可能是通過(guò)上調(diào)PPAR-γ和高脂血癥大鼠的LPL的mRNA表達(dá)而達(dá)到抑制肝脂質(zhì)積聚,增加脂質(zhì)的抗氧化活性的作用。Yang Junxuan等[46]喂飼新西蘭兔0.8 mL/kg黃精多糖8 周,經(jīng)過(guò)H2O2誘導(dǎo),與對(duì)照組相比,實(shí)驗(yàn)組新西蘭兔的內(nèi)皮細(xì)胞的丙二醛含量下降,超氧化物歧化酶活性上升。
2.3多酚
多酚又稱“植物單寧”,包括苯酚酸和黃酮類化合物,主要存在于植物的根、皮、葉和果實(shí)中,有很強(qiáng)的生物活性。研究發(fā)現(xiàn),石榴多酚[47]、葡萄多酚[48]、可可多酚[49]、茶多酚[50]等多酚類物質(zhì)都具有降血脂的功效。
Park等[51]用富含多酚的紅殼皮糯米(含質(zhì)量分?jǐn)?shù)為2%的高膽固醇)喂飼小鼠12 周,發(fā)現(xiàn)該物質(zhì)可以通過(guò)抑制?;o酶A膽固醇?;D(zhuǎn)移酶-2(acyl-CoA cholesterol acyltransferase-2,ACAT-2)、HMG-CoA還原酶和SREBP-2的mRNA的表達(dá)來(lái)抑制肝膽固醇合成,并通過(guò)增強(qiáng)CYP7A1和甾醇12α-羥化酶(sterol 12α-hydroxylase,CYP8B1)的表達(dá)來(lái)促進(jìn)體內(nèi)肝膽固醇的降解,從而降低體內(nèi)膽固醇的含量。Baselga等[52]通過(guò)喂飼肥胖大鼠花青素,發(fā)現(xiàn)花青素可以使miR-33a和miR-122的表達(dá)正?;琺iR-33和miR-122可以反饋抑制調(diào)節(jié)miR-33a的靶基因ABCA1的水平和miR-122的靶基因FAS和PPAR/δ的表達(dá),從而減少肥胖大鼠肝臟膽固醇含量和減少脂肪酸合成。佛手瓜芽體的水提取物經(jīng)高效液相色譜法(high performance liquid chromatography,HPLC)分析證明其主成分為咖啡酸和橙皮素,Yang Monyuan等[53]研究發(fā)現(xiàn)佛手瓜芽體的水提取物通過(guò)增強(qiáng)AMPK的活性和激活PPAR-α和CPT-I的mRNA表達(dá)來(lái)減少肥胖大鼠體內(nèi)脂質(zhì)的積累。Jia Sheng等[54]給KK-Ay糖尿病小鼠喂飼50 mg/kg胡柚中提取的新橙皮苷6 周后,發(fā)現(xiàn)新橙皮苷可抑制肝臟中脂質(zhì)的積聚,提高小鼠肝臟的AMPK水平,顯著抑制SCD-1和FAS的mRNA表達(dá),顯著提高COX的mRNA表達(dá)。
2.4生物堿
生物堿是存在于自然界中的一類含氮的堿性有機(jī)化合物。經(jīng)大量研究發(fā)現(xiàn)生物堿具有降血脂作用。Wu Hao等[55]喂飼金黃地鼠藥根堿70.05 mg/kg,4 周后發(fā)現(xiàn)其可以顯著降低金黃地鼠體質(zhì)量,并且顯著降低TC、TG和LDL-C水平,升高HDL-C水平,此外,藥根堿可顯著降低血液膽汁酸的含量,增加糞便中總膽汁酸(total bile acid,TBA)排泄。
Bao Lidao等[56]采用10 mg/kg胡椒堿喂飼大鼠2 周,發(fā)現(xiàn)胡椒堿可以下調(diào)HMGR的mRNA表達(dá)、上調(diào)卵磷脂膽固醇酰基轉(zhuǎn)移酶(lecithin cholesterol acetyl transferase,LCAT)mRNA的表達(dá),從而提高HDL-C的水平,降低膽固醇的合成。Ning Na等[57]將黃藤素添加到高脂飲食中喂養(yǎng)倉(cāng)鼠,發(fā)現(xiàn)黃藤素可以通過(guò)上調(diào)LDL-R和CYP7A1 的mRNA表達(dá)、下調(diào)頂膜鈉依賴性膽鹽轉(zhuǎn)運(yùn)體(apical sodium dependent bile acid transporter,ASBT)的mRNA和蛋白質(zhì)表達(dá),以促使膽固醇和膽汁酸排出體外。
1-脫氧野尻霉素(1-deoxynojirimycin,1-DNJ)是一種重要的生物堿,主要來(lái)源于桑葉、微生物以及人工合成。Do等[58]研究發(fā)現(xiàn)從枯草芽孢桿菌中分離得到的1-DNJ可以使小鼠肝臟中的乙酰輔酶A羧化酶(acetyl-CoA carboxylase,AAC)和FAS的mRNA表達(dá)明顯降低,而PPAR-γ的轉(zhuǎn)錄輔助活化因子(PPAR-γ coactivator-1,PGC-1)和P-AMPK/AMPK的mRNA表達(dá)升高,表明1-DNJ可能是通過(guò)調(diào)節(jié)參與脂肪生成和線粒體功能的肝基因的表達(dá)而達(dá)到降血脂的功效。曾藝濤等[59]研究發(fā)現(xiàn),1-DNJ可通過(guò)降低雌性小鼠的ACC活性和游離脂肪酸含量以及提升脂聯(lián)素含量來(lái)抑制脂肪酸合成;通過(guò)提升雄鼠的CPT-1活性和脂聯(lián)素含量,降低游離脂肪酸含量來(lái)促進(jìn)脂肪酸分解,減少脂肪的積累。
2.5皂苷
皂苷廣泛存在于植物體中,也少量存在于海星和海參等海洋生物中,對(duì)防治心血管疾病、降血脂有重要的作用。非洲茄子皂苷[60]、太白楤木皂苷[61]等皂苷成分具有顯著的降血脂、抗脂質(zhì)過(guò)氧化作用。
皂苷可以通過(guò)抑制肝臟膽固醇的合成、增加血漿膽固醇的流出起到降低血漿膽固醇水平的作用。Ma Weilie 等[62]經(jīng)研究發(fā)現(xiàn),甲基原薯蕷皂苷可以抑制THP-1巨噬細(xì)胞SREBP1c和SREBP2的轉(zhuǎn)錄,增加LDL受體和ABCA1 的mRNA表達(dá),促進(jìn)膽固醇的流出。Sho等[63]研究了苦瓜總皂苷的降血脂作用,研究發(fā)現(xiàn)苦瓜總皂苷可通過(guò)上調(diào)CYP7A1的表達(dá)和下調(diào)FXR的表達(dá)進(jìn)而促膽固醇向膽汁酸轉(zhuǎn)化以及促進(jìn)膽汁酸從腸道排泄。
皂苷還可以調(diào)控脂質(zhì)代謝相關(guān)酶、增強(qiáng)脂質(zhì)的抗氧化能力來(lái)發(fā)揮降脂作用。Wang Yuming等[64]通過(guò)喂飼肥胖小鼠海參皂苷7 周,對(duì)小鼠肝臟脂質(zhì)代謝相關(guān)酶活性進(jìn)行測(cè)定,發(fā)現(xiàn)海參皂苷具有抑制FAS、葡萄糖-6-磷酸脫氫酶、蘋果酸酶等脂質(zhì)相關(guān)合成酶活性的作用。
2.6其他
He Shan等[65]發(fā)現(xiàn)深海水中含有大量的礦物質(zhì)以及微量元素具有降低血脂的功效,它們主要是通過(guò)激活A(yù)MPK來(lái)降低肝細(xì)胞的脂質(zhì)含量,從而抑制膽固醇和脂肪酸的合成。此外,還上調(diào)LDL受體、SREBP-2和CYP7A1的mRNA表達(dá),從而降低LDL水平和增加膽固醇的流出。
Rashid等[66]將從棕櫚油中富集得到的生育三烯酚作為膳食補(bǔ)充劑喂飼高脂飲食大鼠,與對(duì)照組相比可顯著降低TC、TG和LDL-C水平,并且降低了氧化低密度脂蛋白的水平,從而抑制了動(dòng)脈粥樣硬化的發(fā)生。
紫蘇油中含有豐富的α-亞麻酸,Zhang Tao等[67]發(fā)現(xiàn)喂飼紫蘇油的大鼠與對(duì)照組相比,顯著降低TC、TG的水平,增加肝臟中PPAR-α、CPT1A的mRNA表達(dá),促進(jìn)肝脂肪酸的氧化;上調(diào)了血清中SREBP-1、FAS和ACC的mRNA表達(dá),顯著降低血清脂質(zhì)并抑制肝脂肪酸合成。
隨著天然食物中的活性成分成為營(yíng)養(yǎng)研究和藥物開(kāi)發(fā)的熱點(diǎn),研究這些活性成分的生物活性及作用機(jī)制可以大大促進(jìn)其開(kāi)發(fā)應(yīng)用,能顯著提高天然食物的附加值。多項(xiàng)研究顯示,利用這些活性成分開(kāi)發(fā)的功能性食品可作為膳食干預(yù)或膳食補(bǔ)充劑,預(yù)防人類疾病,尤其是高血脂、高血壓等心血管慢性疾病,促進(jìn)人體健康。
參考文獻(xiàn):
[1]CHEN Z Y,JIAO R,MA K Y,et al.Cholesterol-lowering nutraceuticals and functional foods[J].Journal of Agricultural and Food Chemistry,2008,56(19):8761-8773.DOI:10.1021/jf801566r.
[2]JAIN K S,KATHIRAVAN M K,SOMANI R S,et al.The biology and chemistry of hyperlipidemia[J].Bioorgannic & Medicnal Chemistry,2007,15(14):4674-4699.DOI:10.1016/j.bmc.2007.04.031.
[3]MELVYN R,ROBERT D B,ROBERT S R.Treating mixed hyperlipidemia and the atherogenic lipid phenotype for prevention of cardiovascular events[J].American Journal of Medicine,2010,123(10):892-898.DOI:10.1016/j.amjmed.2010.03.024.
[4]FIELDING C J,BIST A,FIELDING P E.Intracellular cholesterol transport in synchronized human skin fibroblasts[J].Biochemistry,1999,38(8):2506-2513.DOI:10.1021/bi9810120.
[5]JIA L,BETTERS J L,YU L Q.Niemann-Pick C1-Like 1(NPC1L1)protein in intestinal and hepatic cholesterol transport[J].Annual Review Physiology,2011,73(1):239-259.DOI:10.1146/annurevphysiol-012110-142233.
[6]OLIVER W R,SHENK J L,SNAITH M R,et al.A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport[J].Proceedings of the National Academy of Sciences of the United States of America,2001,98(9):5306-5311.DOI:10.1073/pnas.091021198.
[7]van der VEEN J N,KRUIT J K,HAVINGA R,et al.Reduced cholesterol absorption upon PPAR delta activation coincides with decreased intestinal expression of NPC1L1[J].Journal of Lipid Research,2005,46(3):526-534.DOI:10.1194/jlr.M400400-JLR200.
[8]WANG Y X,ZHANG C L,YU R T,et al.Regulation of muscle fiber type and running endurance by PPAR delta[J].PLoS Biology,2004,2(10):1532-1539.DOI:10.1371/journal.pbio.0020294.
[9]SHAH P K.Inhibition of CETP as a novel therapeutic strategy for reducing the risk of atherosclerotic disease[J].Europen Heart Journal,2007,28(1):5-12.DOI:10.1093/eurheartj/ehl392.
[10]EBERLE D,HEGARTY B,BOSSARD P,et al.SREBP transcription factors:master regulators of lipid homeostasis[J].Biochimie,2004,86(11):839-848.DOI:10.1016/j.biochi.2004.09.018.
[11]KASTELEIN J J.Refocusing on use of cholesteryl ester transferprotein inhibitors[J].American Journal of Cardiology,2007,100(11A):47-52.DOI:10.1016/j.amjcard.2007.08.01.
[12]CHARLTON-MENYS V,DURRINGTON P N.Human cholesterol metabolism and the rapeutic molecules[J].Experimental Physiology,2008,93(1):27-42.DOI:10.1113/expphysiol.2007.035147.
[13]BROWN M S,GOLDSTEIN J L.Cholesterol feedback:from Schoenheimer’s bottle to Scap’s MELADL[J].Journal of Lipid Research,2009,50:S15-S27.DOI:10.1194/jlr.R800054-JLR200.
[14]CHIANG J Y L.Bile acids:regulation of synthesis[J].Journal of Lipid Research,2009,50(10):1955-1966.DOI:10.1194/jlr.R900010-JLR200.
[15]GOODWIN B,WATSON M A,KIM H,et al.Differential regulation of rat and human CYP7A1 by the nuclear oxysterol receptor liver X receptor-R[J].Molecular Endocrinology,2003,17(3):386-394.DOI:10.1210/me.2002-0246.
[16]GUPTA S,PANDAK W M,HYLEMON P B.LXR alpha is the dominant regulator of CYP7A1 transcription[J].Biochemical and Biophysical Research Communications,2002,293(1):338-343.DOI:10.1016/S0006-291X(02)00229-2.
[17]ESAU C,DAVIS S,MURRAY S F,et al.miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting[J].Cell Metabolism,2006,3(2):87-98.DOI:10.1016/j.cmet.2006.01.005.
[18]MARQUART T J,ALLEN R M,ORY D S.miR-33 links SREBP-2 induction to repression of sterol transporters[J].Proceedings of the National Academy of Sciences,2010,107(27):12228-12232.DOI:10.1073/pnas.1005191107.
[19]NAJAFI-SHOUSHTARI S H,KRISTO F,LI Y X,et al.MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis[J].Science,2010,328:1566-1569.DOI:10.1126/science.1189123.
[20]CHAKRABARTI P,ENGLISH T,KARKI S,et al.SIRT1 controls lipolysis in adipocytes via FOXO1-mediated expression of ATGL[J].Journal of Lipid Research,2011(52):1693-1701.DOI:10.1194/jlr.M014647.
[21]FERRE P,FOUFELLEF F.Hepatic steatosis:a role for de novo lipogenesis and the transcription factor SREBP-1c[J].Diabetes Obesity Metabolism,2010(12):83-92.DOI:10.1111/j.1463-1326.2010.01275.x.
[22]YAHAGI N,SHIMANO H,HASTY A H,et al.A crucial role of sterol regulatory element-binding protein-1 in the regulation of lipogenic gene expression by polyunsaturated fatty acids[J].The Journal of Biological Chemistry,1999,274(50):35840-358404.DOI:10.1074/jbc.274.50.35840.
[23]YOSHIKAWA T,SHIMANO H,YAHAGIL I N,et al.Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor(LXR)binding to LXR response elements[J].The Journal of Biological Chemistry,2002,277(3):1705-1711.DOI:10.1074/jbc.M105711200.
[24]STEINBERG G R,KEMP B E.AMPK in health and disease[J].Physiological Reviews,2009,89(3):1025-1078.DOI:10.1152/physrev.00011.2008.
[25]KOJIMA Y,KIMURA T,NAKAGAWA K,et al.Effects of mulberry leaf extract rich in 1-deoxynojirimycin on blood lipid profiles in humans[J].Journal of Clinical Biochemistry Nutrition,2010,47(2):155-161.DOI:10.3164/jcbn.10-53.
[26]BENSINGER S J,TONTONOZ P.Integration of metabolism and inflammation by lipid-activated nuclear receptors[J].Nature,2008,454:470-477.DOI:10.1038/nature07202.
[27]ONG K T,MASHEK M T,BU S Y,et al.Adipose triglyceride lipase is a major hepaticlipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning[J].Hepatology,2011,53(1):116-126.DOI:10.1002/hep.24006.
[28]麥紫欣,關(guān)東華,林敏霞,等.膳食纖維降血脂作用及其機(jī)制的研究進(jìn)展[J].廣東微量元素科學(xué),2011(1):11-16.DOI:10.3969/j.issn.1006-446X.2011.01.002.
[29]JAMES W,ANDERSON M D.Dietary fiber prevents carbohydrate induced hypertriglyceridemia[J].Current Atherosclerosis Reports,2000,2(6):536-541.DOI:10.1007/s11883-000-0055-7.
[30]ZHOU X R,LIN W J,TONG L T,et al.Hypolipidaemic effects of oat flakes and-glucans derived from four Chinese naked oat(Avena nuda)cultivars in Wistar-Lewis rats[J].Journal of the Science of Food and Agriculture,2016,96(2):644-649.DOI:10.1002/jsfa.7135.
[31]PAROLINI C,MANZINI S,BUSNELLI M,et al.Effect of the combinations between pea proteins and soluble fibres on cholesterolaemia and cholesterol metabolism in rats[J].British Journal of Nutrition,2013,110(8):1394-1401.DOI:10.1017/S0007114513000639.
[32]MOREYRA A E,WILSON A C,KORAYM A.Effect of combiningpsyllium fiber with simvastatin in lowering cholesterol[J].Archive Internal Medicine,2005,165(10):1161-1166.DOI:10.1001/archinte.165.10.1161.
[33]BAN S J,RICO C W,UM I C,et al.Comparative evaluation of the hypolipidemic effects of hydroxyethyl methylcellulose(HEMC)and hydroxypropyl methylcellulose(HPMC)in high fat-fed mice[J].Food and Chemical Toxicology,2012,50(2):130-134.DOI:10.1016/j.fct.2011.10.051.
[34]TONG L T,ZHONG K,LI Y,et al.Effects of dietary hull-less barley β-glucan on the cholesterol metabolism of hypercholesterolemic hamsters[J].Food Chemistry,2015,169(15):344-349.DOI:10.1016/j.foodchem.2014.07.157.
[35]KIM H,TUROWSKI M,ANDERSON W H,et al.Supplementation of hydroxypropyl methylcellulose into yeast leavened all-whole grain barley bread potentiates cholesterol-lowering effect[J].Journal of Agricultural and Food Chemistry,2011,59(14):7672-7678.DOI:10.1021/jf104821b.
[36]KIM J H,JIA Y Y,LEE J G,et al.Hypolipidemic and antiinflammation activities of fermented soybean fibers from meju in C57BL/6 J mice[J].Phytotherapy Research,2014,28(9):1335-1341.DOI:10.1002/ptr.5134.
[37]ZHANG W,ZHANG J L,JIANG Q X,et al.The hypolipidemic activity of chitosan nanopowder prepared by ultrafine milling[J].Carbohydrate Polymers,2013,95(1):487-491.DOI:10.1016/j.carbpol.2013.02.037.
[38]ZHAO Y,YANG X B,REN D Y,et al.Preventive effects of jujube polysaccharides on fructose-induced insulin resistance and dyslipidemia in mice[J].Food & Function,2014,5(8):1771-1778.DOI:10.1039/c3fo60707k.
[39]ZHAO X H,QIAN L,YIN D L,et al.Hypolipidemic effect of the polysaccharides extracted from pumpkin by cellulase-assisted method on mice[J].International Journal of Biological Macromolecules,2014,64(2):137-138.DOI:10.1016/j.ijbiomac.2013.12.001.
[40]ZHA X Q,XIAO J J,ZHANG H N,et al.Polysaccharides in Laminaria japonica(LP):extraction,physicochemical properties and their hypolipidemic activities in diet-induced mouse model of atherosclerosis[J].Food Chemistry,2012,134(1):244-252.DOI:10.1016/j.foodchem.2012.02.129.
[41]WANG K P,CAO P,SHUI W Z,et al.Angelica sinensis polysaccharide regulates glucose and lipid metabolism disorder in prediabetic and streptozotocin-induced diabetic mice through the elevation ofglycogen levels and reduction of inflammatory factors[J].Food & Function,2015,6(3):902-909.DOI:10.1039/c4fo00859f.
[42]QIAN L,ZHOU Y,MA J X.Hypolipidemic effect of the polysaccharides from Porphyra yezoensis[J].International Journal of Biological Macromolecules,2014,68(7):48-49.DOI:10.1016/j.ijbiomac.2014.04.004.
[43]WANG H,CHEN G,REN D D,et al.Hypolipidemic activity of okra is mediated through inhibition of lipogenesis and upregulation of cholesterol degradation[J].Phytotherapy Research,2014,28(2):268-273.DOI:10.1002/ptr.4998.
[44]HOANG M H,KIM J Y,LEE J H,et al.Antioxidative,hypolipidemic,and anti-inflammatory activities of sulfated polysaccharides from Monostroma nitidum[J].Food Science and Biotechnology,2015,24(1):199-205.DOI:10.1007/s10068-015-0027-x.
[45]YU C H,DAI X Y,CHEN Q,et al.Hypolipidemic and antioxidant activities of polysaccharides from Rosae laevigatae fructus in rats[J].Carbohydrate Polymers,2013,94(1):56-62.DOI:10.1016/j.carbpol.2013.01.006.
[46]YANG J X,WU S H,XI L,et al.Hypolipidemic ativity and antiatherosclerotic effect of polysaccharide of polysaccharide of polygonatum sibiricum in rabbit model and related cellular mechanisms[J].Evidence-Based Complementary and Alternative Medicine,2015,2015:1-6.DOI:10.1155/2015/391065.
[47]WU D,MA X F,TIAN W X.Pomegranate husk extract,punicalagin and ellagic acid inhibit fatty acid synthase andadipogenesis of 3T3-L1 adipocyte[J].Journal of Functional Foods,2013,5(2):633-641.DOI:10.1016/j.jff.2013.01.005.
[48]JIAO R,ZHANG Z S,YU H J,et al.Hypocholesterolemic activity of grape seed proanthocyanidin is mediated by enhancement of bile acid excretion and up-regulation of CYP7A1[J].Journal of Nutritional Biochemistry,2011,21(11):1134-1139.DOI:10.1016/j.jnutbio.2009.10.007.
[49]ALI F,ISMAIL A,ESA N M,et al.Transcriptomics expression analysis to unveil the molecular mechanisms underlying the cocoa polyphenol treatment in diet-induced obesity rats[J].Genomics,2015,105(1):23-30.DOI:10.1016/j.ygeno.2014.11.002.
[50]XU Y,ZHANG M,WU T,et al.The anti-obesity effect of green tea polysaccharides,polyphenols and caffeine in rats fed with a high-fat diet[J].Food & Function,2015,6(1):297-304.DOI:10.1039/c4fo00970c.
[51]PARK Y,PARK E M,KIM E H,et al.Hypocholesterolemic metabolism of dietary red pericarp glutinous rice rich in phenolic compounds in mice fed a high cholesterol diet[J].Nutrition Research and Practice,2014,8(6):632-637.DOI:10.4162/nrp.2014.8.6.632.
[52]BASELGA E L,PASCUAL S A,RIBAS L A,et al.Long-term supplementation with a low dose of proanthocyanidins normalized liver miR-33a and miR-122 levels in high-fat diet-induced obese rats[J].Nutrition Research,2015,35(4):337-345.DOI:10.1016/j.nutres.2015.02.008.
[53]YANG M Y,CHAN K C,LEE Y J,et al.Sechium edule shoot extracts and active components improve obesity and a fatty liver that involved reducing hepatic lipogenesis and adipogenesis in high-fat-diet-fed rats[J].Journal of Agricultural and Food Chemistry,2015,63(18):4587-4596.DOI:10.1021/acs.jafc.5b00346.
[54]JIA S,HU Y,ZHANG W,et al.Hypoglycemic and hypolipidemic effects ofneohesperidin derived from Citrus aurantium L.indiabetic KK-A(y)mice[J].Food Function,2015,6(3):878-886.DOI:10.1039/c4fo00993b.
[55]WU H,HE K,WANG Y Z,et al.The antihypercholesterolemic effect of jatrorrhizine isolated from Rhizoma coptidis[J].Phytomedicine,2014,21(11):1373-1381.DOI:10.1016/j.phymed.2014.05.002.
[56]BAO L,BAI S,BORIJIHAN G.Hypolipidemic effects of a new piperine derivative GB-N from Piper longum in high-fat diet-fed rats[J].Pharmaceutical Biology,2012,50(8):962-967.DOI:10.3109/1 3880209.2012.654395.
[57]NING N,HE K,WANG Y Z,et al.Hypolipidemic Effect and mechanism of palmatine from coptis chinensis in hamsters fed high-fat diet[J].Phytotherapy Research,2015,29(5):668-673.DOI:10.1002/ptr.5295.
[58]DO H J,CHUNG J H,HWANG J W,et al.1-Deoxynojirimycin isolated from Bacillus subtilis improves hepatic lipid metabolism and mitochondrial function in high-fat-fed mice[J].Food and Chemical Toxicology,2015,75:1-7.DOI:10.1002/ptr.5295.
[59]曾藝濤,丁曉雯,黃先智.1-脫氧野尻霉素對(duì)不同性別小鼠脂代謝產(chǎn)生影響的途徑[J].蠶業(yè)科學(xué),2015,41(2):349-353.DOI:10.13441/j.cnki.cykx.2015.02.022.
[60]ELEKOFEHINTI O O,KAMDEM J P,KADE I J,et al.Hypoglycemic,antiperoxidative and antihyperlipidemic effects of saponins from Solanum anguivi Lam.fruits in alloxan-induced diabetic rats[J].South African Journal of Botany,2013,88(9):56-61.DOI:10.1016/S0038-1098(97)10153-3.
[61]WENG Y,YU L,CUI J,et al.Antihyperglycemic,hypolipidemic and antioxidant activities of total saponins extracted from Aralia taibaiensis in experimental type 2 diabetic rats[J].Journal of Ethnopharmacology,2014,152(3):553-560.DOI:10.1016/j.jep.2014.02.001.
[62]MA W L,DING H,GONG X H,et al.Methyl protodioscin increases ABCA1 expression and cholesterol efflux while inhibiting gene expressions for synthesis of cholesterol and triglycerides by suppressing SREBP transcription and microRNA 33a/b levels[J].Atherosclerosis,2015,239(2):566-570.DOI:10.1016/j.atherosclerosis.2015.02.034.
[63]SHO M,TAKUMI Y,TOSHICHIKA T,et al.The hypocholesterolemic activity of Momordica charantia fruit is mediated by the altered cholesterol and bile acid regulating gene expression in rat liver[J].Nutrition Nresearch,2013,33(7):580-585.DOI:10.1016/j.nutres.2013.05.002.
[64]WANG Y M,WANG J H,YANAGITA R C,et al.Effects of two sulfated triterpene saponins echinoside A and holothurin A on the inhibition of dietary fat absorption and obesity reduction[J].Bioscience,Biotechnology,and Biochemistry,2014,78(1):139-146.DOI:10.1080/09168451.2014.877830.
[65]HE S,HAO J J,PENG W B,et al.Modulation of lipid metabolism by deep-sea water in cultured human liver(HepG2)cells[J].Marine Biotechnology,2014,16(2):219-229.DOI:10.1007/s10126-013-9540-1.
[66]RASHID K M,AHSAN H,SIDDIQUI S,et al.Tocotrienols have a nephroprotective action against lipid-induced chronic renal dysfunction in rats[J].Renal Failure,2015,37(1):136-143.DOI:10.3109/088602 2X.2014.959433.
[67]ZHANG T,ZHAO S,LI W,et al.High-fat diet from perilla oil induces insulin resistance despite lower serum lipids and increases hepatic fatty acid oxidation in rats[J].Lipids in Health and Disease,2014,13(1):1-20.DOI:10.1186/1476-511X-13-15.
Progress in Research on Hypolipidemic Mechanisms of Functional Food Components
ZOU Lifang1,SHEN Yihong2,HUANG Xianzhi2,DING Xiaowen1,*
(1.Chongqing Key Laboratory of Agricultural Product Processing,College of Food Science,Southwest University,Chongqing 400715,China; 2.State Key Laboratory of Silkworm Genome Biology,Chongqing 400715,China)
Abstract:Increased intake of high-fat diets,disturbing the metabolic balance of liposomes in the body,is one of the major reasons for the dramatic increase in the prevalence of hyperlipidemia.On the other hand,many foods exert lipid-lowering effects through their functional components such as dietary fiber,polysaccharides,polyphenols and steroidal saponins and alkaloids.Herein,we review the latest progress in the study of the hypolipidemic effect and mechanisms of functional food components,aiming to provide a reference for future development and utilization of hypolipidemic natural products.
Key words:hypolipidemic; cholesterol; fatty acid; triglycerides
中圖分類號(hào):TS201.4
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1002-6630(2016)05-0239-06
DOI:10.7506/spkx1002-6630-201605042 10.7506/spkx1002-6630-201605042.http://www.spkx.net.cn
*通信作者:丁曉雯(1963—),女,教授,博士,研究方向?yàn)槭称钒踩c功能食品。E-mail:xiaowend@sina.com
作者簡(jiǎn)介:鄒莉芳(1991—),女,碩士研究生,研究方向?yàn)槭称钒踩c質(zhì)量控制。E-mail:zoulifang526@163.com
基金項(xiàng)目:國(guó)家現(xiàn)代農(nóng)業(yè)(蠶桑)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-22)
收稿日期:2015-06-25