• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      Cochlear?Nucleus?聲音處理器30年進(jìn)展

      2016-04-12 07:10:48AnneBeiterEstiNelCochlear有限公司譯者孫雯審校張華譯者單位首都醫(yī)科大學(xué)附屬北京同仁醫(yī)院耳鼻咽喉頭頸外科北京市耳鼻咽喉科研究所耳鼻咽喉頭頸科學(xué)教育部重點(diǎn)實(shí)驗(yàn)室首都醫(yī)科大學(xué)北京100005
      中華耳科學(xué)雜志 2016年1期

      Anne L.Beiter* Esti Nel Cochlear有限公司譯者:孫雯 審校:張華譯者單位:首都醫(yī)科大學(xué)附屬北京同仁醫(yī)院耳鼻咽喉頭頸外科北京市耳鼻咽喉科研究所耳鼻咽喉頭頸科學(xué)教育部重點(diǎn)實(shí)驗(yàn)室(首都醫(yī)科大學(xué))(北京100005)

      ?

      Cochlear?Nucleus?聲音處理器30年進(jìn)展

      Anne L.Beiter*Esti Nel Cochlear有限公司
      譯者:孫雯審校:張華
      譯者單位:首都醫(yī)科大學(xué)附屬北京同仁醫(yī)院耳鼻咽喉頭頸外科
      北京市耳鼻咽喉科研究所耳鼻咽喉頭頸科學(xué)教育部重點(diǎn)實(shí)驗(yàn)室(首都醫(yī)科大學(xué))(北京100005)

      【摘要】目的回顧對(duì)于耳蝸植入者有顯著效果的Nucleus?聲音處理器的30年進(jìn)展。

      【關(guān)鍵詞】人工耳蝸植入;聲音處理器;智能聲;環(huán)境分類(lèi)器;無(wú)線(xiàn)附件

      Declaration of interest:These developments were funded by Cochlear Limited,the manufacturer of Nucleus implant systems.

      30年前,世界上第一例多導(dǎo)人工耳蝸植入手術(shù)在澳大利亞應(yīng)用于一位來(lái)自墨爾本的失聰患者。迄今為止,越來(lái)越多的聾病患者接受人工耳蝸植入術(shù),效果顯著且生活質(zhì)量明顯提高。目前全球Nucleus?植入者已經(jīng)超過(guò)400,000人。Graeme Clark和他的研發(fā)團(tuán)隊(duì)創(chuàng)建了Cochlear公司,首次將多導(dǎo)人工耳蝸引入市場(chǎng)。30多年來(lái),開(kāi)拓精神成為Cochlear成功的關(guān)鍵。團(tuán)隊(duì)不斷研發(fā)更加小巧、先進(jìn)及便于使用的聲音處理器。從Cochlear最早的體配式處理器到世界上第一個(gè)耳背式處理器,再到現(xiàn)在的Nucleus?6處理器,Cochlear一直秉承著這種開(kāi)拓精神。Cochle?ar第九代聲音處理器,Nucleus 6是目前市場(chǎng)上體積最小、最先進(jìn)的產(chǎn)品,在助聽(tīng)效果、無(wú)線(xiàn)連接及生活方式等方面都有很大突破。

      聲音處理器根據(jù)特定的指令和算法處理來(lái)自麥克風(fēng)的聲信號(hào),對(duì)聲信號(hào)進(jìn)行一定形式的編碼后,通過(guò)射頻載波透過(guò)皮膚傳遞給人工耳蝸的接收刺激器。接受刺激器將信息數(shù)據(jù)轉(zhuǎn)換為雙相電脈沖送入人工耳蝸電極。Cochlear處理器使用經(jīng)皮耦合,接收刺激器的能量和編碼的數(shù)據(jù)都通過(guò)射頻鏈接進(jìn)行傳遞。

      最早的處理器電路主要是模擬電路,少有數(shù)字電路,不能處理大量數(shù)據(jù)。因此,諸如佩戴式聲音處理器(wearable speech processor,WSP)和迷你聲音處理器(mini speech processor,MSP)這類(lèi)處理器只可編碼和傳遞基本聲學(xué)參數(shù),例如信號(hào)的幅度、基頻估值、第一和第二共振峰以及使用MSP時(shí)的一些更高頻能量等[1,2]。現(xiàn)在的處理器包含低功耗、定制的數(shù)字信號(hào)處理(digital signal processing,DSP)芯片,能夠快速執(zhí)行復(fù)雜的數(shù)學(xué)計(jì)算。這些處理器使用復(fù)雜的言語(yǔ)編碼策略,例如譜峰(spectral peak,SPEAK),連續(xù)相間采樣(continuous interleaved sampling,CIS)和高級(jí)結(jié)合編碼(advanced combination encoder,ACE)策略。這些編碼策略能夠高速處理數(shù)據(jù),并可將信息傳遞給耳蝸內(nèi)更多的電極[2,3]。工程師已發(fā)明出新的DSP算法,能夠結(jié)合多個(gè)麥克風(fēng)的輸出,提高在復(fù)雜環(huán)境下的聆聽(tīng)效果。一些算法專(zhuān)為去除聲信號(hào)中的噪聲。下文將就聲音處理技術(shù)的提高對(duì)人工耳蝸植入效果的改善進(jìn)行討論[4~6]。

      1 植入后效果的改善

      科技的進(jìn)步與聽(tīng)覺(jué)植入適應(yīng)證的變化使得人工耳蝸的效果得到提高。效果的改善拓寬了候選者的選擇范圍,而隨著適用范圍的拓寬,植入效果進(jìn)一步提升。適應(yīng)證擴(kuò)展后出現(xiàn)了新的治療方法,如中耳和骨導(dǎo)植入,聲電聯(lián)合刺激和直接聲刺激人工耳蝸植入(圖1)。為應(yīng)對(duì)新需求,須進(jìn)一步改進(jìn)聲音處理器技術(shù)。例如,因效果較好,雙側(cè)植入更加普遍。目前全球大概有33,000位雙側(cè)Nucleus植入者,其中約60%為兒童和青少年。有文獻(xiàn)表明雙耳在定位、噪聲下聆聽(tīng)、音質(zhì)等方面優(yōu)于單耳[7~15]。

      圖1 適用于不同聽(tīng)力損失和適應(yīng)證的聽(tīng)力解決方案(中重度感音神經(jīng)性聽(tīng)力損失或者傳導(dǎo)性/混合性聽(tīng)力損失可以選擇中耳植入。重度極重度感音神經(jīng)性聽(tīng)力損失,低頻有殘余聽(tīng)力可選擇聲電聯(lián)合人工耳蝸植入。重度或者極重度感音神經(jīng)性聽(tīng)力損失及極重度傳導(dǎo)性或混合性聽(tīng)力損失可選擇人工耳蝸植入。中度混合性或傳導(dǎo)性聽(tīng)力損失可選擇骨導(dǎo)植入。重度混合性或傳導(dǎo)性聽(tīng)力損失可選擇直接聲學(xué)人工耳蝸植入裝置。)Figure 1 Available treatment options related to degree of hearing loss as well as expanded indications

      由于適應(yīng)證拓寬,越來(lái)越多有殘余聽(tīng)力的聽(tīng)障者接受人工耳蝸植入?,F(xiàn)有技術(shù)可有效利用術(shù)后殘余聽(tīng)力。Cochlear?Hybrid?Hearing聲音處理器利用聲學(xué)放大改善低頻聽(tīng)力,而傳統(tǒng)助聽(tīng)設(shè)備不能處理的高頻聽(tīng)力可以通過(guò)人工耳蝸恢復(fù)(圖2,圖3)。有文獻(xiàn)表明聲刺激對(duì)于使用電刺激接受信息的植入者可以提供重要的附加信息[9,10,16~23]。每個(gè)Nucleus 6處理器均配備有Hybrid功能。

      圖2 Hybrid Hearing使用聲學(xué)放大來(lái)改善低頻的聽(tīng)力,通過(guò)人工耳蝸的電刺激恢復(fù)高頻聽(tīng)力。每個(gè)Nucleus 6都配備了Hybrid功能。Figure 2 Hybrid Hearing uses acoustic amplification to improve low-frequency hearing and electrical stimulation through the cochlear implant to restore high-frequency hearing.

      圖3 左圖顯示受試者術(shù)前在Cochlear Nucleus Hybrid System FDA臨床實(shí)驗(yàn)中聲場(chǎng)下佩戴助聽(tīng)器的平均聽(tīng)閾和植入術(shù)后聲場(chǎng)下的平均聽(tīng)閾(耳蝸植入術(shù)后較好地保留了低頻的聽(tīng)力,高頻聽(tīng)力得到明顯改善,而助聽(tīng)器不能有效放大高頻)。右圖顯示各個(gè)受試者對(duì)側(cè)耳的閾值(均為高頻陡降型)。Figure3 The left panel illustrates mean pre-operative aided sound field thresholds and mean Hybrid sound field thresholds at initial activation for subjects in the Cochlear Nucleus Hybrid System FDA clinical trial.The right panel illustrates individual subject hearing thresholds in the contralateral ear.

      隨著基本聲音編碼的進(jìn)步,聆聽(tīng)效果得到了提高,其中前端輸入信號(hào)處理方法扮演著越來(lái)越重要的角色。2005年Cochlear引進(jìn)了Freedom?聲音處理器的SmartSound?技術(shù),將方向性(前置)麥克風(fēng)和全向性(后置)麥克風(fēng)結(jié)合,創(chuàng)建了自適應(yīng)方向性技術(shù)(beamformer),推動(dòng)了第一個(gè)商業(yè)自適應(yīng)方向性技術(shù)的問(wèn)世[3,24]。智能聲升級(jí)為智能聲2,促進(jìn)了不同聆聽(tīng)環(huán)境下不同輸入信號(hào)的處理方法的發(fā)展,并設(shè)有4種預(yù)先設(shè)定的使用環(huán)境,即日常安靜環(huán)境、噪聲環(huán)境、專(zhuān)注和音樂(lè)環(huán)境,植入者需手動(dòng)選擇和更換程序[25]?,F(xiàn)在Nucleus 6處理器是第三代智能聲——SmartSound?iQ,使智能聲完全自動(dòng)化。使用環(huán)境分類(lèi)器(scene classifier,SCAN),Nucleus 6處理器可自動(dòng)選擇最適應(yīng)當(dāng)下聆聽(tīng)環(huán)境的輸入信號(hào)處理方法。SSiQ有兩類(lèi)程序:第一種為默認(rèn)SCAN程序,能夠分析植入者的聽(tīng)覺(jué)環(huán)境,自動(dòng)選擇輸入信號(hào)處理方式和麥克風(fēng)的方向性,提供最佳聆聽(tīng)效果和舒適度。第二種為定制程序,根據(jù)個(gè)人聽(tīng)覺(jué)偏好和聆聽(tīng)要求特別定制[6,26]。

      Mauger[6]等認(rèn)為SCAN中自適應(yīng)方向性有利于噪聲環(huán)境下聆聽(tīng)。他們進(jìn)行了一項(xiàng)實(shí)驗(yàn),將植入者分為三組,第一組使用SCAN聲音處理器,第二組使用沒(méi)有任何輸入信號(hào)處理程序的處理器,第三組使用智能聲2。三組分別進(jìn)行相同的言語(yǔ)識(shí)別閾測(cè)試,發(fā)現(xiàn)第一組植入者言語(yǔ)識(shí)別閾平均提高3.8 dB(圖4左圖)。當(dāng)所有言語(yǔ)聲和噪聲都來(lái)自前方時(shí),植入者聆聽(tīng)非常困難。此時(shí)使用SCAN降噪算法(SNR-NR)的受試者,言語(yǔ)識(shí)別率比沒(méi)有任何輸入信號(hào)處理的受試者平均提高2.3 dB。使用Nucleus 6和帶有SNR-NR的SCAN與Nucleus 5相比,受試者言語(yǔ)識(shí)別閾平均提高1.7 dB(圖4右圖)。

      圖4 .左圖為4人交談言語(yǔ)噪聲測(cè)試,言語(yǔ)聲來(lái)自前方,噪聲來(lái)自側(cè)面和后方,使用SCAN(黃色,-3.86 dB)與不使用智能聲(灰色,-0.04 dB)或使用智能聲2(藍(lán)色,-0.37 dB)的言語(yǔ)識(shí)別閾對(duì)比(使用SCAN比不使用智能聲平均改善3.8 dB)。右圖為在言語(yǔ)加權(quán)噪聲下使用Nucleus SNR-NR算法(黃色,-2.88 dB)與不使用智能聲(灰色,-0.58 dB)或使用智能聲2(藍(lán)色,-1.33 dB)平均言語(yǔ)識(shí)別閾的對(duì)比(使用降噪算法比不使用智能聲平均改善約2.3 dB)和使用Nucleus 6(黃色,-2.9 dB)與使用Nucleus 5(灰色,-1.2dB)言語(yǔ)識(shí)別閾的對(duì)比(平均改善1.7dB)。Figure 4.The left panel illustrates the mean performance improvements with Nucleus 6 using SCAN(SmartSound iQ) in 4 talker babble noise when speech comes from the front and noise from the sides and behind compared to no SmartSound or SmartSound2.The right panel illustrates the mean performance improvements in speech weighted noise using the Nucleus 6 signal-to-noise reduction(SNR-NR) algorithm when speech and noise are co-located compared to no SmartSound or Smart-Sound2.Also illustrated is the mean performance improvement using Nucleus 6 with SNR-NR compared to performance with subjects' Nucleus 5 processor.

      最近,Cochlear設(shè)計(jì)和研發(fā)組的聽(tīng)力學(xué)家將Nu?cleus 6用于Nucleus 22植入者(圖5)。結(jié)果顯示SCAN與Freedom處理器相比,受試者言語(yǔ)識(shí)別率在言語(yǔ)加權(quán)噪聲下提高6 dB,在4人交談噪聲(babble)下提高5 dB[27,28]。

      圖5 左圖為在言語(yǔ)加權(quán)噪聲下Nucleus 22受試者使用SCAN程序(黃色,-6.9 dB)、使用Freedom處理器(淺灰色,-0.93 dB)、使用不帶有SCAN的Nucleus 6處理器(深灰色,-0.17 dB)三者平均提升效果的對(duì)比(使用SCAN比使用Freedom處理器平均改善約6 dB)。右圖為在4人交談言語(yǔ)噪聲下Nu?cleus 22受試者使用SCAN程序(黃色,-1.9 dB)、使用Freedom處理器(淺灰色,3.25 dB)、使用不帶有SCAN的Nucleus 6處理器(深灰色,3.1 dB)三者平均提升效果的對(duì)比(使用SCAN比使用Freedom處理器平均改善約5 dB)。Figure 5 The left panel illustrates mean performance improvements in speech weight noise for Nucleus 22 subjects using the default SCAN program compared o their Freedom processor and to Nucleus 6 using a program without SCAN.The right panel illustrates mean performance improvements in 4 talker babble noise for Nucleus 22 subjects using the default SCAN program compared to their Freedom processor and to Nucleus 6 using a program without SCAN.

      2 無(wú)線(xiàn)連接附件增加言語(yǔ)識(shí)別率

      Cochlear是首家推出無(wú)線(xiàn)附件的植入體生產(chǎn)商。以前聲音處理器的音頻附件需要有線(xiàn)連接,存在一些局限性,并沒(méi)有在植入者中廣泛使用。無(wú)線(xiàn)附件的便利性使得越來(lái)越多的植入者從中受益。圖6展示了一些無(wú)線(xiàn)附件包括無(wú)線(xiàn)麥克風(fēng)、TV streamer 和Phone Clip。最近的研究表明與單獨(dú)使用Nucleus 6相比,使用無(wú)線(xiàn)麥克風(fēng)在噪聲下短句識(shí)別平均提高8 dB[27,28](圖7)。

      Nucleus 6是Cochlear第一個(gè)有數(shù)據(jù)記錄功能的處理器,能夠監(jiān)測(cè)和記錄聲音處理器和配件的使用情況。臨床醫(yī)生可以根據(jù)記錄的數(shù)據(jù)來(lái)觀察設(shè)備的使用模式,給予臨床建議,使植入者獲得更豐富的聽(tīng)覺(jué)體驗(yàn)。

      圖6 .Cochlear無(wú)線(xiàn)附件:無(wú)線(xiàn)麥克風(fēng),TVStreamer和Phone ClipFigure 6.Cochlear's wireless accessories:Mini Microphone,TV Streamerand Phone Clip.

      圖7 單獨(dú)使用Nucleus 6(灰色)和使用Nucleus 6配備無(wú)線(xiàn)麥克風(fēng)(黃色)的BKB短句測(cè)試的平均言語(yǔ)識(shí)別閾(后者提高了8 dB,而且噪聲下改善明顯。并在類(lèi)似于教室的噪聲環(huán)境下,使用無(wú)線(xiàn)麥克風(fēng)的聆聽(tīng)效果更好。)Figure 7.Mean performance on the Bamford Kowal Bench speech reception threshold test (SRT) in noise using the Nucleus 6 alone and the Nucleus 6 with the Mini Microphone.

      3 展望未來(lái)

      人工耳蝸植入者受益于體積更小巧、設(shè)計(jì)更加出色的聲音處理器。Nucleus 6與Freedom?處理器相比,體積約減小50%,更加隱蔽,佩戴更舒適。其外層為納米涂層,防水級(jí)達(dá)IP57,更具可靠性。配備了Cochlear Aqua附件的Nucleus 6防水級(jí)別為IP58,解決了植入者無(wú)法游泳的問(wèn)題。

      Cochlear植入技術(shù)將努力使各種組件小型化,設(shè)計(jì)能耗更少、體積更小的植入體和聲音處理器。未來(lái)的人工耳蝸可能有不同電極組和接收刺激器,將電流傳送到植入電極,聚集電刺激,增加更多獨(dú)立通道,提高植入者的言語(yǔ)理解能力[29,30]。新的電極組可進(jìn)一步減小耳蝸創(chuàng)傷,傳遞不同的治療藥物以加強(qiáng)神經(jīng)生長(zhǎng)和/或維持殘余聽(tīng)力[31~34]。

      另外Cochlear公司與人工耳蝸植入和助聽(tīng)器創(chuàng)新研究中心合作,研究全植入式人工耳蝸植入(totally implantable cochlear implant,TIKI)產(chǎn)品[35,36]。在墨爾本人工耳蝸植入臨床大學(xué),三個(gè)重度到極重度感音神經(jīng)聾成人患者植入TIKI,無(wú)手術(shù)和術(shù)后并發(fā)癥。三個(gè)受試者通過(guò)“隱形聽(tīng)覺(jué)”模式或者外部ESPrit 3G聲音處理器使用TIKI進(jìn)行工作。此產(chǎn)品對(duì)內(nèi)部麥克風(fēng)靈敏度有限制。與使用ESPrit 3G處理器比較,隱形聽(tīng)覺(jué)模式下言語(yǔ)可懂度有所下降。另外,身體內(nèi)部噪聲干擾會(huì)減少受試者使用隱形聽(tīng)覺(jué)模式的時(shí)間。故還需進(jìn)一步研究改善皮下麥克風(fēng)和信號(hào)處理。

      30多年來(lái)Cochlear不斷創(chuàng)新多種聲音處理器產(chǎn)品,大大提升言語(yǔ)感知效果,拓寬適應(yīng)證,滿(mǎn)足不同患者需求。植入效果不再是考量產(chǎn)品唯一的指標(biāo),植入者的生活方式以及溝通需求也逐漸被重視起來(lái),由此推動(dòng)了聲音處理器設(shè)計(jì)理念上的變革。Co?chlear將關(guān)注后續(xù)技術(shù)的兼容性,并一如既往地堅(jiān)守“聆聽(tīng)現(xiàn)在,韻律永恒”的承諾。

      (The paper was published on the 4th issue of Chinese Journal of Otology)

      參考文獻(xiàn)

      1Clark,G.M.,Tong,Y.C.,Patrick,J.F.,Cochlear Prostheses.Churchill Livingstone,New York,1990,pp.99-124.

      2Clark,G.M.,Cochlear Implants:Fundamentals and Applications.Springer-Verlag,New York,2003,pp.454-549.

      3Patrick,J.F.,Busby,P.A.,Gibson,P.J.,The development of the Nu?cleus Freedom cochlear implant system.Trends Amplif.2006,10,175-200.

      4Dawson,P.W.,Mauger,S.J.,Hersbach,A.A.,Clinical evaluation of signal-to-noise ratio-based noise reduction in Nucleus cochlear im?plant recipients.Ear Hear.2011,32,382-390.

      5Hersbach,A.A.,Arora,K.,Mauger,S.J.,Dawson,P.W.,Combining directional microphone and single-channel noise reduction algo?rithms:a clinical evaluation in difficult listening conditions with co?chlear implant users.Ear Hear.2012,33,e13-23.

      6Mauger,S.J.,Warren,C.D.,Knight,M.R.,Goorevich,M.,Nel,E.,Clinical evaluation of the Nucleus?6 cochlear implant system:per?formance improvements with SmartSound iQ.Int.J.Audiol.2014,53,564-576.

      7Dunn,C.C.,Tyler,R.S.,Oakley,S.A.,et al.,Comparison of speech recognition and location performance in bilateral and unilateral co?chlear implant users matched on duration of deafness and age at im?plantation.Ear Hear.2008,29,352-359.

      8Litovsky,R.,Parkinson,A.,Arcaroli,J.,Spatial hearing and speech intelligibility in bilateral cochlear implant users.Ear Hear.2009,30,419-431.

      9Dunn,C.C.,Noble,W.,Tyler,R.S.,et al.,Bilateral and unilateral cochlear implant users compared on speech perception in noise.Ear Hear.2010,31,296-298.

      10Dunn,C.C.,Perreau,A.,Gantz,B.,et al.,Benefits of localizationand speech perception with multiple noise sources in listeners with a short electrode cochlear implant.J.Am.Acad.Audiol.2010,21,44-51.

      11Litovsky,R.Y.,Review of recent work on spatial hearing skills in children with bilateral cochlear implants.Cochlear Implant.Int.2011,12(Suppl 1),30-34.

      12 Ramsden,J.D.,Gordon,K.,Aschendorff,A.,et al.,European bilat?eral pediatric cochlear implant forum consensus statement.Otol.Neurotol.2012,33,561-565.

      13Galvin,K.L.,Holland,J.F.,Hughes,K.C.,Longer-term functional outcomes and everyday listening performance for young children through to young adults using bilateral implants.Ear Hear.2013,35,171-182.

      14 Hughes,K.C.,Galvin,K.L.,Measuring listening effort expended by adolescents and young adults with unilateral or bilateral cochlear im?plants or normal hearing.Cochlear Implant.Int.2013,14,121-129.

      15Potts,L.G.,Litovsky,R.Y.,Transitioning from bimodal to bilateral cochlear implant listening:speech recognition and localization in four individuals.J.Am.Acad.Audiol.2014,23,79-92.

      16 Gantz,B.J.,Turner,C.,Gfeller,K.E.,et al.,Preservation of hearing in cochlear implant surgery:advantages of combined electrical and acoustical speech processing.Laryngoscope 2005,115,796-802.

      17 Dorman,M.F.,Gifford,R.H.,Combining acoustic and electric stim?ulation in the service of speech recognition.Int.J.Audiol.2010,49,912-919.

      18 Gifford,R.H.,Dorman,M.F.,Skarsynski,H.,et al.,Cochlear implan?tation with hearing preservation yields significant benefit for speech recognition in complex listening environments.Ear Hear.2013,34,413-425.

      19 Incerti,P.V.,Ching,Y.C.,Cowan,R.,A systematic review of electri?cacoustic stimulation:device fitting ranges,outcomes and clinical fit?ting practices.Trends Amplif.2013,17,3-26.

      20 Lenarz,T.,James,C.,Cuda,D.,et al.,European multi-centre study of the Nucleus Hybrid L-24 cochlear implant.Int.J.Audiol.2013,52,838-848.

      21 Gifford,R.H.,Grantham,D.W.,Sheffield,S.W.,et al.,Localization and interaural time difference (ITD) thresholds for cochlear implant recipients with preserved acoustic hearing in the implanted ear.Hear.Res.2014,312,28-37.

      22 Jurawitz,M.C.,Buchner,A.,Harpel,T.,et al.,Hearing preservation outcomes with different cochlear implant electrodes:Nucleus?Hy?brid?L-24 and Nucleus?Freedom CI422.Audiol.Neurotol.2014,19,293-309.

      23 Roland,J.T.,Gantz,B.J.,Waltzman,S.B.,et al.,2015.United States multicenter clinical trial of the Cochlear Nucleus Hybrid implant system.Laryngoscope.http://dx.doi.org/10.1002/lary.25451 pub?lished on line,7 July 2015.Copyright?2015 Wiley Periodicals,Inc.,A Wiley Company.

      24Spriet,A.,Van Deun,L.,Eftaxiadis,K.,et al.,Speech understand?ing in background noise with the two-microphone adaptive beam?former BEAM in the Nucleus Freedom cochlear implant system.Ear Hear.2007,28,62-72.

      25 Wolfe,J.,Parkinson,A.,Schafer,E.,et al.,Benefit of a commercial?ly available cochlear implant processor with dual-microphone beam?forming:a multi-center study.Otol.Neurotol.2012,33,553-560.

      26 Wolfe,J.,Neumann,S.,Marsh,M.,et al.,August Benefits of adap?tive signal processing in a commercially available cochlear implant sound processor.Otol.Neurotol.2015,36 (7):1181-1190.

      27 Cochlear Limited,2015a.Acceptance of Nucleus 6 SSIQ in a Group of Nucleus?22 Series Cochlear Implant Recipients Study Report.

      28 Cochlear Limited,2015b.Use of Cochlear?Wireless Accessories with Nucleus?6 Sound Processors Study Report.

      29 Bierer,J.A.,Probing the electrodeeneuron interface with focused co?chlear implant stimulation.Trends Amplif.2010,14,84-95.

      30 30.Long,C.J.,Holden,T.A.,McClelland,G.H.,et al.,Apr 2014.Ex?amining the electro-neural interface of cochlear implant users using psychophysics,CT scans,and speech understanding.J Assoc Res.Otolaryngol.http://dx.doi.org/10.1007/s10162-013-0437-5.Asso?ciation for Research in Otolaryngology Published online 30 January 2014.15 (2):293-304.

      31 Wilson,B.S.,Dorman,M.F.,2008.Cochlear implants:a remarkable past and a brilliant future.Hear.Res.242,3-21.

      32Jolly,C.,Garnham,C.,Mirzadeh,H.,Truy,E.,Martini,A.,Kiefer,J.,Braun,S.,Electrode features for hearing preservation and drug delivery strategies.Adv.Otorhinolaryngol.2010,67,28-42.

      33 Shepherd,R.K.,Rescuing the cochlea:the challenges.ENT Audiol.News 2011,19 (6):49-52.

      34 Astolfi,L.,Guaran,V.,Marchetti,N.,Olivetto,E.,Simoni,E.,Cavazzini,A.,Jolly,C.,Martini,A.,Cochlear implants and drug de?livery:in vitro evaluation of dexamethasone release.J.Biomed.Ma?ter.Res.B Appl.Biomater.2014,102,267-273.

      35 Briggs,R.J.S.,Eder,H.C.,Seligman,P.M.,Cowan,R.S.,Plant,K.L.,Dalton,J.,Money,B.K.,Patrick,J.F.,Initial clinical experience with a totally implantable cochlear implant research device.Otol.Neuro.2008,29,114-119.

      36 Briggs,R.J.S.,Future technology in cochlear implants:assessing the benefit.Cochlear Implant.Int.2011,12,S22-S25.

      ·技術(shù)與方法·

      The history of CochlearTMNucleus?sound processor upgrades:30 years and counting

      Anne L.Beiter*,Esti Nel
      Cochlear Limited
      Translator:SUN Wen ,Review :ZHANG Hua
      The translator unit:Beijing tongren hospital affiliated to the capital university of medical sciences,otolaryngology head and neck surgery
      Beijing institute of otolaryngology department Key laboratory of otolaryngology head and neck science the ministry of education to the capital university of medical sciences,100005 (Beijing)

      【Abstract】Objective To review developments in sound processors over the past 30 years that have resulted in significant improvements in outcomes for Nucleus?recipients.

      【Keywords】Cochlear implant; Sound processor; SmartSound; SCAN; Wireless accessories

      通訊作者:Anne L.Beiter,Email:abeiter@cochlear.com

      作者簡(jiǎn)介:Anne L.Beiter,碩士,研究方向:人工耳蝸

      DOI:10.3969/j.issn.1672-2922.2016.01.025

      【中圖分類(lèi)號(hào)】R764

      【文獻(xiàn)標(biāo)識(shí)碼】A

      【文章編號(hào)】1672-2922(2016)01-115-5

      台北县| 南康市| 崇文区| 南投市| 武乡县| 凤翔县| 田林县| 楚雄市| 延安市| 乌海市| 满城县| 大理市| 西乌珠穆沁旗| 上犹县| 武川县| 聊城市| 叶城县| 巫溪县| 中宁县| 英吉沙县| 隆德县| 彰化县| 沙湾县| 精河县| 保康县| 盐边县| 长乐市| 凤城市| 蕉岭县| 偏关县| 镇巴县| 勃利县| 宁南县| 普洱| 内江市| 民乐县| 海阳市| 彭水| 秀山| 莱阳市| 台中县|