林心如黃仁發(fā)
(1.廣西中醫(yī)藥大學(xué), 廣西 南寧 530001;2.廣西中醫(yī)藥大學(xué)附屬瑞康醫(yī)學(xué)院,廣西 南寧 530001)
高遷移率族蛋白1與急性腎損傷的研究進(jìn)展
林心如1黃仁發(fā)2
(1.廣西中醫(yī)藥大學(xué), 廣西 南寧 530001;2.廣西中醫(yī)藥大學(xué)附屬瑞康醫(yī)學(xué)院,廣西 南寧 530001)
高遷移率族蛋白1(high-mobility group protein 1,HMGB1)是真核細(xì)胞核內(nèi)蛋白,其作為晚期炎癥介質(zhì)的作用得到廣泛關(guān)注。研究表明,HMGB1參與了多種疾病的進(jìn)展,如急性腎損傷、惡性腫瘤、膿毒癥、抗中性粒細(xì)胞胞漿抗體相關(guān)性血管炎等。在這篇綜述中,筆者專注于HMGB1的生物學(xué)及其與各種病因引起的急性腎損傷的關(guān)聯(lián)。
HMGB1;RAGE;膿毒癥;急性腎損傷
高遷移率族蛋白(high mobility group protein,HMGB)在1977年被首次報(bào)道,當(dāng)時(shí)發(fā)現(xiàn)它主要是因?yàn)檫@種蛋白在凝膠電泳時(shí)遷移率很高[1]。而其中的HMGB1是一種含量豐富的真核細(xì)胞核內(nèi)DNA結(jié)合蛋白,主要作用是穩(wěn)定染色體結(jié)構(gòu)并協(xié)助其功能,參與DNA復(fù)制、重組、修復(fù)、轉(zhuǎn)錄調(diào)控、細(xì)胞分化等生命活動(dòng)[2]。此外,HMGB1作為促炎癥細(xì)胞因子參與晚期炎癥進(jìn)展的作用已得到大量研究證實(shí)[3]。
急性腎損傷(acute kidney injury,AKI)是一種可由多種基礎(chǔ)疾病或因素誘發(fā)的臨床中常見且癥狀繁復(fù)的綜合征,是危重患者常見的并發(fā)癥和重要的死亡原因。近年來(lái),盡管治療手段有了很大的改善,但AKI相關(guān)的發(fā)病率及死亡率仍很高。急性腎損傷(AKI)在住院患者中發(fā)病率為1~35%,并與高死亡率相關(guān)[4]。普通外科手術(shù)后的AKI發(fā)病率在1%左右,而在危重病人中的發(fā)病率高達(dá)70%,其中發(fā)生多器官功能障礙綜合征合并有AKI的患者死亡率可達(dá)到50%[5,6]。AKI是一個(gè)致死的獨(dú)立危險(xiǎn)因素[7],幸存患者有更高的風(fēng)險(xiǎn)進(jìn)展為慢性腎病。究其原因?yàn)?,缺乏具有一定的敏感性和特異性的指?biāo)來(lái)明確診斷AKI的早期損傷、區(qū)分病因、判斷預(yù)后[8]。目前研究證明,HMGB1參與了多種危重疾病的發(fā)展,如:膿毒癥、腫瘤、休克、急性重癥胰腺炎、急性肝損傷等,HMGB1與疾病的臨床表現(xiàn)、嚴(yán)重程度和預(yù)后轉(zhuǎn)歸均存在良好的相關(guān)性,拮抗HMGB1能夠抑制疾病發(fā)展,降低死亡率,且HMGB1的出現(xiàn)晚于TNF、IL-1,在治療相關(guān)疾病引起的AKI過(guò)程中有更多的緩沖時(shí)間,能夠擴(kuò)大臨床治療的時(shí)間窗。
在本文中,重點(diǎn)對(duì)HMGB1在急性腎損傷(AKI)發(fā)病機(jī)制中的作用,以及拮抗HMGB1的一些方法進(jìn)行綜述。了解這些成果可能揭示新的治療策略,以減輕或預(yù)防該疾病的發(fā)生發(fā)展。
人類HMGB1基因位于染色體13q12[9],基因位點(diǎn)上的六個(gè)多態(tài)性位點(diǎn)最近已被確定[10]。HMGB1是一個(gè)含有215個(gè)氨基酸殘基的單鏈多肽,不同的物種之間具有高度進(jìn)化保守性的3個(gè)不同的功能區(qū):兩個(gè)DNA結(jié)合區(qū)(A-box、B-box)和一個(gè)C′端負(fù)性調(diào)節(jié)區(qū)[2]。每個(gè)HMGB1 的A或B盒的長(zhǎng)度約為75-80個(gè)氨基酸[11],由兩短一長(zhǎng)共三個(gè)α-螺旋,折疊后形成L或V型三維結(jié)構(gòu)域[12,13]。從氨基端到羧基端的結(jié)構(gòu)依次為9-79氨基酸殘基的A box,95-163氨基酸殘基的B box和186-215僅含谷氨酸和天冬氨酸酸殘基的受體結(jié)合模體。研究表明,B盒是促使炎癥細(xì)胞釋放炎癥因子的功能區(qū)域,而 A盒是B盒的拮抗位點(diǎn),導(dǎo)致炎性反應(yīng)抑制HMGB1[2]。A box和B box都能夠與DNA結(jié)合,并參與DNA雙鏈的折疊與扭曲。當(dāng)機(jī)體的穩(wěn)態(tài)被打破,受到信號(hào)刺激的核內(nèi)蛋白HMGB1會(huì)被釋放到細(xì)胞外。Wang W[14]等證實(shí)了巨噬細(xì)胞主動(dòng)分泌
HMGB1的過(guò)程。另外,損傷壞死的細(xì)胞也是細(xì)胞外HMGB1的重要來(lái)源。
晚期糖基化終產(chǎn)物受體(receptor for advanced glycation end-products,RAGE)[15]和部分Toll樣受體(toll-like family of receptors,TLRs)[16]已被明確證實(shí)為HMGB1發(fā)揮功能的重要受體。RAGE為I型跨膜受體,通過(guò)JAK/STAT信號(hào)轉(zhuǎn)導(dǎo)通路調(diào)節(jié)HMGB1的表達(dá)[17]。已有研究表明∶ RAGE與HMGB1結(jié)合后促進(jìn)趨化作用,并通過(guò)激活NF-κB,誘導(dǎo)炎癥反應(yīng)[18]。許多炎癥性疾病的發(fā)生, 如膿毒癥、糖尿病、動(dòng)脈粥樣硬化及阿爾茨海默病等均與細(xì)胞 RAGE的表達(dá)增強(qiáng)有著密切聯(lián)系[19,20]。之后DeMarco[21]等證實(shí)了TLR2和TLR4也是HMGB1的受體。Tian[22]等證實(shí)HMGB1-DNA復(fù)合體激活了TLR9信號(hào)通路,通過(guò) TLR9促進(jìn)免疫細(xì)胞成熟和細(xì)胞分子分泌。此外HMGB1也可以結(jié)合IL-1β,TNFα等發(fā)揮促炎癥因子的作用。
壞死細(xì)胞的被動(dòng)釋放和炎癥細(xì)胞(如巨噬細(xì)胞等)的主動(dòng)分泌促使HMGB1從核內(nèi)轉(zhuǎn)移至細(xì)胞外[23],受HMGB1刺激的單核細(xì)胞釋放TNF-α、IL-1、IL-6、IL-8、MIP-1α、Nip-1β。中性粒細(xì)胞受HMGB1刺激后,其TNF,IL-1、IL-8分泌量增加[24]。在多種趨化因子的作用下,更多的炎癥細(xì)胞浸潤(rùn)到受損組織,進(jìn)一步加重病理?yè)p傷,而多種細(xì)胞因子如INF-γ、LPS、IL-1β也能夠刺激組織釋放HMGB1[24],兩者在晚期炎癥反應(yīng)中不斷相互作用,形成惡性循環(huán),導(dǎo)致瀑式炎癥反應(yīng)[25]。
急性腎損傷(AKI)可由多種疾病或因素誘發(fā),如膿毒癥、缺血再灌注損傷、休克、腎毒性藥物、中毒、手術(shù)應(yīng)激等。本文關(guān)注膿毒癥和缺血再灌注損傷誘導(dǎo)的急性腎損傷的相關(guān)機(jī)制及干預(yù)措施。
5.1 HMGB1與膿毒癥所致急性腎損傷
膿毒癥(sepsis)是指由感染或有高度可疑感染灶引起的全身炎癥反應(yīng)綜合征(systemic inflammatory response syndrome, SIRS),其病情兇險(xiǎn),病死率高。在膿毒癥引發(fā)的多器官功能衰竭中,急性腎損傷(AKI)是最常見的并發(fā)癥之一[26],有資料顯示,膿毒癥并發(fā)急性腎損傷(AKI)的危重患者病死率高達(dá)70~80%[27]。近年來(lái)HMGB1在腎組織中的表達(dá)變化以及在膿毒癥發(fā)病中的機(jī)制也逐漸吸引了研究者的目光,其被證實(shí)在膿毒癥的發(fā)展、轉(zhuǎn)歸及預(yù)后方面扮演著重要角色。HMGB1是膿毒癥致病的關(guān)鍵因子,并可能成為膿毒癥治療的新靶點(diǎn)[28]。
以往通過(guò)針對(duì)早期促炎癥細(xì)胞因子來(lái)治療膿毒癥,其效果不佳。在受到炎癥刺激后,早期促炎癥細(xì)胞因子(如TNF,IL-1等)短時(shí)間內(nèi)即釋放且持續(xù)時(shí)間較短,很快便恢復(fù)基礎(chǔ)水平,這直接導(dǎo)致沒(méi)有充足的時(shí)間來(lái)干預(yù)早期促炎癥細(xì)胞因子,也沒(méi)有明確的藥物來(lái)抵抗炎癥后期的損害。Wang[29]等通過(guò)動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn),H M G B 1在注射L P S、I L -1、T N F之后的1 8小時(shí)達(dá)到峰值,并且在之后的2 4小時(shí)內(nèi)仍可持續(xù)保持高水平的血清濃度,而先前大量研究證實(shí)膿毒癥導(dǎo)致的死亡常發(fā)生在早期促炎癥因子己經(jīng)恢復(fù)到基礎(chǔ)水平后。這表明H M G B 1作為晚期炎癥細(xì)胞因子對(duì)膿毒癥進(jìn)展及致死性的重要影響。
Y a n g H[30]等對(duì)小鼠進(jìn)行盲腸結(jié)扎穿孔術(shù)(C L P),發(fā)現(xiàn)在術(shù)后1 8 h血漿H M G B 1升高并可7 2 h保持較高水平。另有研究表明血漿H M G B 1升高水平與膿毒癥嚴(yán)重程度有關(guān)[31]。一項(xiàng)臨床研究顯示,膿毒血癥病人的血清中H M G B 1水平明顯高于正常人,死亡者血漿H M G B 1較存活者顯著升高(P均<0 . 0 5)[32]。
A s a d a[31]等用5 / 6腎臟切除的小鼠(5 / 6 N x)制作C K D模型,在晚期C K D的時(shí)段進(jìn)行C L P:在5 / 6 N X的小鼠四周后[33]。綜合腎損傷(B U N和腎小管空泡),肝損害(A L T、A S T)、血清炎癥因子(T N F -α α,I L -6,I L -1 0)及脾細(xì)胞凋亡程度,表明C L P術(shù)后1 8 h的C K D小鼠比僅進(jìn)行C L P的小鼠的膿毒癥程度更嚴(yán)重。其中血清肌酐(S C R)差異無(wú)統(tǒng)計(jì)學(xué)意義,然而,解釋血清肌酐水平并不簡(jiǎn)單,因?yàn)槟摱景Y本身可引起肌酐減少[34]。在 C K D后對(duì)小鼠進(jìn)行盲腸結(jié)扎穿孔(C L P),術(shù)后6 h血漿H M G B 1即顯著增加,而僅進(jìn)行C L P的小鼠其血漿H M G B 1在術(shù)后1 2 h后才出現(xiàn)[29];即使在手術(shù)后2 4小時(shí)的正常小鼠組里,H M G B 1中和治療亦改善了死亡率[24]。根據(jù)數(shù)據(jù)可能的解釋為:因?yàn)镠 M G B 1在C K D的進(jìn)展過(guò)程中水平較高,C K D時(shí)腎臟清除H M G B 1的能力已經(jīng)下降,在膿毒癥早期階段H M G B 1的少量增加即可引發(fā)自分泌并形成正反饋回路,從而引發(fā)更多的H M G B 1釋放,進(jìn)一步加重炎癥反應(yīng)和組織損傷。由此可知,膿毒癥發(fā)生后,H M G B 1出現(xiàn)時(shí)間的早晚與發(fā)生膿毒癥前的腎臟基礎(chǔ)功能有關(guān)。
5 . 2 H M G B 1與腎臟缺血再灌注損傷
缺血再灌注損傷(I R I)是一個(gè)有助于確定某些疾病高發(fā)病率和死亡率的相關(guān)因素,如心肌梗死,缺血性腦卒中,急性腎損傷(A K I)和創(chuàng)傷。而炎癥反應(yīng)是I R I主要特征之一[35]。在器官移植中,I R I作為大型手術(shù)中的挑戰(zhàn),很大程度上影響臨床效果。器官一旦缺血便降低代謝,引起微血管功能障礙相關(guān)的嚴(yán)重缺氧[36,37],同時(shí)釋放多種炎癥細(xì)胞因子和趨化因子,使中性粒細(xì)胞在損傷部位及遠(yuǎn)處器官趨化、活化、黏附、聚集,促發(fā)更為嚴(yán)重的炎癥反應(yīng)[38]。
大量研究早已證明,H M G B 1是一種啟動(dòng)炎癥并加重?fù)p傷的促炎癥因子。腎臟I R I發(fā)生后,大量尿酸釋放入血液循環(huán)中,使核內(nèi)H M G B 1乙?;?,存在于細(xì)胞核內(nèi)的H M G B 1顯著減少,而胞漿中H M G B 1顯著增多(P均<0 . 0 5),即H M G B 1發(fā)生了核漿移位。R a b a d i[25]等在體外用尿酸刺激人臍靜脈內(nèi)皮細(xì)胞(H U V E C),證實(shí)了尿酸通過(guò)鈣動(dòng)員劑和M E K / E r k通路使內(nèi)皮細(xì)胞核內(nèi)H M B G 1乙?;?,自細(xì)胞核中釋放后,H M G B 1以自分泌和旁分泌的方式促進(jìn)更多的H M G B 1乙?;歪尫?,活化N F -k B并上調(diào)血管生成素-2(A N G -2)的表達(dá),引發(fā)系統(tǒng)性炎癥反應(yīng)。有研究表明,I R I過(guò)程中,胞漿內(nèi)H M G B 1陽(yáng)性程度在再灌注 3 h達(dá)到高峰,隨即下降,但再灌注 2 4 h后H M G B 1表達(dá)仍處于較高水平,且2 4 h內(nèi)細(xì)胞H M G B 1表達(dá)總
量未見明顯變化[39],這說(shuō)明,HMGB1的釋放源于胞核內(nèi)的儲(chǔ)備而非新合成,只是表達(dá)部位改變但總量不變,由此可見HMGB1在腎臟IRI啟動(dòng)和進(jìn)展中發(fā)揮了重要作用。
腎缺血再灌注損傷(IRI)是腎移植過(guò)程中的必然后果,且會(huì)對(duì)短期或長(zhǎng)期術(shù)后存活者腎功能造成不利影響[40]。最初非免疫損傷引起先天免疫反應(yīng)的激活,從而引發(fā)組織損傷[41]。IRI觸發(fā)先天免疫,通過(guò)結(jié)合TLR內(nèi)源性配體從而激活Toll樣受體(TLR)。IRI導(dǎo)致受損組織表達(dá)或釋放多種內(nèi)源性TLR配體,包括熱休克蛋白, HMGB1,透明質(zhì)酸,纖連蛋白,和硫酸乙酰肝素[42]。越來(lái)越多的實(shí)驗(yàn)證據(jù)表明,通過(guò)結(jié)合TLRs內(nèi)源性配體可導(dǎo)致 TLR激活,從而啟動(dòng)并放大免疫反應(yīng)。在腎臟IRI中,TLR2和 TLR4的表達(dá)被腎小管上皮細(xì)胞上調(diào)[43]。TLR4被認(rèn)為是腎臟IRI所致炎癥的一個(gè)重要觸發(fā)劑[44]。IRI的發(fā)生是因?yàn)門LR4和TLR內(nèi)源性配體被上調(diào)所致,TLR4基因敲除(TLR4 -/-)小鼠防止了腎功能障礙、腎小管損傷、中性粒細(xì)胞和巨噬細(xì)胞的浸潤(rùn),以及炎性細(xì)胞因子的表達(dá)[45]。這表明HMGB1的釋放是TLR4依賴的。Chen[46]等發(fā)現(xiàn)腎缺血再灌注損傷(IRI)后的受損近端小管細(xì)胞釋放HMGB1,繼而通過(guò)結(jié)合其受體TLR4引起TLR4(+/+)野生型巨噬細(xì)胞表達(dá)IL-6,而TLR4基因敲除(TLR4-/-)的細(xì)胞對(duì)HMGB1無(wú)反應(yīng),且TLR4(-/-)小鼠腎小管損傷較輕,血清Cr水平也較低。這表明HMGB1/TLR4是腎臟IRI的重要發(fā)病信號(hào),HMGB1是通過(guò)與受體TLR4結(jié)合來(lái)介導(dǎo)IRI損傷的。再灌注后將rHMGB1注射入小鼠體內(nèi),腎臟組織的IL-6、TNF及MCP-1 mRNA水平明顯增高,從而加劇了野生型小鼠的腎臟IRI程度。但rHMGB1并未使中性粒細(xì)胞和巨噬細(xì)胞浸潤(rùn)進(jìn)一步加重,也未造成(TLR4-/-)小鼠腎功能減退和小管進(jìn)一步損傷[39]。這表明外源性HMGB1加重腎臟IRI炎癥損傷也是通過(guò)TLR4介導(dǎo)的。
IRI是腎臟移植手術(shù)中常見并發(fā)癥,死亡供體從腦死亡即開始血流量下降,繼而引起供體激活補(bǔ)體級(jí)聯(lián)反應(yīng)與先天免疫系統(tǒng)。移植腎貯存時(shí)的冷缺血也導(dǎo)致進(jìn)一步的缺血性損傷[47],加之術(shù)中腎動(dòng)脈阻斷引起短時(shí)間但嚴(yán)重的腎臟缺血,由于再灌注期間,血流重建[48]是損傷中最終發(fā)生及生物學(xué)角度最嚴(yán)重的階段。因此再灌注時(shí)受者體內(nèi)出現(xiàn)細(xì)胞應(yīng)激和瀑式炎癥反應(yīng),造成腎組織損傷是不可避免的。冷缺血再灌注大鼠腎組織HMGB1表達(dá)升高,血清肌酐及炎癥因子(TNF-α、NF-kB)水平均顯著高于假手術(shù)組(P<0.01),缺血及再灌注前阻斷胞外HMGB1活性,能夠顯著降低炎癥因子的表達(dá)降低血清肌酐水平,證實(shí)了HMGB1在啟動(dòng)冷缺血再灌注損傷后的獲得性免疫反應(yīng)中的重要作用。有研究表明[49],由活體供腎的移植腎同樣經(jīng)受冷缺血損傷,但相比較死亡供體腎,冷缺血時(shí)間顯著縮短,其中死亡供腎為(20±1.3)h,活體供腎為(38±3.6)min,而且在死亡供腎腎的近端小管、遠(yuǎn)端小管和平滑肌細(xì)胞的細(xì)胞核和細(xì)胞漿中均發(fā)現(xiàn) HMGB1表達(dá)顯著升高,而活體供腎中未發(fā)現(xiàn)任何部位有HMGB1的表達(dá),故而 IRI在活體供腎的腎臟移植中發(fā)生率及嚴(yán)重程度遠(yuǎn)低于死亡供腎[50]。
HMGB1作為一種全身炎癥反應(yīng)的晚期介導(dǎo)因子,擴(kuò)大了臨床干預(yù)治療的時(shí)間窗,已成為藥物研究熱點(diǎn)。下面概述在AKI中,針對(duì)HMGB1的治療方法現(xiàn)狀。
抗HMGB1中和抗體:Ulloa[51]等在盲腸結(jié)扎穿孔術(shù)(CLP)動(dòng)物模型研究中觀察到,給予膿毒癥小鼠抗HMGB1中和抗體不僅可在一定程度上抑制炎癥反應(yīng),其效果優(yōu)于針對(duì)早期促炎癥因子(TNF、IL-1)的抗體,并且降低了膿毒癥小鼠的死亡率。
丙酮酸乙酯:它是一種食品添加劑,也可作為制備某些藥品的原料。進(jìn)入機(jī)體后解離出的丙酮酸根離子參與細(xì)胞代謝,抑制并清除氧自由基,從而對(duì)機(jī)體產(chǎn)生保護(hù)作用。一項(xiàng)研究證實(shí)丙酮酸乙酯可抑制多種細(xì)胞因子的釋放,包括
HMGB1、TNF-α等,有益于提高膿毒癥小鼠的存活率[52]。
脾切除:脾細(xì)胞凋亡是公認(rèn)的膿毒癥特征之一,與高死亡率有關(guān),脾細(xì)胞凋亡是血清HMGB1的重要來(lái)源[53]。在5 / 6 NX的小鼠四周后脾切除,綜合腎損傷(BUN和腎小管空泡),肝損害(ALT、AST)、血清炎癥因子(TNF-α,IL-6,IL-10)及脾細(xì)胞凋亡程度,證實(shí)CLP術(shù)后18h的CKD小鼠比僅進(jìn)行CLP的小鼠的膿毒癥更嚴(yán)重[31]。證明了脾切除能夠減少HMGB1釋放引發(fā)的炎癥反應(yīng)。
此外,YoshikawaT[54]等的研究表明:高劑量免疫球蛋白能夠通過(guò)抑制HMGB1的產(chǎn)生來(lái)減輕腎臟損傷,降低膿毒癥大鼠的死亡率。血液濾過(guò)可以降低膿毒癥AKI犬血清及肝、肺、腎組織炎癥因子濃度,保護(hù)肝、肺、腎功能。利多卡因能夠減少CLP手術(shù)大鼠腎組織中HMGB1mRNA水平,降低血漿Cr,且呈劑量依賴性。一些中藥制劑,如血必凈注射液能夠緩解燙傷所致AKI抑制HMGB1的表達(dá)。
綜上所述,HMGB1參與了諸多疾病的發(fā)生發(fā)展,且與相應(yīng)疾病的死亡率有密切的聯(lián)系。這些拮抗HMGB1的治療方法在一定程度上改善了疾病預(yù)后,但實(shí)驗(yàn)研究和臨床經(jīng)驗(yàn)證明,單一的治療方法均不能取得良好的效果且附帶不同程度的副作用。目前對(duì)HMGB1介導(dǎo)AKI的病理機(jī)制的停留在基礎(chǔ)研究階段,HMGB1的表達(dá)與各種AKI的臨床表現(xiàn)、生化指標(biāo)和疾病嚴(yán)重程度之間的相關(guān)性,如何合理制定抗HMGB1的治療方案以及拮抗HMGB1后的預(yù)防和保護(hù)機(jī)制仍需大規(guī)模的臨床試驗(yàn)證實(shí)。關(guān)于HMGB1的深入研究將為臨床治療提供一種新的思路。
[1] Goodwin GH, Johns EW. The isolation and purification of the high mobility group (HMG) nonhistone chromosomal proteins[J]. Methods Cell Biol,1977,16∶257,67.
[2] Huang J, Liu K, Yu Y, Xie M, Kang R, Vernon P, et al. Trageting HMGB1-mediated autophagy as a novel thrapetic strategy for osteosarcoma.[J].Autophgy,2012,8(2)∶275,7.
[3] Bianchi ME. DAMPs,PAMPs and alarmins∶ all we need to know about danger[J]. J Leukoc Biol, 2007,81(1)∶1-5.
[4] Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure -definition, outcome measures, animal models, fluid therapy and information technology needs∶ the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group [J].Critical care,2004,8∶R204,12.
[5] Ostermann M, Chang RW. Acute kidney injury in the intensive care unit according to RIFLE[J]. Critical care medicine. 2007;35∶1837,43.
[6] Singbartl K, Kellum JA. AKI in the ICU∶ definition, epidemiology,risk stratification,and outcomes[J]. Kidney international,2012,81∶819,25.
[7] Hoste EA, Schurgers M. Epidemiology of acute kidney injury∶ how big is the problem?[J].Critical care medicine, 2008,36∶S146,51.
[8] Han WK, Waikar SS,Johnson A, er al. Urinary biomarkers in the early diagnosis of acute kidney injury [J]. Kidney Int, 2008,73(7)∶863-869.
[9] Ferrari S, Finelli P, Rocchi M and Bianchi M∶ The active gene that encodes human high mobility group 1 protein (HMG1) contains introns and maps to chromosome 13. Genomics,1996,35∶367-371.
[10] Kornblit B, Munthe-Fog L,Petersen S, Madsen H, Vindel?v L and Garred P∶ The genetic variation of the human HMGB1 gene. Tissue Antigens,2007,70∶151-156.
[11] Zhivotovsky B, Orrenius S. Cell death mechanisms∶ Crosstalk and role in disease[J].Exp Cell Res,2010;316(8)∶1374,83.
[12] Puyal J,Vaslin A,Mottier V,Clarke PG.Postischemic treatment of neonatal cerebral ischemia should target autophagy[J]. Ann Neurol,2009,66(3)∶378,89.
[13] Carloni S, Buonocore G, Balduini W. Protective role of autophagy in neonatal hypoxia- ischemia induced brain injury[J].Neurobiol Dis,2008,32(3)∶ 329,39.
[14] Wang W, Sun L, Deng Y, Tang J. Synergistic effects of antibodies against high-mobility group box 1 and tumor necrosis factor-α antibodies on D-(+)- galactosamine hydrochloride/lipopolysaccharide-induced acute liver failure[J]. FEBS J,2013,280(6)∶1409,19.
[15] Zakiyanov O,Kriha V,Vachek J, Zima T,Tesar V, Kalousova M. Placental growth factor, pregnancy-associated plasma protein-A, soluble receptor for advanced glycation end products, extracellular newly identified receptor for receptor for advanced glycation end products binding protein and high mobility group box 1 levels in patients with acute kidney injury∶ a cross sectional study[J].BMC Nephrology, 2013,14∶245.
[16] Lu CY,Winterberg PD,Chen J,Hartono JR. Acute kidney injury∶a conspiracy of toll-like receptor 4 on endothelia, leukocytes,and tubules[J].Pediatric nephrology (Berlin, Germany),2012,27(10)∶1847-1854.
[17] Kang R,Tang D,Loze MT,Zeh HJ.Apoptosis to autophagy switch triggered by the MHC class III-encoded receptor for advanced glycation endproducts (RAGE). Autophagy,2011, 7(1)∶91,3.
[18] Liliensiek B,Weigand MA,Bierhaus A,et al. Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response[J].J Clin Invest, 2004,113(11)∶1641,50.
[19] Ito N, DeMarco RA, Mailliard RB,et al.Cytolytic cells induce HMGB1 release from melanoma cell lines[J].J Leukoc Biol,2007,81(1)∶75-83.
[20] Bopp C,Bierhaus A, Hofer S,et al. Bench-to-bedside review∶the inflammation-perpetuating pattern-recognition receptor RAGE as a therapeutic target in sepsis[J].Crit Care,2008, 12(1)∶201,8.
[21] DeMarco RA, Fink MP, Lotze MT. Monocytes promote natural killer cell interferon gamma production in response to the endogenous danger signal HMGB1[J]. Mol Immunol, 2005,42(4)∶433,44.
[22] Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C, Hua J, An LL, Audoly L, La Rosa G, Bierhaus A, Naworth P, Marshak-Rothstein A, Crow MK, Fitzgerald KA, Latz E, Kiener PA, Coyle AJ. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE[J].Nat Immunol,2007,8(5)∶487,96.
[23] Yang H,Tracey KJ.Targeting HMGB1 in inflammation [J]. Biochim Biophys Acta,2010,1799(1-2)∶149-156.
[24] Yang H,Wang H,Czura CJ,Tracey KJ.The cytokine activity of HMGB1[J].J Leukoc Biol,2005,78(1)∶1-8.
[25] Rabadi MM,Ghaly T,Goligorksy MS,Ratliff BB. HMGB1 in renal ischemic injury[J].American Journal of Physiology-Renal Physiology,2012,303(6)∶F873-F885.
[26] Gustot T. Multiple organ failure in sepsis∶ prognosis and role of systemic inflammatory response[J].Curr Opin Crit Care, 2011,17∶153,59.
[27] Hocherl K, Schmidt C, Kurt B, Bucher M. Inhibition of NF-kappaB ameliorates sepsis-induced down regulation of aquaporin-2/V2 receptor expression and acute renal failure in vivo[J].Am J Physiol Renal Physiol,2010,298∶F196-204.
[28] Hu YM, Pai MH, Yeh CL,Hou YC, Yeh SL. Glutamine administration ameliorates sepsis-induced kidney injury by downregulating the high-mobility group box protein-1-mediated pathway in mice[J].Am J Physiol Renal Physiol, 2012,302∶F150-58.
[29] Wang H, Bloom O, Zhang M, et al.HMG-1 as a late mediator of endotoxin lethality in mice[J].Science,1999, 285( 5425)∶248-251.
[30] Yang H, Ochani M, Li J, et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1[J].Proc Natl Acad Sci USA,2004,101(1)∶296-301.
[31] Leelahavanichkul A,Huang Y,Hu X,et al.Chronic kidney disease-induced HMGB1 elevation worsens sepsis and sepsis-induced acute kidney injury[J].Kidney international, 2011,80(11)∶1198-1211.
[32] Wang H,Yang H,Tracey KJ.Extracellular role of HMGB1 in inflammation and sepsis[J].J Intern Med,2004,255(3)∶320-331.
[33] Leelahavanichkul A, Yan Q, Hu X, et al. Angiotensin II overcomes strain-dependent resistance of rapid CKD progression in a new remnant kidney mouse model[J]. Kidney Int,2010,78(11)∶1136,53.
[34] Dhainaut JF,Claessens YE,Janes J,Nelson DR. Underlying disorders and their impact on the host response to infection[J].Clin Infect Dis,2005,41(Suppl 7)∶S481,9.
[35] Wu H, Ma J,Wang P,et al.HMGB1 Contributes to Kidney Ischemia Reperfusion Injury[J].Journal of the American Society of Nephrology∶JASN,2010,21(11)∶1878-1890.
[36] Bonventre JV,Yang L.Cellular pathophysiology of ischemic acute kidney injury[J].J Clin Invest,2011,121∶4210-4221.
[37] Munshi R,Hsu C,Himmelfarb J.Advances in understanding ischemic acute kidney injury[J].BMC Med,2011,9∶11.
[38] Jang HR, Ko GJ, Wasowska BA, et al. The interaction between ischemia-reperfusion and immune responses in the kidney[J].J Mol Med (Berl),2009,87(9)∶859-864.
[39] Li J,Gong Q, Zhong S,et al. Neutralization of the extracellular HMGB1 released by ischaemic-damaged renal cells protects against renal ischaemia-reperfusion injury[J]. Nephrol Dial Transplant,2011,26∶469-478.
[40] Nankivell BJ,Chapman JR∶Chronic allograft nephropathy∶Current concepts and future directions[J].Transplantation, 2006,81∶643-654.
[41] Jo SK,Sung SA,Cho WY,Go KJ,Kim HK∶ Macrophages contribute to the initiation of ischaemic acute renal failure in rats[J].Nephrol Dial Transplant,2006,21∶1231-1239.
[42] Marshak-Rothstein A∶Toll-like receptors in systemic autoimmune disease[J].Nat Rev Immunol,2006,6∶ 823-835.
[43] Kim BS, Lim SW, Li C, Kim JS, Sun BK, Ahn KO, Han SW, Kim J,Yang CW∶ Ischemia-reperfusion injury activates innate immunity in rat kidneys[J]. Transplantation,2005,79∶1370-1377.
[44] Shigeoka AA,Holscher TD,King AJ,Hall FW,Kiosses WB, Tobias PS, Mackman N, McKay DB∶TLR2 is constitutively expressed within the kidney and participates in ischemic renal injury through both MyD88- dependent and-independent pathways[J].J Immunol,2007,178∶6252-6258.
[45] Wu H, Chen G, Wyburn KR, Yin J, Bertolino P, Eris JM, Alexander SI,Sharland AF,Chadban SJ∶TLR4 activation mediates kidney ischemia/ reperfusion injury[J].J Clin Invest,2007,117∶2847-2859.
[46] Chen J, Hartono JR, John R, et al∶ Early interleukin 6 production by leukocytes during ischemic acute kidney injury is regulated by TLR4[J].Kidney Int,2011,80∶504-515.
[47] Dong VM, Tilney NL. Reduction of ischemia/ reperfusion injury in organ transplants by cytoprotective strategies [J].Current Opinion in Organ Transplantation,2001(6)∶69-74.
[48] Gulec B.Ischemia Reperfusion Injury in Kidney Transplantation. In∶TrzcinskaM.Kidney Transplantation - New Perspectives. INTECH Open Access Publishe,2011.
[49] Kruger B,Krick S,Dhillon N,et al.Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation[J]. Proc Natl Acad Sci USA, 2009,106 (9)∶3390-3395.
[50] Salvadori M, Rosso G, Bertoni E. Update on ischemiareperfusion injury in kidney transplantation∶ Pathogenesis and treatment[J].World Journal of Transplantation,2015, 5(2)∶52-67.
[51] Ulloa L, Brunner M, Ramos L, Deitch EA. Scientific and clinical challenges in sepsis[J].Curr Pharm Des,2009,15 (16)∶1918,35.
[52] Fink M P. Ethyl pyruvate∶ a novel treatment for sepsis [J]. Curr Drug Targets,2007,8(4)∶515-518.
[53] Huston JM,Wang H,Ochani M,et al.Splenectomy protects against sepsis lethality and reduces serum HMGB1 levels[J]. J Immunol,2008,181(5)∶3535-9.
[54] Yoshikawa T, Takeuchi H, Suda K, et al. High-dose immunoglobulin preparations improve survival in a CLP-induced rat model of sepsis.[J].Langenbecks Arch Surg, 2012,397(3)∶457-465.
Research progress of HMGB1 and acute kidney injury
HMGB1(high-mobility group 1 protein, HMGB1) is the nuclear protein in eukaryotic cells, which has been widely researched as a late inflammatory mediators. Studies show that HMGB1 is involved in the progression of many diseases, such as malignant tumor, acute kidney injury, sepsis, anti neutrophil cytoplasmic antibody associated vasculitis. In this review, we focus on the biological function of HMGB1 and the relevance to HMGB1 and acute kidney injury caused by various causes.
HMGB1; RAGE; sepsis; acute kidney injure
R285
A
1008-1151(2016)10-0061-05
2016-09-13
林心如,廣西中醫(yī)藥大學(xué)2014級(jí)研究生,研究方向?yàn)榧甭阅I衰竭的防治研究。