• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      蘋(píng)果砧木致矮機(jī)理的研究現(xiàn)狀與展望

      2016-04-14 09:16:07里程輝于年文張秀美韓麗紅呂德國(guó)
      關(guān)鍵詞:矮化砧矮化砧木

      里程輝,劉 志,王 宏,于年文,張秀美,韓麗紅,呂德國(guó)

      (1. 遼寧省果樹(shù)科學(xué)研究所,遼寧熊岳 115009;2. 沈陽(yáng)農(nóng)業(yè)大學(xué) 園藝學(xué)院,沈陽(yáng) 110866)

      ?

      蘋(píng)果砧木致矮機(jī)理的研究現(xiàn)狀與展望

      里程輝1,2,劉 志1,王 宏1,于年文1,張秀美1,韓麗紅1,呂德國(guó)2

      (1. 遼寧省果樹(shù)科學(xué)研究所,遼寧熊岳 115009;2. 沈陽(yáng)農(nóng)業(yè)大學(xué) 園藝學(xué)院,沈陽(yáng) 110866)

      為探討蘋(píng)果矮化砧木的致矮機(jī)理,從生物學(xué)特性、解剖結(jié)構(gòu)、生理生化和矮化砧分子生物學(xué)4個(gè)方面對(duì)蘋(píng)果砧木致矮機(jī)理進(jìn)行綜述,提出在今后的研究工作中,首先應(yīng)分析不同蘋(píng)果砧木樹(shù)體水分代謝過(guò)程中各環(huán)節(jié)的差異,及由此導(dǎo)致的生理生化變化,再研究不同蘋(píng)果砧木樹(shù)體內(nèi)各種激素類物質(zhì)的產(chǎn)生、狀態(tài)、運(yùn)轉(zhuǎn)及降解規(guī)律。另外,還需借助分子生物學(xué)技術(shù)從信號(hào)轉(zhuǎn)導(dǎo)、赤霉素合成及多激素協(xié)同等多方面進(jìn)行深入研究。

      蘋(píng)果;砧木;致矮機(jī)理;代謝

      據(jù)統(tǒng)計(jì),2015年中國(guó)蘋(píng)果種植面積達(dá)232萬(wàn)hm2,產(chǎn)量約4 100萬(wàn)t,位居各類水果產(chǎn)量首位。近年來(lái),蘋(píng)果矮化密植栽培,因其產(chǎn)量高、品質(zhì)優(yōu)、早果早產(chǎn)、生產(chǎn)管理方便、矮化砧木技術(shù)日趨成熟[1]等優(yōu)點(diǎn),已成為中國(guó)蘋(píng)果產(chǎn)業(yè)的發(fā)展方向和趨勢(shì),因此,探討其致矮機(jī)理具有重要理論和實(shí)踐意義。隗曉雯[2]認(rèn)為,應(yīng)用解剖和生理生化的方法檢測(cè)和鑒定砧木矮化性不但可以提高檢測(cè)效率而且選擇準(zhǔn)確,能有效縮短砧木育種周期;并且綜合枝皮率、氣孔密度、多胺總量以及NO含量 4個(gè)指標(biāo)篩選出的矮化砧木品種與砧木的實(shí)際生長(zhǎng)勢(shì)高度吻合,初選準(zhǔn)確率達(dá)到 85.71%,說(shuō)明這些指標(biāo)和初選方法可行、有效。李海燕等[3-4]研究認(rèn)為,Pn(凈光合速率)、ABA(脫落酸)、POD(過(guò)氧化物酶)和IOD(生長(zhǎng)素氧化酶)、IAA/ZR(吲哚乙酸/玉米素核苷)、可溶性糖、淀粉、比葉重均可作為矮化中間砧幼樹(shù)生長(zhǎng)勢(shì)強(qiáng)弱的評(píng)價(jià)指標(biāo)。為系統(tǒng)闡述矮化砧木的致矮機(jī)理,本研究從生物學(xué)特性、解剖結(jié)構(gòu)、生理生化和矮化砧分子生物學(xué)4個(gè)方面對(duì)蘋(píng)果砧木致矮機(jī)理的最新研究進(jìn)展進(jìn)行綜述,并對(duì)其致矮機(jī)理的研究方向進(jìn)行展望,以期為蘋(píng)果矮化砧木的系統(tǒng)研究提供理論支撐。

      1 矮化砧木生物學(xué)特性與矮化研究

      眾多關(guān)于矮化砧木生物學(xué)特性的研究認(rèn)為,新梢生長(zhǎng)量、節(jié)間長(zhǎng)、節(jié)數(shù)、枝條莖圍、樹(shù)干莖圍等指標(biāo)可以反映果苗的矮化程度。羅靜等[5-6]關(guān)于2種蘋(píng)果中間砧的研究表明,‘富士’/‘八棱海棠’喬化苗的新梢生長(zhǎng)量、枝條莖圍以及節(jié)間長(zhǎng)均顯著大于矮化中間砧組合,而M9與M26矮化中間砧蘋(píng)果苗之間上述指標(biāo)的差異并不顯著。李海燕等[3-4]關(guān)于‘華紅’蘋(píng)果致矮機(jī)理的研究認(rèn)為,不同矮化中間砧‘華紅’蘋(píng)果樹(shù)均表現(xiàn)出不同程度的樹(shù)高降低、新梢生長(zhǎng)量和節(jié)間長(zhǎng)變小。曹敏格等[7]研究認(rèn)為,蘋(píng)果矮化和半矮化砧木的年均新梢生長(zhǎng)量均顯著低于喬化砧木,蘋(píng)果矮化砧木的年均新梢生長(zhǎng)量可以反映砧木早期的生長(zhǎng)趨勢(shì),矮化砧木的新梢停止生長(zhǎng)時(shí)間早于喬化砧木,這可作為一個(gè)矮化預(yù)選指標(biāo)。De Wit等[8]研究認(rèn)為,樹(shù)體生長(zhǎng)長(zhǎng)枝多趨于喬化,短枝則多趨于矮化。

      2 解剖結(jié)構(gòu)與矮化研究

      2.1 根皮率、枝皮率與矮化的關(guān)系

      一般情況下,根皮率與植株生長(zhǎng)勢(shì)呈一定的相關(guān)性,即根皮率越大,樹(shù)體生長(zhǎng)勢(shì)越弱,趨于矮化,反之樹(shù)體生長(zhǎng)勢(shì)就越強(qiáng),趨于喬化[9-10],因此可以用根皮率預(yù)測(cè)樹(shù)體的生長(zhǎng)勢(shì)。但因根系收集困難,而且根系生長(zhǎng)受土壤等因素制約,后續(xù)研究逐步由地下轉(zhuǎn)向地上枝條的解剖。國(guó)內(nèi)外許多研究者對(duì)蘋(píng)果品種及砧木枝條的組織進(jìn)行解剖研究[2],發(fā)現(xiàn)枝皮率與蘋(píng)果品種及砧木的矮化程度有一定的相關(guān)性,即枝皮率越大,樹(shù)體或砧木的生長(zhǎng)勢(shì)越弱,趨于矮化,反之樹(shù)體或砧木生長(zhǎng)勢(shì)就越強(qiáng),趨于喬化。

      2.2 葉片結(jié)構(gòu)與矮化的關(guān)系

      關(guān)于蘋(píng)果葉片解剖結(jié)構(gòu)的研究表明,葉片厚度和上下表皮厚度與生長(zhǎng)勢(shì)無(wú)相關(guān)性,而葉片柵欄組織與海綿組織厚度的比值隨砧木矮化程度的增加而增大[10-13],喬化砧柵欄組織厚度顯著小于矮化砧,且矮化砧柵海比大于1,而喬化砧卻小于1。此外,Chen等[14]研究顯示,矮化形和正常形梨成熟葉片的解剖結(jié)構(gòu)與蘋(píng)果相似,矮化形葉片的柵欄組織厚度明顯高于正常形;Michael等[15]研究獼猴桃發(fā)現(xiàn),矮化砧可以影響植株葉片大小,并且砧木對(duì)葉片結(jié)構(gòu)的影響可最終影響植株的光合作用。

      2.3 氣孔特性與矮化的關(guān)系

      許多研究表明,氣孔密度與蘋(píng)果樹(shù)體的生長(zhǎng)勢(shì)呈正比,即氣孔密度越大,生長(zhǎng)勢(shì)越強(qiáng),氣孔密度越小,生長(zhǎng)勢(shì)越弱[16]。羅靜等[5-6]認(rèn)為,M9和M26矮化中間砧蘋(píng)果苗的氣孔密度和氣孔長(zhǎng)寬比明顯小于喬化苗。 Li等[17]關(guān)于M系砧木的研究表明,M9和M26 2種矮化砧木單位面積的氣孔數(shù)量較少,且M26氣孔密度大于M9。同樣,隗曉雯[2]關(guān)于蘋(píng)果不同砧木的研究認(rèn)為,矮化砧木的氣孔密度較小,顯著低于半矮化砧木和喬化砧木,矮化砧木的氣孔縱徑顯著高于半矮化和喬化砧木,矮化程度不同的蘋(píng)果砧木,其枝皮率與葉片的氣孔密度存在顯著差異,可作為砧木矮化的預(yù)選指標(biāo)。通過(guò)氣孔密度對(duì)柑桔品種生長(zhǎng)勢(shì)的研究也得出相同的結(jié)論。

      2.4 木質(zhì)部導(dǎo)管結(jié)構(gòu)與矮化的關(guān)系

      木質(zhì)部導(dǎo)管是蘋(píng)果樹(shù)體水分向上運(yùn)輸?shù)闹饕緩?。解剖結(jié)構(gòu)顯示,蘋(píng)果矮化砧的導(dǎo)管密度與嫁接樹(shù)的生長(zhǎng)勢(shì)、樹(shù)干莖圍與樹(shù)冠呈一定相關(guān)性[18-20]。羅靜等[5-6]對(duì)同一蘋(píng)果品種嫁接的矮化苗進(jìn)行研究,結(jié)果顯示,無(wú)論是M9 還是 M26,其中間砧的管腔直徑、管腔面積與管腔總面積占木質(zhì)部比例均顯著小于同植株上的接穗和基砧。Rodriguez等[21]和Bauerle等[22]關(guān)于砧木的木質(zhì)部導(dǎo)管結(jié)構(gòu)的研究認(rèn)為,導(dǎo)管密度可有效反映樹(shù)體的生長(zhǎng)情況,導(dǎo)管密度越小,中間砧影響植株的生長(zhǎng)勢(shì)越弱,樹(shù)體矮化越明顯,這一結(jié)論在櫻桃砧木和荔枝矮化品種中都得到證實(shí)[23-24]。關(guān)于蘋(píng)果不同砧木導(dǎo)管的研究顯示,導(dǎo)管面積可作為評(píng)價(jià)矮化的一項(xiàng)重要指標(biāo),導(dǎo)管數(shù)越多,密度越大,導(dǎo)管占木質(zhì)部的比例越大,果樹(shù)的生長(zhǎng)勢(shì)越強(qiáng),相反,則生長(zhǎng)勢(shì)越弱。此外,矮化砧木作中間砧的矮化效果與中間砧的長(zhǎng)度有關(guān)。說(shuō)明,對(duì)于蘋(píng)果而言,砧木的矮化程度除與根皮率有關(guān)外,與中間砧特性也有一定關(guān)系,這可能與中間砧的木質(zhì)部、韌皮部結(jié)構(gòu)功能有關(guān)。

      2.5 韌皮部篩管結(jié)構(gòu)與矮化的關(guān)系

      鑒于研究難度等原因,目前關(guān)于韌皮部的髓部和篩管與矮化關(guān)系的研究較少,并且不同樹(shù)種上的研究結(jié)果存在明顯差異。對(duì)蘋(píng)果砧木的研究發(fā)現(xiàn),篩管密度和篩管面積因砧木不同而不同,但與樹(shù)體生長(zhǎng)勢(shì)無(wú)相關(guān)性;對(duì)柑橘的研究表明,柑橘樹(shù)體髓部面積從矮化至喬化呈增大的趨勢(shì);對(duì)梨的研究則認(rèn)為,砧木致矮的原因是樹(shù)體篩管分子在樹(shù)干增粗的過(guò)程中受到壓力,使篩管變形或消失,從而阻礙了地上部分碳水化合物向下運(yùn)輸,導(dǎo)致樹(shù)體矮化。

      3 蘋(píng)果矮化砧的生理生化研究

      3.1 水勢(shì)與矮化的關(guān)系

      諸多關(guān)于蘋(píng)果矮砧與喬砧水勢(shì)測(cè)定的研究表明,低水勢(shì)是樹(shù)體矮化的一個(gè)標(biāo)志[25],不同砧木的葉片、枝條的水勢(shì)大致相同,均表現(xiàn)為喬砧高于矮砧。羅靜等[5-6]研究認(rèn)為,喬砧砧木和嫁接的‘富士’苗葉片與枝條的水勢(shì)均顯著高于矮化砧砧木和嫁接的矮化‘富士’苗葉片與枝條,說(shuō)明矮化砧木實(shí)生苗的水勢(shì)可以反映其嫁接植株水勢(shì)的大小,2種矮化中間砧的水勢(shì)差異不顯著;并提出矮化中間砧蘋(píng)果苗的葉片水勢(shì)低于枝條水勢(shì)是由于葉片葉綠素含量高、柵欄組織厚、產(chǎn)生有機(jī)物多,導(dǎo)致葉片細(xì)胞液濃度增大,直接影響滲透勢(shì)使葉片水勢(shì)降低,而枝條水勢(shì)的變化是由于砧穗之間、中間砧與基砧之間的導(dǎo)管密度、導(dǎo)管占木質(zhì)部的比例的差異,間接影響接穗枝條的水勢(shì)變化。張林森等[26]對(duì)干旱脅迫下不同中間砧嫁接蘋(píng)果苗的導(dǎo)水特性進(jìn)行研究,提出其根系葉比導(dǎo)率均有減小,各器官葉比導(dǎo)率的基本趨表現(xiàn)為喬化>半矮化>矮化,其中矮化中間砧的變化幅度最大,喬化中間砧的變化幅度最小。中間砧嫁接口的導(dǎo)水阻力表現(xiàn)為矮化砧大于半矮化和喬化砧,由于矮化苗的有效導(dǎo)水率長(zhǎng)期低下,根系吸水和運(yùn)輸水分的能力下降,使地上部水分供給減少,從而影響樹(shù)體的生長(zhǎng)。韓曉毓等[27]對(duì)不同矮化砧木導(dǎo)水特性的研究表明,正常條件下,MM106矮化砧木葉片水勢(shì)顯著低于其他矮化砧木。同樣,嫁接在矮化砧木M9、M26的‘愛(ài)彼爾’品種枝條的水勢(shì)低于嫁接在半矮化砧木M7、MM104和MM106枝條的水勢(shì),并據(jù)此提出蘋(píng)果矮化砧木可能是通過(guò)抑制根系水分向接穗運(yùn)輸而使接穗生長(zhǎng)勢(shì)減弱[28],導(dǎo)致植株矮化。但Cohen等[29]發(fā)現(xiàn),木質(zhì)部的導(dǎo)管數(shù)遠(yuǎn)大于水分運(yùn)輸所需的導(dǎo)管數(shù),因此應(yīng)該考慮木質(zhì)部導(dǎo)管的相對(duì)疏導(dǎo)能力,進(jìn)行木質(zhì)部阻力系數(shù)方面研究,結(jié)果發(fā)現(xiàn),砧木木質(zhì)部的輸導(dǎo)阻力系數(shù)與砧木的矮化性狀有較好的相關(guān)性[19-20,28]。

      3.2 物質(zhì)運(yùn)輸與矮化的關(guān)系

      水分和有機(jī)物這兩大運(yùn)輸系統(tǒng)對(duì)蘋(píng)果樹(shù)體的生長(zhǎng)有極其重要的作用,矮化砧蘋(píng)果樹(shù)體水分、礦質(zhì)元素以及同化物的代謝和運(yùn)輸均會(huì)對(duì)其生長(zhǎng)勢(shì)產(chǎn)生一定影響。Zhou等[30]采用13C同位素示蹤法對(duì)3 a生‘寒富’盆栽幼樹(shù)的研究表明,GM256(MalusdomesticaBorkh)作為中間砧有提高‘寒富’蘋(píng)果葉片生長(zhǎng)速率的潛力,并且不會(huì)阻礙同化物在中間砧的運(yùn)輸。李海燕等[3-4]關(guān)于不同矮化中間砧‘華紅’蘋(píng)果的研究認(rèn)為,其葉片的可溶性糖、淀粉、比葉重與樹(shù)體生長(zhǎng)勢(shì)呈負(fù)相關(guān)。宋曉敏[31]研究認(rèn)為,不同砧穗組合對(duì)植株整個(gè)生長(zhǎng)周期碳水化合物的積累有重要影響,其中,M9和M26處理的蔗糖含量顯著高于‘海棠’,M9 處理的淀粉和非結(jié)構(gòu)性碳水化合物含量顯著高于M26和‘八棱海棠’,且淀粉含量的積累可以促進(jìn)植株早成花。姜淑苓等[32]研究發(fā)現(xiàn),隨著中間砧長(zhǎng)度增加,樹(shù)體矮化程度加大,但當(dāng)中間砧長(zhǎng)度大于30 cm時(shí),樹(shù)體的矮化程度變化不明顯,這側(cè)面證實(shí)矮化與運(yùn)輸有關(guān)。目前,關(guān)于不同砧木蘋(píng)果葉片營(yíng)養(yǎng)元素的分析結(jié)果尚不一致,造成這一結(jié)果可能有兩方面原因:一是實(shí)施方案設(shè)計(jì)存在缺陷,如試驗(yàn)地點(diǎn)、年份、品種、栽培方法和負(fù)載量等設(shè)計(jì)不合理;二是有關(guān)葉片的分析僅能說(shuō)明礦質(zhì)營(yíng)養(yǎng)的靜態(tài)含量。Li等[17]研究顯示,對(duì)M9中間砧段橋接換皮處理后,樹(shù)體的相關(guān)指標(biāo)可恢復(fù)至喬化水平,這間接說(shuō)明M9中間砧段莖不是致矮的關(guān)鍵部位,因此,砧木對(duì)水分、礦質(zhì)營(yíng)養(yǎng)元素運(yùn)輸?shù)挠绊憴C(jī)理仍需更進(jìn)一步研究。

      3.3 酶活性與矮化的關(guān)系

      諸多研究證明,與樹(shù)體矮化相關(guān)的酶包括生長(zhǎng)素氧化酶(IOD)、過(guò)氧化物酶(POD)、過(guò)氧化氫酶(CAT)和超氧化物歧化酶(SOD)。隗曉雯[2]研究認(rèn)為,不同矮化程度的砧木之間葉片的POD、IOD活性差異較大,并且喬化砧木的酶活性顯著低于半矮化和矮化砧木;不同時(shí)期喬化砧木葉片內(nèi) CAT 酶活性顯著高于半矮化和矮化砧木,但半矮化砧木與矮化砧木葉片內(nèi) CAT活性無(wú)顯著性差異;砧木葉片內(nèi) IOD 活性和CAT活性均可作為矮化砧木的預(yù)選指標(biāo)。李海燕等[3-4]研究認(rèn)為,IOD、POD活性與生長(zhǎng)勢(shì)呈顯著負(fù)相關(guān),兩者對(duì)樹(shù)體的長(zhǎng)勢(shì)有明顯的抑制作用,可作為矮化中間砧幼樹(shù)生長(zhǎng)勢(shì)強(qiáng)弱的評(píng)價(jià)指標(biāo)。還有許多研究者認(rèn)為,POD對(duì)植物長(zhǎng)勢(shì)的影響大于IOD,高含量的POD可以加速IAA氧化,矮化砧木地上部的葉片和皮層韌皮部POD活性升高,氧化 IAA 能力加強(qiáng),中間砧段皮層積累的較高的POD會(huì)導(dǎo)致到達(dá)根系的 IAA 減少,使根系發(fā)育不良,最終影響地上部生長(zhǎng),使樹(shù)體表現(xiàn)矮化[33-37]。同時(shí),關(guān)于核桃和桃樹(shù)矮化砧的研究均顯示,POD活性與樹(shù)體矮化呈一定的相關(guān)性[38-39],也有學(xué)者認(rèn)為,葉片 POD活性越高,低水平的細(xì)胞分裂素合成和運(yùn)輸是導(dǎo)致樹(shù)體矮化的主要因素之一[40]。目前,SOD活性與樹(shù)體矮化的關(guān)系尚不明確,王成霞等[39]對(duì)不同類型桃葉片的研究發(fā)現(xiàn),其SOD活性隨砧木矮化程度的增大而升高,而隗曉雯[2]的研究則顯示,不同時(shí)期各蘋(píng)果砧木葉片SOD酶活性與砧木的矮化程度無(wú)相關(guān)性,這可能與兩者選用的樹(shù)種不同有關(guān)。

      3.4 植物生長(zhǎng)物質(zhì)與矮化的關(guān)系

      研究發(fā)現(xiàn),果樹(shù)的生長(zhǎng)勢(shì)受樹(shù)體內(nèi)生長(zhǎng)物質(zhì)的影響,包括GA(赤霉素)、IAA、ABA、CTK(細(xì)胞分裂素)、亞精胺、多胺、油菜素內(nèi)酯等[18,28,41-44]。Song等[45]對(duì)矮化‘富士’/M9及半矮化‘富士’/MM106幼樹(shù)的研究認(rèn)為,矮化‘富士’/M9的IAA含量低于半矮化‘富士’/MM106,且矮化‘富士’/M9砧木韌皮部的IAA含量明顯高于其接穗韌皮部。隗曉雯[2]對(duì)不同時(shí)期蘋(píng)果不同砧木葉進(jìn)行研究,認(rèn)為喬化砧木葉片內(nèi)腐胺含量顯著高于半矮化砧木和矮化砧木;亞精胺、總胺含量均隨樹(shù)體矮化程度的增加而減??;精胺含量隨著樹(shù)體矮化程度的增加而減??;對(duì)比分析各指標(biāo)與砧木矮化程度的相關(guān)性,確定亞精胺含量、多胺總量均可作為矮化砧木的初選指標(biāo),并認(rèn)為多胺總量是適宜的矮化砧木預(yù)選指標(biāo)。張鶴[46]研究認(rèn)為,M9在作自根砧和中間砧時(shí)的致矮機(jī)理不同,M9自根砧致矮是由于根系玉米素含量低所致;而M9中間砧致矮是由中間砧段韌皮部PIN8(MdPIN基因家族成員之一)表達(dá)量低,限制IAA向下部運(yùn)輸,根系獲得IAA不足所致。宋曉敏[31]研究認(rèn)為,在蘋(píng)果幼樹(shù)的快速生長(zhǎng)期,矮化會(huì)使葉片赤霉素(GA3)含量降低,且使蘋(píng)果幼樹(shù)葉片[IAA+GA3+ZT(玉米素)+ZR]/ABA顯著降低;只考慮品種因素,‘長(zhǎng)富2號(hào)’的(IAA+GA3+ZT+ZR)/ABA變化幅度大于‘福島短枝’。Tworkoski等[47]關(guān)于蘋(píng)果幼樹(shù)的研究認(rèn)為,ABA和ABA代謝產(chǎn)物的升高與‘嘎拉’、MM111和M9嫁接至M9砧木有關(guān),嫁接至M9砧木的植株,其根系、砧木、接穗以及木質(zhì)部分泌液中脫落酸和脫落酸葡萄糖酯含量高于嫁接至MM111砧木植株。李海燕等[3-4]研究認(rèn)為,ABA與樹(shù)體高、干徑、新梢長(zhǎng)、節(jié)間長(zhǎng)呈負(fù)相關(guān),ABA對(duì)樹(shù)體的長(zhǎng)勢(shì)有明顯的抑制作用;IAA/ZR與樹(shù)體長(zhǎng)勢(shì)呈正相關(guān)。Li等[17]研究發(fā)現(xiàn),無(wú)論是M9砧木還是‘富士’/M9,兩者根中IPT3基因表達(dá)量均較低,且根部玉米素含量顯著低于‘八棱海棠’或‘富士’/‘八棱海棠’。Kamboj[48]對(duì)蘋(píng)果不同矮化砧木枝條木質(zhì)部汁液及根壓分泌物中的玉米素及玉米素核進(jìn)行研究,結(jié)果顯示,矮化砧枝條木質(zhì)部汁液中細(xì)胞分裂素含量小于半矮化砧木;玉米素是MM106中細(xì)胞分裂素類物質(zhì)的主要形式,而玉米素核苷是M27、M9中細(xì)胞分裂素類物質(zhì)的主要形式,并且GA和IAA運(yùn)輸受阻導(dǎo)致矮化[49-51]。Faust等[52]認(rèn)為,GA是控制樹(shù)體高矮的最重要激素。M9砧木形成層內(nèi)IAA含量顯著低于M26和MM106[53]。

      3.5 光合指標(biāo)與矮化的關(guān)系

      矮化砧對(duì)蘋(píng)果光合作用的影響是當(dāng)前蘋(píng)果不同砧穗組合的研究重點(diǎn),不同蘋(píng)果砧穗組合對(duì)嫁接樹(shù)葉片光合速率的影響差異明顯[24]。有研究顯示,砧木的矮化性越強(qiáng),凈光合速率(Pn)越高;也有研究顯示,砧木的矮化性越強(qiáng),凈光合速率越低或者兩者之間無(wú)明顯關(guān)系[54-55]。Zhou等[30]對(duì)3 a生‘寒富’盆栽幼樹(shù)的研究表明,與喬化砧相比,矮化砧的葉片具有較高的葉面積、比葉重、表觀量子效率、羧化效率及葉綠素含量,并能更有效地利用光能和CO2。Ferree等[56]研究也顯示,矮化砧蘋(píng)果葉片的光合速率高于喬化砧;葉片的柵欄組織隨矮化程度的增強(qiáng)而增厚,并且矮化砧蘋(píng)果葉片凈光合速率顯著高于喬化砧。羅靜等[5-6]認(rèn)為,矮化中間砧影響下的植株能更好的利用光能而提高凈光合速率。李海燕等[3-4]研究表明,蘋(píng)果正午莖端水勢(shì)(ΨMD)與凈光合速率(Pn)、胞間CO2質(zhì)量分?jǐn)?shù)(Ci)、氣孔導(dǎo)度(Gs)呈極顯著正相關(guān),Pn隨樹(shù)體生長(zhǎng)勢(shì)的增強(qiáng)而增加,并且Pn可作為矮化中間砧幼樹(shù)生長(zhǎng)勢(shì)強(qiáng)弱的評(píng)價(jià)指標(biāo)。王中英等[57]關(guān)于‘紅星’蘋(píng)果幼樹(shù)光合速率的日變化研究表明,‘紅星’的矮化中間砧蘋(píng)果樹(shù)與喬化砧果樹(shù)葉片光合速率日變化趨勢(shì)基本一致,呈雙峰曲線;但日均光合速率表現(xiàn)為矮化中間砧明顯高于喬化砧。張建光等[58]研究發(fā)現(xiàn),不同砧穗組合對(duì)嫁接植株的葉片光合速率差異顯著,在9個(gè)砧穗組合中,嫁接在3個(gè)砧木上的‘首紅’表現(xiàn)出較高的光合性能,M26做砧木對(duì)接穗光合性能影響的正效應(yīng)大于B9。矮化砧還影響葉綠素的含量,各矮砧蘋(píng)果樹(shù)葉片凈光合速率明顯高于‘山定子’等喬砧蘋(píng)果樹(shù)的凈光合速率。

      3.6 熒光參數(shù)與矮化的關(guān)系

      葉綠素?zé)晒饧夹g(shù)能夠精確探測(cè)植物體內(nèi)的各種信息。目前,它在果樹(shù)干旱、高溫、低溫、鹽堿、強(qiáng)光等逆境生理研究方面已取得明顯進(jìn)展[15,59-61],也有研究者利用葉綠素?zé)晒饧夹g(shù)對(duì)果樹(shù)矮化效應(yīng)進(jìn)行研究,并取得一定成果,但有關(guān)其在蘋(píng)果樹(shù)上的研究很少。羅靜等[5-6]認(rèn)為,矮化中間砧影響下的植株具有更好的應(yīng)對(duì)強(qiáng)光和高溫的防御機(jī)制,矮化苗通過(guò)增加類胡蘿卜素含量,從而提高熱耗散(NPQ)能力,通過(guò)升高表觀光合電子傳遞速率(ETR)加強(qiáng)光化學(xué)反應(yīng)從而消耗更多光能,進(jìn)而避免 PSⅡ反應(yīng)中心受強(qiáng)光和高溫的破壞,最終有效地利用和吸收以維持葉片光能平衡,使植株更好的利用光能而提高凈光合速率。史寶勝等[62]通過(guò)葉綠素?zé)晒饧夹g(shù)研究發(fā)現(xiàn),葉綠素?zé)晒鈪?shù)中,PSⅡ原初光能轉(zhuǎn)化效(Fv/Fm)、最大熒光(Fm)、可變熒光(Fv)均隨著砧木矮化程度的增加而降低,而qN(非光化學(xué)猝滅)卻與砧木矮化程度呈正相關(guān)。Goncalves等[63]發(fā)現(xiàn),嫁接果樹(shù)的矮化性越強(qiáng),當(dāng)年生的停長(zhǎng)枝的Fv/Fm、Pn、Ci、Gs、ΨMD等越低,Pn與Gs的相關(guān)斜率均隨矮程性的增強(qiáng)而增加,說(shuō)明矮化砧中氣孔限制是影響光合速率的主要原因[64-65]。

      4 蘋(píng)果矮化砧的分子生物學(xué)研究

      轉(zhuǎn)錄組學(xué)逐漸成為當(dāng)前的研究熱點(diǎn),其在果樹(shù)上的應(yīng)用也取得明顯進(jìn)展。近幾年,關(guān)于樹(shù)體矮化的分子生物學(xué)研究多集中于突變體與植物激素信號(hào)轉(zhuǎn)導(dǎo)[66-67]、代謝[68]等方面,結(jié)果顯示,信號(hào)轉(zhuǎn)導(dǎo)運(yùn)輸過(guò)程的基因突變或基因表達(dá)差異是造成樹(shù)體大小的主要原因[66,69]。湯常永[70]利用轉(zhuǎn)錄組測(cè)序(RNA-Seq),推測(cè)‘中矮 1 號(hào)’PcAHS基因啟動(dòng)子所特有的P-box轉(zhuǎn)錄因子結(jié)合元件和片段缺失可能是導(dǎo)致其表達(dá)量低(矮化)的原因,通過(guò)影響生長(zhǎng)素的運(yùn)輸最終將引起生長(zhǎng)發(fā)育變化。于遲等[71]對(duì)SH40作為蘋(píng)果中間砧生長(zhǎng)素轉(zhuǎn)運(yùn)蛋白基因pin1表達(dá)量變化的研究表明,無(wú)論是砧木苗還是嫁接品種后,SH40做中間砧時(shí),其莖皮的IAA含量顯著減少,可能與其中IAA轉(zhuǎn)運(yùn)蛋白基因pin1表達(dá)量顯著降低有關(guān)。內(nèi)根-貝殼杉烯合成酶基因(KS)、內(nèi)根-貝殼杉烯酸氧化酶基因(KOA)是GA合成的關(guān)鍵基因,而MdKS和MdKOA1基因是從短枝‘富士’莖尖組織中克隆得到KS和KOA基因的開(kāi)放閱讀框(ORF)。姜志昂等[72]利用熒光定量PCR技術(shù)研究SH40與SH28 2種蘋(píng)果砧木嫁接短枝‘富士’不同組織的表達(dá)情況,結(jié)果表明,半矮化型SH28嫁接短枝‘富士’的MdKS基因和MdKOA1基因在莖尖、幼果、以及枝皮等組織上的表達(dá)量均顯著高于矮化型SH40嫁接短枝‘富士’。莖尖是植物體快速生長(zhǎng)的組織,其伸長(zhǎng)生長(zhǎng)決定株高。可能由于嫁接不同砧木后,MdKS基因和MdKOA1基因在莖尖的表達(dá)量減少,因此出現(xiàn)不同矮化程度的短枝‘富士‘。此研究結(jié)果與鄧曉云等[73]在蘋(píng)果、程飛飛等[74]和歐春青等[75]在梨上的研究結(jié)果一致,間接證明赤霉素是影響樹(shù)體矮化的重要因素。同時(shí),姜志昂等[76]利用實(shí)時(shí)熒光定量PCR技術(shù)研究相同立地條件下,SH40、SH28和M26 3種不同蘋(píng)果砧木及其嫁接品種‘嘎啦’在生長(zhǎng)發(fā)育階段 ABA 合成關(guān)鍵基因MdNCED1的表達(dá)情況,結(jié)果表明,MdNCED1基因的表達(dá)量與3個(gè)類型砧木的生長(zhǎng)勢(shì)及其嫁接品種‘嘎啦’的矮化程度呈顯著正相關(guān),生長(zhǎng)勢(shì)最弱的M26的MdNCED1基因在生長(zhǎng)發(fā)育階段表達(dá)水平較高,而生長(zhǎng)勢(shì)較強(qiáng)的SH40的MdNCED1基因表達(dá)量基本維持在一個(gè)較低水平,嫁接品種后半矮化類型SH28的MdNCED1基因的表達(dá)量顯著低于矮化型SH40和M26。這些結(jié)果均說(shuō)明,ABA 是調(diào)控樹(shù)體矮化程度的重要因素之一。Gao等[77]研究表明,矮化砧木蘋(píng)果木質(zhì)部細(xì)胞分裂素濃度顯著高于喬化砧木,并且銨態(tài)氮處理后矮化砧木木質(zhì)部汁液細(xì)胞分裂素含量顯著高于硝態(tài)氮處理,而不同形態(tài)氮處理對(duì)喬化砧木無(wú)顯著影響。蘋(píng)果矮化性狀由多個(gè)基因共同控制,上述研究顯示,單個(gè)基因已對(duì)蘋(píng)果樹(shù)體有一定的致矮作用,那么,多基因共同作用對(duì)蘋(píng)果的矮化表現(xiàn)型產(chǎn)生怎樣的影響,還需要通過(guò)轉(zhuǎn)錄組學(xué)進(jìn)行深入系統(tǒng)的研究。

      5 展 望

      引起蘋(píng)果矮化的機(jī)理較為復(fù)雜,但單方面的研究成果會(huì)推進(jìn)整體的系統(tǒng)研究。目前,蘋(píng)果矮化砧木在生物學(xué)特性、解剖結(jié)構(gòu)和生理生化等方面已經(jīng)取得較為清晰一致的結(jié)果,但在代謝和分子生物學(xué)技術(shù)方面的研究相對(duì)緩慢。因此,在今后的研究工作中,應(yīng)首先在嚴(yán)格控制環(huán)境的條件下,分析矮砧與喬砧樹(shù)體水分代謝過(guò)程中各環(huán)節(jié)的差異,再研究由此導(dǎo)致的生理生化變化;其次,研究不同砧木蘋(píng)果樹(shù)體各種激素類物質(zhì)的產(chǎn)生、狀態(tài)、運(yùn)轉(zhuǎn)及降解的規(guī)律。另外,若要完全闡明矮化機(jī)理,需要借助分子生物學(xué)技術(shù)在信號(hào)轉(zhuǎn)導(dǎo)、赤霉素合成及多激素協(xié)同等多方面進(jìn)行深入系統(tǒng)的研究。

      Reference:

      [1]張新忠,劉玉艷,龍成蓮.蘋(píng)果矮化砧木致矮機(jī)理的研究現(xiàn)狀與展望[J].河北農(nóng)業(yè)技術(shù)師范學(xué)院學(xué)報(bào),1996,10(2):62-66.

      ZHANG X ZH,LIU Y Y,LONG CH L.The current development and prospect study on dwarfing mechanism of apple dwarfing rootstocks[J].JournalofHebeiAgrotechnicalTeachersCollege,1996,10(2):62-66(in Chinese with English abstract).

      [2]隗曉雯.蘋(píng)果砧木矮化性評(píng)價(jià)指標(biāo)的研究及應(yīng)用[D].河北保定:河北農(nóng)業(yè)大學(xué),2014.

      WEI X W.The research and application of parameters for evaluating dwarfing ability in apple rootstocks[D].Baoding Hebei:Agricultural University of Heibei,2014 (in Chinese with English abstract).

      [3]李海燕.不同矮化中間砧華紅蘋(píng)果幼樹(shù)生理特性的研究[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2013.

      LI H Y.Study on the physiological characteristics of huahong apple young trees in different dwarfing interstocks[D].Beijing:Chinese Academy of Agricultural Sciences,2013 (in Chinese with English abstract).

      [4]李海燕,趙德英,袁繼存,等.矮化中間砧對(duì)華紅蘋(píng)果致矮機(jī)理初探[J].中國(guó)果樹(shù),2013(3):18-20.

      LI H Y,ZHAO D Y,YUAN J C,etal.The first exploration of dwarfing mechanism on huahong apple trees in dwarfing interstock[J].ChinaFruits,2013(3):18-20(in Chinese).

      [5]羅 靜.蘋(píng)果矮化中間砧矮化效應(yīng)的研究[D].陜西楊凌:西北農(nóng)林科技大學(xué),2013.

      LUO J.The study on dwarf effect of apple dwarf interstock[D].Yangling Shaanxi:Journal of Northwest A&F University,2013 (in Chinese with English abstract).

      [6]羅 靜,王 飛,韓明玉,等.2種蘋(píng)果中間砧致矮的解剖結(jié)構(gòu)機(jī)理研究[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,41(6):124-132.

      LUO J,WANG F,HAN M Y,etal.Anatomical mechanism of two apple dwarf interstocks[J].JournalofNorthwestA&FUniversity(NaturalScienceEdition),2013,41(6):124-132(in Chinese with English abstract).

      [7]曹敏格,楊海玲,張 文,等.蘋(píng)果砧木矮化性評(píng)價(jià)指標(biāo)的研究[J].中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2008,13(5):11-18.

      CAO M G,YANG H L,ZHANG W,etal.Parameters for evaluating dwarfing ability in apple rootstocks[J].JournalofChinaAgriculturalUniversity,2008,13(5):11-18(in Chinese with English abstract).

      [8]DE WIT I,COOK N C,KEUKEMANS J.Characterization of tree architecture in two-year-old apple seedling populations of different progenies with a common columnar gene parent[J].ActaHortic,2004,663(1):363-368.

      [9]馬 麗,婁喜艷.不同類型砧木對(duì)“紅富士”蘋(píng)果地下及地上部分生長(zhǎng)的影響[J].北方園藝,2013(16):13-17.

      MA L,LOU X Y.Influence of different rootstocks or inter-stems on upground and underground growth of ‘Red Fuji’ apple trees[J].NorthernHorticulture,2013(16):13-17 (in Chinese with English abstract).

      [10]侯玉玨.矮化‘富士’蘋(píng)果葉片形態(tài)特征與部分生理指標(biāo)研究[D].陜西楊凌:西北農(nóng)林科技大學(xué),2012.

      HOU Y J.Study on leaf characters and some physiological parameters of dwarfing ‘Fuji’[D].Yangling Shaanxi:Northwest A&F University,2012(in Chinese with English abstract).

      [11]楊廷楨,高敬東,王 騫,等.不同中間砧嫁接蘋(píng)果品種葉片和枝條解剖結(jié)構(gòu)與矮化性關(guān)系的研究[J].中國(guó)農(nóng)學(xué)通報(bào),2015,31(13):95-99.

      YANG T ZH,GAO J D,WANG Q,etal.Anatomical research on leaves and branches of apple cultivars grafted on different interstocks in relation to dwarf potentiality[J].ChineseAgriculturalScienceBulletin,2015,31(13):95-99 (in Chinese with English abstract).

      [12]SOUMELIDOU K,BATTEY N H,JOHN P,etal.The anatomy of the developing bud union and its relationship to dwarfing in apple[J].AnnalsofBotany,1994,74(6):605-611.

      [13]趙同生,陳東玫,趙永波,等.蘋(píng)果矮化砧木葉片解剖結(jié)構(gòu)研究[J].河北農(nóng)業(yè)科學(xué),2010,14(10):22-23.

      ZHAO T SH,CHEN D M,ZHAO Y B,etal.Study on leaf anatomical structure of dwarf apple rootstocks[J].JournalofHebeiAgriculturalSciences,2010,14(10):22-23 (in Chinese with English abstract).

      [14]CHEN B Y,WANG C H,TIAN Y K,etal.Anatomical characteristics of young stems and mature leaves of dwarf pear[J].ScientiaHorticulturae,2015,186:172-179.

      [15]MICHAEL P P,BRUCE A O,DEREK T M.Rapid predictions of cold tolerance in Douglas-fir seedlings using chlorophyll fluorescence after freezing[J].NewForests,2004,28(1):49-62.

      [16]楊傳友,史金玉,杜欣閣,等.蘋(píng)果葉片氣孔的研究[J].山東農(nóng)業(yè)大學(xué)學(xué)報(bào),1998,29(1):8-14.

      YANG CH Y,SHI J Y,DU X G,etal.Studies on the stomata of apple leaves[J].JournalofShandongAgriculturalUniversity,1998,29(1):8-14 (in Chinese with English abstract).

      [17]LI H L,ZHANG H,YU CH,etal.Possible roles of auxin and zeatin for initiating the dwarfing effect of M9 used as apple rootstock or interstock[J].ActaPhysiologiaePlantarum,2012,34(1):235-244.

      [18]ATKINSON C J,ELSE M.Understanding how rootstocks dwarf fruit trees[J].TheCompactFruitTree,2001,34(2):46-49.

      [19]TOMBESI S,JOHNSON R S,KEVIN R,etal.Interactions between rootstock,inter-stem and scion xylem vessel characteristics of peach trees growing on rootstocks with contrasting size-controlling characteristics[J].AoBPlants,2010:plq016.

      [20]TOMBESI S,JOHNSON R S,KEVIN R.etal.Relationships between xylem vessel characteristics,calculated axial hydraulic conductance and size-controlling capacity of peach rootstocks[J].AnnalsofBotany,2010,105(2):327-331.

      [21]RODRIGUEZ G J,INTRIGLIOLO D S,PRIMO M E,etal.Relationships between xylem anatomy,root hydraulic conductivity,leaf/root ratio and transpiration in citrus trees on different rootstocks[J].PhysiologiaPlantarum,2010,139(2):159-169.

      [22]BAUERLE T L,CENTINARI M,BAUERLE W L.Shifts in xylem vessel diameter and embolisms in grafted apple trees of differing rootstock growth potential in response to drought[J].Planta,2011,234(5):1045-1054.

      [23]王宏偉,張連忠,王嘉艷.甜櫻桃矮化砧木矮化機(jī)理解剖學(xué)研究[J].山東農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2004,35(2):298-300.

      WANG H W,ZHANG L ZH,WANG J Y.Anatomic study on dwarf mechanism of sweet cherry dwarf rootstocks[J].JournalofShandongAgriculturalUniversity(NaturalScienceEdition),2004,35(2):298-300 (in Chinese with English abstract).

      [24]GONCALVES B,MOUTINHO P J,SANTOS A,etal.Scion-rootstock interaction affects the physiology and fruit quality of sweet cherry tree[J].TreePhysiology,2005,26(1):93-104.

      [25]王中英,白瑞琴,呂曉燕.矮化中間砧和喬砧蘋(píng)果樹(shù)水勢(shì)變化研究[J].園藝學(xué)報(bào),1997,24(2):191-193.

      WANG ZH Y,BAI R Q,Lü X Y.The changes of water potential of apple tree on dwarfing interstock and standard rootstock[J].ActaHorticulturaeSinica,1997,24(2):191-193(in Chinese with English abstract).

      [26]張林森,胥生榮,張永旺,等.干旱脅迫下不同中間砧嫁接蘋(píng)果苗的導(dǎo)水特性[J].園藝學(xué)報(bào),2013,40(11):2137-2143.

      ZHANG L S,XU SH R,ZHANG Y W,etal.Hydraulics characteristic of Fuji apple grafted on different dwarf interstocks under drought stress[J].ActaHorticulturaeSinica,2013,40(11):2137-2143 (in Chinese with English abstract).

      [27]韓曉毓,張林森,王俊峰,等.不同蘋(píng)果矮化砧木導(dǎo)水特性與水通道蛋白基因表達(dá)對(duì)干旱脅迫的響應(yīng)[J].西北農(nóng)業(yè)學(xué)報(bào),2015,24(10):109-117.

      HAN X Y,ZHANG L S,WANG J F,etal.Responses of hydraulics characteristic and aquaporin expression of several apple dwarf rootstocks in responses to drought stress[J].ActaAgriculturaeBoreali-occidentalisSinica,2015,24(10):109-117 (in Chinese with English abstract).

      [28]ATKINSON C J,ELSE M,TAYLOR L,etal.Root and stem hydraulic conductivity as determinants of growth potential in grafted tree of apple (MaluspumilaMill)[J].JournalofExperimentalBotany,2003,385(54):1221-1229.

      [29]COHEN S,NAOR A,BENNINK J,etal.Hydraulic resistance components of mature apple trees on rootstocks of different vigours[J].JournalofExperimentalBotany,2007,58(15/16):4213-4224.

      [30]ZHOU Y Q,QIN S J,MA X X,etal.Effect of interstocks on the photosynthetic characteristics and carbon distribution of young apple trees during the vigorous growth period of shoots[J].EuropeanJournalofHorticulturalScience,2015,80(6):296-305.

      [31]宋曉敏.蘋(píng)果苗木質(zhì)量評(píng)價(jià)與砧穗組合對(duì)幼樹(shù)生長(zhǎng)的影響[D].陜西楊凌:西北農(nóng)林科技大學(xué),2014.

      SONG X M.Awwessment of the seedling quality and effects of rootstock-scion combinations on the growth of young apple tree[D].Yangling Shaanxi:Northwest A&F University,2014 (in Chinese with English abstract).

      [32]姜淑苓,賈敬賢,王 斐,等.3個(gè)梨樹(shù)中間砧木對(duì)嫁接樹(shù)的矮化效應(yīng)[J].中國(guó)農(nóng)業(yè)科學(xué),2010,43(23):4886-4892.

      JIANG SH L,JIA J X,WANG F,etal.The dwarfing effect of three pear dwarfing intermediate stocks on grafting trees[J].ScientiaAgriculturaSinica,2010,43(23):4886-4892 (in Chinese with English abstract).

      [33]徐繼忠,史寶勝,馬寶焜,等.蘋(píng)果不同矮化砧與其對(duì)應(yīng)的中間砧植株P(guān)OD、IOD酶活性的研究[J].中國(guó)農(nóng)業(yè)科學(xué),2002,35(4):415-420.

      XU J ZH,SHI B SH,MA B K,etal.Studies on the POD and IOD activities of the dwarfing stocks and apple grafted on corresponding interstocks[J].ScientiaAgriculturaSinica,2002,35(4):415-420 (in Chinese with English abstract).

      [34]閻樹(shù)堂,徐繼忠.不同矮化中間砧木對(duì)‘紅富士’蘋(píng)果果實(shí)內(nèi)源激素、多胺與細(xì)胞分裂素的影響[J].園藝學(xué)報(bào),2005,32(1):81-83.

      YAN SH T,XU J ZH.The effects of different dwarfing interstocks on the endogenous hormones polyamines and cell division in fruits of ‘red Fuji’ apple[J].ActaHorticulturaeSinica,2005,32(1):81-83 (in Chinese with English abstract).

      [35]LEE T T.Role of phenolic inhibitors in peroxidase mediated degradation of indole-3-acetic acid[J].PlantPhysiology,1997,59(3):372-375.

      [36]ESHDAT Y,HOLLAND D,FALTIN Z,etal.Plant glutathione peroxidases[J].PlantPhysicology,1997,100(2):234-240.

      [37]KRISTENSE B K,BLOCH H,RASMUSSEN S K.Barley coleoptile peroxidases purification,molecular cloning and induction by pathogens[J].PlantPhysiology,1999,120(2):501-512.

      [38]張志華,劉新彩,王紅霞.核桃IOD和POD酶活性與生長(zhǎng)勢(shì)的關(guān)系[J].園藝學(xué)報(bào),2006,33(2):229-232.

      ZHANG ZH H,LIU X C,WANG H X.Studies on the relationship between the IOD and POD activity and the growth vigor of walnut[J].ActaHorticulturaeSinica,2006,33(2):229-232 (in Chinese with English abstract).

      [39]王成霞,董曉穎,李培環(huán),等.桃葉片POD、SOD、CAT活性與樹(shù)體矮化和生長(zhǎng)的關(guān)系[J].中國(guó)農(nóng)學(xué)通報(bào),2007,23(6):353-356.

      WANG CH X,DONG X Y,LI P H,etal.Studies on the correlation between POD,SOD,CAT activity in leaves and dwarf growth of peach trees[J].ChineseAgriculturalScienceBulletin,2007,23(6):353-356 (in Chinese with English abstract).

      [40]于年文,王 宏.蘋(píng)果矮化栽培砧穗生理互作研究進(jìn)展[J].遼寧農(nóng)業(yè)科學(xué),2008(6):35-37.

      YU N W,WANG H.The research progress of dwarfing rootstock and scion physiological interaction in apple[J].LiaoningAgriculturalSciences,2008(6):35-37 (in Chinese).

      [41]WEBSTER A D.Rootstock and interstock effects on deciduous fruit tree vigour,precocity and yield productivity[J].NewZealandJournalofCropandHorticulturalScience,1995,23(4):373-382.

      [42]WEBSTER A D.Vigor mechanisms in dwarfing rootstocks for temperate fruit trees[J].ActaHorticulturae,2004,658(1):29-41.

      [43]ALONI B,KAMI L,DEVENTURERO Q,etal.Physiological and biochemical changes at the rootstock-scion interface in graft combinations betweenCucurbitarootstocks and a melon scion[J].JournalofHorticulturalScience&Biotechnology,2008,83(6):777-783.

      [44]ALONI R,COHEN L,KAMI H,etal.Hormonal signaling in rootstock-scion interactions[J].ScientiaHorticulturae,2010,127(2):119-126.

      [45]SONG CH H,ZHANG D,ZHANG J,etal.Expression analysis of key auxin synthesis,transport,and metabolism genes in different young dwarfing apple trees[J].ActaPhysiologyPlant,2016,38(2):1-15.

      [46]張 鶴.蘋(píng)果砧木M9作自根砧或中間砧的致矮機(jī)理研究[D].北京:中國(guó)農(nóng)業(yè)大學(xué),2013.

      ZHANG H.Mechanism of dwarfing effect of M9 used as rootstock or interstem for apple[D].Beijing:China Agricultural University,2013 (in Chinese with English abstract).

      [47]TWORKOSKI T,FAZIO G.Hormone and growth interactions of scions and size-controlling rootstocks of young apple trees[J].PlantGrowthRegulation,2016,78(1):105-119.

      [48]KAMBOJ J S.Polar transport of IAA in apical shoot segment of different apple rootstock[J].JournalofHorticulturalScience,1999,72(5):773-780.

      [49]KAMBOJ J S,BROWNING G,QUINLAN J D,etal.Polar transport of [3H]-IAA in apical shoot segments of different apple rootstocks[J].JournalofHorticulturalScience,1997,72(5):773-780.

      [50]KAMBOJ J,BLAKE P,QUINLAN J,etal.Identification and quantitation by GC-MS of zeatin and zeatinriboside in xylem sap from rootstock and scion of grafted apple trees[J].PlantGrowthRegulation,1999,28(3):199-205.

      [51]KAMBOJ J,BROWNING G,BLAKE P,etal.GC-MS-SIM analysis of abscisic acid and indole-3-acetic acid in shoot bark of apple rootstocks[J].PlantGrowthRegulation,1999,28(1):21-27.

      [52]FAUST M,WANG S Y,LINE J.The possible role of indole-3-acetic acid[J].JournaloftheAmericanSocietyforHorticulturalScience,1994,119(6):1215-1221.

      [53]MICHALCZUK L.Indole-3-acetic acid level in wood,bark and cambial sap of apple rootstocks differing in growth vigour[J].ActaPhysiologiaePlantarum,2002,24(2):131-136.

      [54]SOTIROPOULOS T E.Performance of the apple (MalusdomesticaBorkh) cultivar imperial double red delicious grafted on five rootstocks[J].HorticulturalScience,2008,35(1):7-11.

      [55]IGNACIO L,JUAN B F,TALON M.The dwarfing mechanism of citrus rootstocks F&A 418 and #23 is related to competition between vegetative and reproductive growth[J].TreePhysiology,2004,24(2):225-232.

      [56]FERREE M,BARDEN J A.The influence of strains and rootstock on photosynthesis,respiration and morphology of ‘delicious’ apple tree[J].JournaloftheAmericanSocietyforHorticulturalScience,1971,96(4):453-457.

      [57]王中英,解思敏,楊佩芳,等.矮化蘋(píng)果樹(shù)光合速率變化研究[J].華北農(nóng)學(xué)報(bào),1990,5(3):89-93.

      WANG ZH Y,XIE S M,YANG P F,etal.A study on the changes of the photosynthetic rate of apple trees in dwarfing rootstocks[J].ActaAgriculturaeBoreali-Sinica,1990,5(3):89-93(in Chinese with English abstract).

      [58]張建光,劉玉芳,施瑞德.不同砧木上蘋(píng)果品種光合特性比較研究[J].河北農(nóng)業(yè)大學(xué)學(xué)報(bào),2004,27(5):31-33.

      ZHANG J G,LIU Y F,SCHRADER.Comparative study on photosynthetic performance of several apple cultivars on different rootstocks[J].JournalofAgriculturalUniversityofHebei,2004,27(5):31-33(in Chinese with English abstract).

      [59]RAZAVI F,POLLET B,STEPPE K,etal.Chlorophyll fluorescence as a tool for evaluation of drought stress in strawberry[J].Photosynthetica,2008,46(4):631-633.

      [60]LUKE H,ROBERT T F,WAH S C.A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence[J].PhotosynthesisResearch,2004,82(1):73-81.

      [61]HELEN J C,JENNETH M S,PETER K A.Assessment of salt tolerance in eucalypts using chlorophyll fluorescence attributes[J].NewForests,2003,26(3):233-246.

      [62]史寶勝,徐繼忠,馬寶焜,等.SH系砧木光合作用特性的研究[J].河北農(nóng)業(yè)大學(xué)學(xué)報(bào),2001,24(4):54-57.

      SHI B SH,XU J ZH,MA B K,etal.The study on photosynthetic character to SH stocks[J].JournalofAgriculturalUniversityofHebei,2001,24(4):54-57 (in Chinese with English abstract).

      [63]GONCALVES B,PEREIRA J M,SANTOS A,etal.Scion-rootstock interaction affects the physiology and fruit quality of sweet cherry[J].TreePhysiology,2003,26(1):93-104.

      [64]PATAKAS A,KOFIDIS G,BOSABALIDIS A M.The relationships between CO2transfer mesophyll resistance and photosynthetic efficiency in grapevine cultivars[J].ScientiaHorticulturae,2003,97(3/4):255-263.

      [65]NAOR A I,KLEIN I D.Stem water potential and apple fruit size[J].JournaloftheAmericanSocietyforHorticulturalScience,1995,120(4):577-582.

      [66]UEGUCHI-TANAKA M,ASHIKARI M,NAKAJIMA M,etal.Gibberellin insensitive DWARF 1 encodes a soluble receptor for gibberellins[J].Nature,2005,437(7059):693-698.

      [67]KNOLLER A S,BLAKESLEE J J,RICHARDS E L,etal.Brachytic2/ZmABCB1 functions in IAA export from intercalary meristems[J].JournalofExperimentalBotany,2010,61(13):3689-3696.

      [68]DIJKSTRA C,ADAMS E,BHATTACHARYA A,etal.Over-expression of a gibberellin 2-oxidase gene fromPhaseoluscoccineusL.enhances gibberellin inactivation and induces dwarfism inSolanumspecies[J].PlantCellReports,2008,27(3):463-470.

      [69]YE L F,LIU L,XING A Q,etal.Characterization of a dwarf mutant allele ofArabidopsisMDR-like ABC transporter AtPGP1 gene[J].BiochemicalandBiophysicalResearchCommunications,2013,441(4):782-786.

      [70]湯常永.梨‘中矮1號(hào)’矮生基因的篩選及PcAHS克隆與表達(dá)分析[D].鄭州:中國(guó)農(nóng)業(yè)科學(xué)院果樹(shù)研究所,2015.

      TANG CH Y.Screening of dwarf genes and clone and expression analysis ofPcAHSgene from ‘Zhong’ai 1’ pear [D].Zhengzhou:Fruit Tree Research Institute of Chinese Academy of Agricultural Sciences,2015 (in Chinese with English abstract).

      [71]于 遲,張 鶴,李鴻莉,等.蘋(píng)果矮化中間砧SH40激素含量及生長(zhǎng)素轉(zhuǎn)運(yùn)蛋白基因pin1表達(dá)[J].中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2012,17(2):80-84.

      YU CH,ZHANG H,LI H L,etal.The content of hormone and auxin transport genepin1of SH40 as the interstock of apple[J].JournalofChinaAgriculturalUniversity,2012,17(2):80-84 (in Chinese with English abstract).

      [72]姜志昂,彭建營(yíng),孫建設(shè).蘋(píng)果MdKS、MdKOA1基因克隆與表達(dá)分析[J].植物遺傳資源學(xué)報(bào),2014,15(2):362-368.

      JIANG ZH A,PENG J Y,SUN J SH.Isolation and expression ofMdKSandMdKOA1gene in apple[J].JournalofPlantGeneticResources,2014,15(2):362-368 (in Chinese with English abstract).

      [73]鄧曉云,戴洪義,梁美霞.蘋(píng)果內(nèi)根-貝殼杉烯合成酶基因的克隆及表達(dá)分析[J].華北農(nóng)學(xué)報(bào),2013,28(2):46-51.

      DENG X Y,DAI H Y,LIANG M X.Cloning and expression analysis of ent-kaurene synthase geneMdKSin apple (MalusdomesticaBorkh) [J].ActaAgriculturaeBoreali-Sinica,2013,28(2):46-51 (in Chinese with English abstract).

      [74]程飛飛,歐春青,姜淑苓,等.梨內(nèi)根-貝殼杉烯合酶基因克隆及表達(dá)分析[J].沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào),2011,42(6):677-682.

      CHENG F F,OU CH Q,JIANG SH L,etal.Cloning and expression analysis of ent-kaurene synthase gene in pear[J].JournalofShenyangAgriculturalUniversity,2011,42(6):677-682 (in Chinese with English abstract).

      [75]歐春青,姜淑苓,王 斐,等.梨貝殼杉烯酸氧化酶基因PcKOA1的克隆與表達(dá)分析[J].園藝學(xué)報(bào),2013,40(5):849-858.

      OU CH Q,JIANG SH L,WANG F,etal.Cloning and expression analysis of ent-kaurenoic acid oxidase gene (PcKOA1) in pear[J].ActaHorticulturaeSinica,2013,40(5):849-858 (in Chinese with English abstract).

      [76]姜志昂,孫建設(shè),彭建營(yíng),等.蘋(píng)果砧木SH40MdNCED1基因克隆與表達(dá)分析[J].植物遺傳資源學(xué)報(bào),2014,15(1):153-159.

      JIANG ZH A,SUN J SH,PENG J Y,etal.Isolation and expression ofMdNCED1gene from apple rootstock SH40[J].JournalofPlantGeneticResources,2014,15(1):153-159 (in Chinese with English abstract).

      [77]GAO Y P,MOTOSUGI H,SUGIURA A.Rootstock effects on growth and flowering in young apple trees grown with ammonium and nitrate nitrogen[J].JournalofAmericanSocietyofHorticulturalScience,1992,117(3):446-452.

      (責(zé)任編輯:郭柏壽 Responsible editor:GUO Baishou)

      Recent Development and Research Prospects on Dwarfing Mechanism of Apple Rootstocks

      LI Chenghui1,2, LIU Zhi1, WANG Hong1, YU Nianwen1,ZHANG Xiumei1, HAN Lihong1and Lü Deguo2

      (1.Liaoning Research Institute of Pomology, Xiongyue Liaoning 115009,China;.College of Horticulture, Shenyang Agricultural University, Shenyang 110866,China)

      In order to study the dwarfing mechanism of apple rootstocks, this review summarizes the dwarfing mechanism of apple’s rootstocks from four aspects, including biological characteristics, anatomical structure, physiological and biochemical, and molecular biology. The future research work should firstly focus on the differences of tree water metabolism between different apple’s rootstocks, then explore physiological and biochemical changes. Secondly, study on production, state, and the laws of transportation and degradation of various hormones in different apple’s rootstock trees. In addition, with the help of molecular biology techniques, intensive study, such as signal transduction, synthesis of GA and many hormone synergy, should be conducted as well.

      Apple; Rootstocks; Dwarfing mechanism; Metabolism

      LI Chenghui, male, assistant research fellow. Research area: apple cultivation and physiological research. E-mail: lnlichenghui@163.com

      LIU Zhi, male, research fellow. Research area: apple breeding. E-mail: lnliuzhi@163.com

      2016-01-23

      2016-03-21

      現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資金(CARS-28);遼寧省果樹(shù)產(chǎn)業(yè)技術(shù)體系(Lngscytx-13/14-3)。

      里程輝,男,助理研究員,從事蘋(píng)果栽培與生理研究工作。E-mail:lnlichenghui@163.com

      劉 志,男,研究員,從事蘋(píng)果育種選育工作。E-mail:lnliuzhi@163.com 呂德國(guó),男,教授,博士生導(dǎo)師,從事果樹(shù)栽培與生理生態(tài)研究。E-mail:lvdeguo@163.com

      日期:2016-10-20

      S661.1

      A

      1004-1389(2016)10-1427-09

      Lü Deguo, male, professor, doctoral supervisor. Research area: fruit tree cultivation and physiological and ecological research. E-mail: lvdeguo@163.com

      網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/61.1220.S.20161020.1653.004.html

      Received 2016-01-23 Returned 2016-03-21

      Foundation item Special Funds for the Construction of Modern Agricultural Industry Technology System(No.CARS-28); Technology System of Fruit Tree Industry in Liaoning Province(No.Lngscytx-13/14-3).

      猜你喜歡
      矮化砧矮化砧木
      冀西北蘋(píng)果矮化密植栽培技術(shù)
      桃砧木耐澇性研究進(jìn)展
      蘋(píng)果矮化砧木抗寒育種研究進(jìn)展
      矮化中間砧蘋(píng)果幼樹(shù)抽條調(diào)查
      贛南早臍橙在幾種中間砧木上高接換種的表現(xiàn)
      矮化盆栽菊花的方法
      老友(2017年7期)2017-08-22 02:36:36
      做砧木的南瓜品種
      【第三部】
      幾種蘋(píng)果矮化砧木苗在一師墾區(qū)的生長(zhǎng)表現(xiàn)
      矮化砧飛龍枳對(duì)檸檬樹(shù)體生長(zhǎng)和果實(shí)品質(zhì)的影響
      湘西| 监利县| 宜兰县| 汶上县| 忻城县| 开远市| 林芝县| 萝北县| 白玉县| 五台县| 河西区| 寿阳县| 五大连池市| 炉霍县| 青铜峡市| 定兴县| 乐亭县| 涿州市| 南投市| 合水县| 大竹县| 锦屏县| 呈贡县| 马山县| 安阳县| 饶河县| 姚安县| 韶关市| 通榆县| 长子县| 新蔡县| 友谊县| 略阳县| 渑池县| 衡水市| 永春县| 布尔津县| 梓潼县| 凤城市| 淳化县| 佳木斯市|